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Abstract: Automatic modulation recognition is a necessary part of cooperative and noncooperative
communication systems and plays an important role in military and civilian fields. Although the
constellation diagram (CD) is an essential feature for different digital modulations, it is hard to be
extracted under noncooperative complex communication environment. Frequency offset, especially
the nonlinear frequency offset is a vital problem of complex communication environment, which
greatly affects the extraction of traditional CD and the performance of modulation recognition
methods. In the current paper, we propose an antifrequency offset constellation diagram (AFO-CD)
extraction method, which combines the constellation diagram with a convolutional neural network
(CNN). The proposed method indicates the change of the CD with time and enables us to suppress
the influence of frequency offset efficiently. Additionally, a residual units-based classifier is designed
for multiscale feature extraction and modulation classification. The experimental results demonstrate
that the proposed method can effectively improve the recognition accuracy and has a good application
prospect in the complex electromagnetic environment.

Keywords: automatic modulation recognition; convolutional neural network; constellation diagram;
frequency offset

1. Introduction

With the rapid development of information technology, automatic modulation recog-
nition (AMC) technology is playing a crucial role in wireless communication systems [1–4],
which have been used for a variety of applications, including civilian and military pur-
poses [5,6]. Meanwhile, the communication signals and the electromagnetic environment
are becoming much denser and more complex, leading to various difficulties for classifica-
tion of unknown modulation modes [7].

To achieve efficient AMC, the existing techniques are mainly divided into two cate-
gories: likelihood-based (LB) [8] and feature-based (FB) [9] methods. The LB methods are
implemented based on probability statistics and likelihood functions, which have high pre-
cision and high computational complexity. The FB methods are based on feature extraction
and classifier design. The commonly used features include instantaneous features, high-
order statistics, cyclic spectrum, and wavelet transform, etc. The classifiers mainly include
the unsupervised clustering method [10], decision tree [11], artificial neural network [12],
Bayesian classifier [13], support vector machine methods (SVM) [14], etc.

Deep learning (DL) is an important issue in artificial intelligence and a crucial di-
rection of machine learning (ML) [15]. Deep learning can overcome the problem that
handcrafted feature extraction depends on professional experience, and make full use of
the large amount of data in the communication system. Feature representation, sequence
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representation, and image representation are three kinds of commonly used inputs for deep
learning networks.

Feature representation processes the signal into one or more features, such as higher-
order cumulant features [16,17], cyclic spectrum [18], etc. Sequence representation processes
signals into one-dimensional signal sequences, including amplitude-phase sequences [19,20],
I/Q sequences [21], etc. Image representation processes signals into two-dimensional
matrices, and then the classic image recognition algorithm can be used for modulation
recognition. Image representation includes time-frequency diagrams [22], bispectrum
diagrams [23], constellation diagram (CD) [24], etc.

This paper proposes an antifrequency offset constellation diagram (AFO-CD), which
is a novel signal representation method. Compared with exiting CD-based AMC methods,
the proposed method can represent the change of CD with time, make full use of the
timing characteristics of the signal, and suppress the influence of the frequency offset.
Additionally, it has higher generalization and antiinterference abilities. Additionally, a
constellation-specific recurrent neural network is designed to act as a classifier, which
significantly improves the recognition performance.

The rest of this paper is organized as follows. Section 2 is the related works. Section 3
outlines the proposed AFO-CD algorithm and the deep learning network structure. The
experimental results are given in Section 4. Section 5 gives the conclusion.

2. Related Works

To improve the recognition accuracy of modulation types, various deep learning
networks have been proposed. Compared with traditional ML-based algorithms, the
DL-based approach has advantages and feasibility. In [25], the AlexNet and GoogLeNet
are introduced for AMC. A modulation recognition algorithm based on ResNet50, and
multifeature fusion is proposed to solve the problem of low accuracy under low signal-to-
noise ratio (SNR) [26]. VGG networks, such as VGG-16 and VGG-19, have shown good
performance in image classification, which are used for AMC by converting the sampled
data of communication signals into gray images [27]. An end-to-end bidirectional long
short-term memory (Bi-LSTM) is proposed for AMC in [28], which has low computational
complexity in low SNR. The combinatorial model, e.g., convolutional long short-term deep
neural network (CLDNN) is introduced in [29], which extract the advantages of individual
networks including CNN, LSTM, and DNN. In [30], a CNN network incorporating a
time-frequency attention mechanism is proposed. Additionally, multimodal convolutional
features are utilized to realize signal recognition [31,32].

