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Abstract: In light of the increasing scarcity of frequency spectrum resources for satellite communi-
cation systems based on the transparent transponder, fast and efficient satellite resource allocation
algorithms have become key to improving the overall resource occupancy. In this paper, we propose a
reinforcement learning-based Multi-Branch Deep Q-Network (MBDQN), which introduces TL-Branch
and RP-Branch to extract features of satellite resource pool state and task state simultaneously, and
Value-Branch to calculate the action-value function. On the one hand, MBDQN improves the average
resource occupancy performance (AOP) through the selection of multiple actions, including task
selection and resource priority actions. On the other hand, the trained MBDQN is more suitable for
online deployment and significantly reduces the runtime overhead due to the fact that MBDQN does
not need iteration in the test phase. Experiments on both non-zero waste and zero waste datasets
demonstrate that our proposed method achieves superior performance compared to the greedy or
heuristic methods on the generated task datasets.

Keywords: deep reinforcement learning (DRL); resource allocation; transparent transponder; satellite
communications; Deep Q-Network (DQN)

1. Introduction

Resource leasing is widely adopted in satellite communication systems based on
transparent transponders, especially for frequency resources [1]. As shown in Figure 1, the
transponder resource is shared among multiple satellite-terrestrial integrated networks. In
general, the organizer of the satellite communication network and the lessor of the resource
calculate the network frequency demand in advance and submit it together with the lease
time of the frequency to the operation control center of the communication satellite who
is the owner of the frequency. The operation control center maintains a table of allocated
resources for each transponder of the satellite, and the lease time of each resource segment
in the transponder is recorded in the table. Subsequently, the operators will find a free
resource segment that satisfies the lessor’s needs in the table, update the corresponding
lease time period, and inform the lessor of the allocation result. Finally, the leaser uses the
allocated satellite transponder resources to establish the satellite communication network.

The above process of transparent satellite transponder resource allocation mainly
relies on manual labor, and is therefore only feasible when the maintenance leasing tasks
are not laborious. However, with the development of the maintenance process, the in-
tensity of the leasing business continues to increase, and the fragmentation of satellite
transponder frequency caused by the leasing process is becoming increasingly serious,
posing considerable challenges to the maintenance of resource leasing and the search for
idle resource segments. These challenges have increased the task complexity and technical
requirements for operators as well as the operating cost of the satellite system [2]. In
addition, manual search struggles to guarantee optimal utilization of resources due to
its empirical nature. Moreover, when the requirements of high-priority tasks cannot be
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satisfied immediately, and the existing resources of low-priority tasks need to be preempted,
how to select preemption objects to ensure the least impact is also a problem to be con-
sidered by the operators. The problem of resource allocation under multiple constraints
has been proven to be NP-hard [3]. In order to solve the above problem, some traditional
operations research algorithms [3–5], greedy algorithms [6] and heuristic algorithms [7–11]
have been applied in the automation of transparent satellite transponders and intelligent
resource allocation.
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In actual resource allocation, however, there exists a plethora of interdependent nodes,
which result in a set of variables and constraints to be solved in operations research
models and heuristic algorithms. Therefore, the high computational complexity renders it
inapplicable to problems with strict timeliness requirements, especially in satellite resource
allocation. With the development of the satellite communication field and the research of
reinforcement learning, more and more empirical data are stored, and deep reinforcement
learning (DRL) can exploit these data due to its characteristics to discover regular features
and learn the policies. Hence, resource allocation methods based on reinforcement learning
have started to receive increasing attention [12].

In this paper, we propose the Multi-Branch Deep Q-Network (MBDQN) for satel-
lite communication resource allocation. By introducing TL-Branch and RP-Branch, this
DRL-based model can simultaneously extract features for the satellite resource pool (RP)
state and task list (TL) state. The feature embeddings are concatenated and fed into Value-
Branch to calculate the action-value function. The task selection action and the priority
action are calculated according to the optimal action-value function. Through well-planned
and rapid allocation of leasing tasks, as shown in Figure 2, the satellite resource allocation
method can improve the utilization rate of satellite transponder resources (i.e., frequency
and its occupation time) under the condition of multiple constraints.

The MBDQN model possesses several excellent features. The model is highly efficient
in terms of inference and decision-making. Despite its time-consuming training process,
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MBDQN can have the training done offline, and the actual deployment and inference can
be performed using the trained model, thus achieving near real-time decision-making.

The main contributions of this paper are summarized as follows:
(1) A reinforcement learning solution to the satellite resource allocation problem

is proposed and established, where the satellite operation control system and the task
requirements are defined as the agent and environment of DRL, respectively.

(2) Multi-Branch Deep Q-Network (MBDQN) is designed for resource allocation,
which employs TL-Branch and RP-Branch to simultaneously extract features of the satellite
resource pool state and task list state. Our proposed MBDQN achieves state-of-the-art
performance on the generated task datasets.

(3) Two actions, namely frequency priority and time priority, are introduced into the
action space, which further improves the average resource utilization rate of the system
compared with when only time priority is involved. In contrast to traditional heuristic
algorithms, our method is more suitable for online deployment and significantly reduces
the time consumption during inference.
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2. Related Work

Among traditional operations research methods, combinatorial optimization, linear
programming, and non-convex optimization are widely adopted for resource allocation
optimization problems [3–5]. With the growing complexity of actual resource allocation
problems, the much-studied heuristic algorithms in combinatorial optimization problems
have seen increasing use to address resource allocation problems. In [8], a downlink
resource allocation model adapting to observation task increments is established, and a
novel algorithm based on evolutionary computation is proposed. The simple ant colony
optimization algorithm (SACO) [9] and Tabu search (TS) [10] have also been implemented
to solve the satellite resource allocation problem. [11] proposes an implementation of
the heuristic algorithm based on the genetic algorithm and particle swarm optimization
(GA-PSO) to solve the joint power and frequency allocation problem.
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At present, with the advancement of deep learning and reinforcement learning,
deep reinforcement learning has seen growing applications in the field of combinato-
rial optimization, especially for resource allocation. According to the learning content of
the agent in the process of interacting with the environment, model-free reinforcement
learning algorithms can be divided into two categories: policy optimization algorithms
(e.g., REINFORCE) that directly learn the action execution strategy, and value optimization
algorithms (e.g., Q-learning) that learn a value function for action execution decisions. In
addition to REINFORCE, policy optimization algorithms also include trust region policy
optimization (TRPO) [13], proximal policy optimization (PPO) [14], advanced actor-critic
(A2C) [15], asynchronous advantage actor-critic (A3C) [15], etc. Moreover, Deep Q-Network
(DQN) [16] is a typical value optimization algorithm.

Furthermore, reinforcement learning algorithms designed for the allocation prob-
lem can search for a locally optimal solution in a shorter time than heuristic algorithms.
Ref. [17] proposes a reinforcement learning heuristic optimization (RLHO) framework. It
guides the PPO algorithm to obtain a better initial state with the reinforcement learning
algorithm for solving the bin packing problem. In [18], an innovative resource manage-
ment framework that applies DRL is proposed for the next-generation heterogeneous
satellite networks. In [19], an improved graph-based minimum clique partition algorithm
is proposed to revise the observation satellite scheduling problem for preprocessing in
the task clustering phase by considering the maximum task priority and the minimum
observation slewing angle under constraint conditions. Ref. [12] proposes a deep reinforce-
ment learning-based framework (DRLF) to solve the problem of unknown dynamics and
prohibitive computation for dynamic resource allocation.

3. Proposed Method

This section describes our proposed Multi-Branch DQN (See Figure 3 for an overview).
We first define and formulate the resource allocation problem for satellite communications
based on our model. Next, we discuss how to model the main elements of reinforcement
learning defined in MBDQN. Afterward, the network structure of MBDQN is delineated in
detail. Table 1 summarizes the notations used in this paper.
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Table 1. Notation definitions.