Compared with the methods mentioned above, the CD is an essential feature for
different digital modulations, which also transforms the modulation recognition problem
to image classification. For example, a graphic constellation projection (GCP) algorithm is
proposed in [33], in which the deep belief network (DBN) is employed to mine the signal
features and to classify the modulation types. The CD maps the signal amplitude and phase
onto a two-dimensional complex plane, which can represent the information of a specific
signal, and illustrate the relative distribution characteristics between different modulation
states. However, under a noncooperative complex communication environment, the CD is
greatly affected by the frequency offset.

In order to solve the problem above, we reproduce some of the methods mentioned in
the article and experiment with the model using our data. Because the accumulation of
Gaussian white noise is zero when it is higher than the second order, we adopt a recognition
method based on high-order cumulants and use SVM and Bayesian models commonly
used in machine learning as classifiers, and the results show that these two methods are
stable under a low signal-to-noise ratio, but the recognition effect is not good in high-
frequency bias. The selected high-order cumulants may not be suitable to model, and the
deep learning method avoids artificial feature selection. Thus, we experiment with deep
learning methods. Considering that the current deep learning methods mainly deal with
two-dimensional data structures, we select VGG-16 and GoogLeNet, which have better
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image-classification effects for experiments, and the results show that these two models
perform well. Although both models consist of simple convolutional layers and pooling
layers, they lack the ability to capture time correlation. Therefore, the GRU module is
utilized to solve the problem of information forgetting in long time series.

3. Antifrequency Offset CD Extraction and Modulation Recognition Algorithm
3.1. The Proposed Model

The proposed modulation recognition method based on AFO-CD is shown in Figure 1.
After the signal receiving, mixing, and downconversion processing, the in-phase/quadrature
(I/Q) data is available. Our model includes AFO-CD extraction and modulation recognition.
First, the AFO-CD is extracted as features for AMC. Then the AFO-CD features are fed into
the residual double-gated recurrent neural network (RDGNN) as a classifier to obtain the
modulation types.

Figure 1. An overview of the proposed model.

This paper considers the additive white Gaussian noise (AWGN). The received digital
signal is

r(t) = s(t) + n(t), (1)

where s(t) represents an intermediate frequency or high-frequency modulated signal, and
n(t) represents noise.

A modulated signal with a carrier frequency of f0 can be expressed as

s(t) = A(t) cos(2π f0t + φ(t) + ϕ0), (2)

where A(t) represents the amplitude, φ(t) is the signal phase, and ϕ0 is the initial phase.
There are various modulation types of modern digital signals, which are suitable for

different communication environments. Generally speaking, signals are mainly divided
into four categories: multiple amplitude shift keying (MASK), multiple phase shift keying
(MPSK), multiple frequency shift keying (MFSK), and multiple quadrature amplitude
modulation (MQAM).
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3.2. AFO-CD Feature Extraction

The current digital communication signals commonly adopt amplitude and phase
modulations. Actually, digital amplitude-phase modulation of a signal can be uniquely
represented by CD. Therefore, the CD is an efficient tool to analyze digital modulation
signals. In a noncooperative communication system, the carrier frequency is first estimated,
and the signal is downconverted to the baseband. Due to the estimation error, the baseband
signal is always affected by frequency offset, which results in a significant effect on the CD.

The baseband signal is written as

s(t) = A(t)ej(2π∆ f t+ϕ(t)+ϕ0), (3)

where ∆ f is the frequency offset. It can be seen that the frequency offset affects the signal
phase, but the amplitude remains unchanged. The traditional CD projection algorithms
always projects all the data points of a signal onto a diagram, which will lead to ambiguity
of the CD, and directly affect the modulation recognition of the signal.

In fact, the signal data points can be projected onto the CD sequences, and show
the changes with time. Based on our previous works in [34], the AFO-CD uses the fast
projection algorithm to processing I/Q signal into a constellation matrix C, and linearly
maps the matrix to an 8-bit gray-scale constellation. More specifically, the signal is divided
into M segments, and each segment is formed by Nm data points. For the first CD C1

segment, only the first Nm data points are included. For the second CD C2 segment, the
first 2Nm data points are included. Consequently, the n-th CD Cn includes the former n
segments, which is written as

C(n) = f (nNm), (4)

where f (·) denotes the fast projection algorithm.
To illustrate that the projection of data points changes over time, we selected three

signal modulations, viz. 2PSK, 4PSK, and 8PSK for demonstration. The top, middle, and
bottom rows of Figure 2 show the CD sequences {C1, C2, C3, C4, C5} of 2PSK, 4PSK, and
8PSK, respectively. For each row, the five subfigures from the left to right columns, respec-
tively, represent the projections of different numbers of data points on the constellation
diagram. It can be seen from Figure 2 that with the increase of the data points, the CDs of
different signals become similar and difficult to distinguish.

Figure 2. The CD sequences of three PSK signals.
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Based on the characteristics of the abovementioned CDs, the feature extraction process
of the AFO-CD is demonstrated in the feature extraction module in Figure 1 (see the left
side of Figure 1). For the I/Q signal, the fast projection algorithm is used to project the I/Q
signal onto F CDs. For different signals, I and Q have a unique corresponding relationship.
Therefore, one-dimensional convolution and one-way sliding are used for feature extraction.
For each CD, two layers of one-dimensional convolution with a width of 3 and two layers
of average pooling with a width of 2 are used to extract high-dimensional features. Then a
fusion operation is performed in the convolution kernel dimension of the features. Among
them, the convolution stride is 1, and the pooling stride is 2. The convolutional layer uses
ReLU as the activation function.

3.3. CD-Based Deep Learning Structure

Recurrent neural network has memory and can effectively process time series data
of any length, so it is often used to solve modulation recognition problems. However, it
is difficult to deal with dependencies between states at long intervals due to vanishing
gradients or exploding gradients. To solve this problem, a gating mechanism is introduced
based on the recurrent convolutional neural network. The gating mechanism can selectively
add new information while forgetting the previously accumulated information, thereby
effectively controlling the speed of information accumulation. The gated recurrent unit
(GRU) is a gated-based recurrent neural network, whose structure is simpler than that
of the long short-term memory network. The proposed CD changes with time, so the
recurrent neural network can be introduced for the classification.

As shown in Figure 1, the classifier is the proposed RDGNN, the input to the classifier
is the AFO-CD feature, and the output is the modulation type of the signal. The classifier,
namely RDGNN, contains a residual unit, two gated recurrent units, and a fully connected
layer. In order to make the channel dimensions of different branches consistent, the residual
unit in RDGNN adds a one-dimensional convolution to the direct mapping part. The direct
mapping part in the Figure 1 contains a layer of one-dimensional convolution with a width
of 1, which is used to adjust the number of channels. The other branch contains two layers
of one-dimensional convolutions with a width of 3. ReLU is used as the activation function
in the residual unit. The two-layer gated recurrent unit in RDGNN, the number of neurons
in each unit is 200. The last layer of the network is a fully connected layer, which uses
Softmax as the activation function to output the modulation prediction.

4. Experiment
4.1. Implementation Details

We use the Tensorflow platform as the model and our experiment is implemented
on the Nvidia GeForce RTX 2080Ti GPU, which is a high-computing graphic-processing
unit for deep learning. GPU can quickly iterate the architecture design and parameters
of deep neural networks, and greatly shorten the time required for experiments. For
simulated signals, the model is trained by the following steps: (1) Obtain the baseband
complex samples of the modulated signal computer simulations, each CD is generated by
1000 symbol samples; (2) Label each CD according to the modulation class of the sample;
(3) Collect 1200 labeled images to form a dataset at different SNRs and different maximum
frequency offsets in each modulation class; (4) Divide the 1200 labeled images into training
set and test set; (5) Send the training set to the network for training, and obtain the training
model after a maximum of 200 epochs; (6) Test the training model with the test set data. In
this paper, the length of a symbol representing a signal is equal to the number of points
projected onto the CD.

Here, we consider eight kinds of signals, including 4ASK, 2PSK, 4PSK, 8PSK, 16QAM,
32QAM, 64QAM, and 128QAM. We use MATLAB software to generate these signals. Based
on the existing signal and noise models, we consider various parameter for simulation,
such as the carrier frequency, sampling frequency, bandwidth, etc. The main parameters of
the simulation experiment are set as shown in Table 1.
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Table 1. Parameters of the simulation data.

Parameters Value

Sampling frequency fs 5 GHz
Carrier frequency fc 370 MHz

Bandwidth Bd 40 MHz
Chip rate fd 20 MHz

Number of signal samples M 1200
SNR range −10∼10 dB

Frequency offset range 25∼100 kHz
Training set : test set 5:1

Training samples in each SNR for each signal 1000
Test samples in each SNR for each signal 200

Signal length (discrete points) 1000

4.2. Recognition Performance Comparisons of Different Neural Networks

In order to study the influence of different deep neural networks on the recognition
performance, a variety of neural networks are designed as classifiers to compare with
RDGNN. The training parameters are shown in Table 2. Table 3 shows several different
neural network structures proposed in this paper.

Table 2. Training parameters of the network.

Parameters Value

Learning rate 0.001
Batch size 64

Epoch 200
Optimizer Adam
Dropout 0.5

Table 3. Parameters of the network.

RDGNN DGNN CDGNN FCNN

1D Convolution
Average Pooling
1D Convolution

1D Convolution Average Pooling
Average Pooling 1D Convolution
1D Convolution Average Pooling

Residual unit Average Pooling 1D Convolution
GRU GRU GRU Average Pooling
GRU GRU GRU Fully Connected

Fully Connected Fully Connected Fully Connected Fully Connected

A variety of neural networks are designed to study the influence of different deep
neural networks on the recognition performance. In Table 3, in addition to RDGNN, it also
shows the constructed gated recurrent neural network (DGNN), which contains two gated
recurrent units (GRUs) and one fully connected layer. The DGNN is mainly used to study
the influence of residual units on the recognition results, which has the same parameters
as the RDGNN network. The convolutional gated recurrent neural network (CDGNN) is
consists of two layers of 1D convolution, two layers of max pooling, two layers of gated
recurrent units, and one fully connected layer. Compared with RDGNN, CDGNN replaces
the residual unit with convolution and pooling, and lacks the direct mapping branch. The
data is directly input into the gated recurrent unit after two layers of convolution to extract
features. The four-layer convolutional neural network (FCNN) includes four-layer one-
dimensional convolution, four-layer max-pooling, and two-layer fully connected. FCNN is a
classic convolutional neural network structure, which does not contain gated recurrent units.
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Through FCNN, the classification ability of recurrent neural network for AFO-CD features is
studied.

It is clear from Figure 3 that the recognition performance of RDGNN is generally better
than the other three networks. In the case of high signal-to-noise ratio, the recognition
accuracy of the four structures is similar, but when the signal-to-noise ratio is −5 dB and
−10 dB, the recognition accuracy of RDGNN reaches 89.47% and 96.34%, respectively,
which is much higher than in the other three networks. Compared with GDNN and
CDGNN, RDGNN has more residual units, which is equivalent to two more layers of
convolution for feature extraction. At the same time, the residual unit of RDGNN directly
maps the underlying features to high dimensions, which also improves its recognition
accuracy. Compared to FCNN, the combination of residual unit and gated recurrent unit
also performs better than the convolution operation alone. Therefore, the RDGNN structure
proposed in this paper has a better classification effect to a certain extent.

Figure 3. Comparison of recognition accuracy of different neural network structures when the
maximum frequency offset is 50 kHz.

4.3. Performance Comparisons of AF-RDGNN with Current Mainstream Methods

To verify the effectiveness and superiority of the AF-RDGNN, we compare the pro-
posed method with the other five methods under the same simulation conditions and
parameter settings, including two machine learning methods, SVM and naive Bayes, and
three deep learning methods, GCP-DBN, TCI-GoogLeNet, and VGG-16. The methods
based on TCI-GoogLeNet and VGG-16 with deep layers have good performance in image
classification. The GCP-DBN is similar to our method. This paper chooses these deep learn-
ing methods for comparisons. First, the identification accuracy of different methods when
the signal-to-noise ratio is −10 dB∼10 dB and the maximum frequency offset is 50 kHz is
reported in Figure 4. According to Figure 5, our proposed AF-RDGNN has advantages
in the entire SNR range at high frequency offset, and the recognition accuracy reaches
more than 99% when the SNR is higher than 8 dB, which indicates good antifrequency
offset performance. The recognition performance of SVM is similar to that of naive Bayes,
the accuracy of which is approximately 82% in various SNR conditions. It can be seen
that GCP-DBN and TCI-GoogLeNet are greatly affected by the SNR. The performance of
VGG-16 is relatively stable in the whole SNR range.

Figure 4 shows the recognition accuracy of AF-RDGNN for each modulation signal. It
can be seen that the proposed method has a good effect on ASK and PSK signals, and the
recognition accuracy reaches more than 97% under various SNRs. For QAM-class signals,
the classification accuracy keeps improving as the SNR increases. Especially for the 16QAM
and 128QAM, with the gradual increase of SNRs, the accuracy rate has improved by nearly
20%. Note that the classification accuracies of QAM signals are worse than those of other
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modulation types. To further demonstrate the effectiveness of our proposed method for
antifrequency offset, we study the recognition accuracy of six methods in the next section.

Figure 4. Accuracy comparisons of eight modulation types in different SNRs.

Figure 5. Comparison of recognition accuracy of different methods when the maximum frequency
offset is 50 kHz.

4.4. Recognition Performance of AF-RDGNN under Different Frequency Offset

As shown in Figure 6, the recognition accuracies of the six methods decrease with
the increase of the maximum frequency offset. When the SNR is −5 dB and maximum
frequency offset ranges from 25 kHz to 100 kHz, the recognition accuracy of AF-RDGNN
varies from 97.5% to 92.5%. The recognition accuracies of two deep learning methods,
GoogLeNet and VGG-16, decrease slowly with the increase of frequency offset. All of these
three methods are relatively stable. In contrast, the recognition accuracy of SVM and naïve
Bayes machine learning methods decreases rapidly, which to a certain extent shows that the
performance of deep learning methods outperforms traditional machine learning methods
in antifrequency offset. The recognition effect of GCP-DBN is relatively low, the main
reason is that the data length is short, and the correlation between sequences is not strong.
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Figure 6. Comparison of the recognition accuracy of different methods when the SNR is −5 dB.

4.5. Performance Comparisons on Real Signals

Next, we test the performance of the methods on the collected real measured signals.
The acquisition process of the measured signal is as follows. First, RF signals are generated
from a Keysight n5180 X-series signal generator. Then an analog-to-digital converter
(ADC) board is used to collect and store the signal with 5 GHz sampling rate and 14-bit
quantization. Finally, the collected signal is down converted to baseband signal. Various
parameters of the actual measured signal are shown in Table 4.

Table 4. Various parameters of the real measured signals.

Parameters Value

Sampling frequency fs 5 GHz
Sampling time 1 ms

Carrier frequency fc 500 MHz
Signal bandwidth Bd 20 MHz
Signal amplitude A 50 mV

Signal length (discrete points) 32,000
Number of signal samples M 1200

We use the real measured signal to verify our method. To verify the effectiveness and
superiority of the AF-RDGNN, we also compare it with the other five methods under the
same simulation conditions and parameter settings, including SVM, naive Bayes, GCP-
DBN, TCI-GoogLeNet, and VGG-16. Figures 7 and 8 show the recognition accuracy in
different maximum frequency offsets when the SNRs are −5 dB and −10 dB, respectively.
It can be seen that the proposed AF-RDGNN achieves superior recognition performance. In
particular, in Figure 8 with lower SNR, the accuracy of the AF-RDGNN is much better than
the other methods. Compared with other methods, the average accuracy of AF-RDGNN
is improved by more than 5%. These experimental results demonstrate that the proposed
AF-RDGNN shows a good effect in antifrequency offset.

Figures 9 and 10 are the confusion matrices of AF-RDGNN for different modulated
signals at a frequency offset of 50 kHz when the SNRs are −5 dB and −10 dB, respectively.
Observe that in high frequency offset, the method has low accuracy for QAM-class signals.
For 2ASK and MPSK signals, the antinoise performance is relatively strong because of their
stable feature of CD. The results here are similar to the simulational experiment above.
The classification accuracies of QAM signals are worse than those of other modulation
types. The proposed method has better recognition performance for ASK-class and PSK-
class signals.
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Figure 7. Performance comparison on real measured signal at different frequency offsets when the
SNR is −5 dB.

Figure 8. Performance comparison on real measured signal at different frequency offsets when the
SNR is −10 dB.

Figure 9. Confusion matrix for different modulated signals at a frequency offset of 50 kHz when the
SNR is −5 dB.
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Figure 10. Confusion matrix for different modulated signals at a frequency offset of 50 kHz when the
SNR is −10 dB.

5. Conclusions

This paper proposes a signal modulation recognition method based on AFO-CD
features. Compared with model-based machine learning methods, the proposed data-
driven method achieves superior accuracy performance for various modulated signals,
and shows good antifrequency offset characteristics. Experimental results show that the
proposed AF-RDGNN has higher classification accuracy for digital communication signals
under the condition of high frequency offsets. In the future work, research on how to
improve the classification accuracy of QAM signals deserves further research, which will
further improve the recognition performance. In addition, more datasets, both simulational
and real signals can be used to test the proposed method.
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