Symbol Definition

N Number of patches
M Number of task lists
st State of environment at time t
srp State of resource pool
stl State of task lists
at Action selected at time t
ap Priority action selected
ac Choose action selected

A(s) Action space of MBDQN
∆t Effective time resource range
∆ f Effective frequency resource range

p(i,j) Patch (i, j) of resource pool
rt Reward at time t
ω Parameters of MBDQN

ω− Parameters of target network
Q(.) Action-value function of MBDQN
Q′(.) Action-value function of target network
φ1(t) State reformulation on time
φ2( f ) State reformulation on frequency

γ Discount factor reward
yt TD target at time t
L Loss function of the model
frp Feature embedding of RP-Branch
ftl Feature embedding of TL-Branch
om Status of the m-th task

3.1. Problem Formulation

A multi-branch DQN based resource allocation approach for satellite communications
can be defined as follows. Given the satellite communication system conditions, the satellite
resource and task demand generation of the satellite communication system is defined
as the environment of reinforcement learning. In this environment, there is a state st,
including the resource pool state srp and task list state stl , as well as a series of valid action
sets A(s) for decision-making. The agent controlled by MBDQN will select an effective
action at ∈ A(s) in the action set A(s), and execute the action at in the environment to
obtain reward rt at time t, after which the state of the environment is transferred to st+1. In
this method, an iteration will be executed until the environment reaches the termination
condition, that is, when all allocations are completed and the resource pool has no further
resources to allocate.

The MBDQN model essentially finds a better sort sequence than those by heuristic
algorithms. Its ultimate goal is to minimize the resource occupation rate of the allo-
cation result and shorten the total satellite task allocation time. An off-policy training
method based on the DQN model [16], MBDQN is a typical value-optimized reinforcement
learning algorithm.

The objective of DQN is to learn an action-value function Q(s, a; ω), where ω rep-
resents all parameters of the current action-value function, and Q(s, a; ω) the estimated
value of action a under the parameters ω with state s. It can also be understood as the
expected sum of all reward values to be obtained from the environment, still based on the
parameters ω interacting with the environment. Finally, in accordance with the principle
of maximizing the value of the action-value function, the action selected by the DQN
algorithm is a(s) = argmax

a
Q(s, a; ω). When the agent interacts with the environment

and collects a certain amount of empirical data, the action-value function can be updated
according to the principle of minimizing the estimation TD error.
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3.2. Modeling of MBDQN

The primary goal of MBDQN is to model the satellite operation control program as
the agent and model the task requirements and satellite communication resources as the
environment. Furthermore, the main elements of reinforcement learning defined in the
MBDQN model for the satellite resource allocation problem are discussed, including state
space, action space, and reward. Meanwhile, the definitions of replay memory, target
network, and loss function in the model training stage are also introduced in detail.

(1) State space
The state st =

(
srp, stl

)
t of the task requirements and satellite communication resources

at time t is the observation based on both the state of resource pool srp and that of task
list stl . Whenever a new resource lease requirement is generated, we format the task and
update the state of task list stl , which can be expressed as

stl = { [o1, φ1(t1), φ2( f1)] , . . . , [om, φ1(tm), φ2( fm)] } (1)

where om represents the allocation status of the m-th task in the resource pool; tm and
fm denote the satellite time and frequency resources occupied by the task, respectively.
φ1(tm) = N ∗ tm/∆t and φ2( fm) = N ∗ fm/∆ f are the state reformulation on tm and fm to
make them conform to the tensor size of the model input. Both tm and fm are reformulated
in range [1, N]. ∆ f and ∆t represent the practical time resource and the frequency resource
range in the satellite resource pool, respectively.

By dividing frequency resources and time resources N-1 times in each dimension, the
resource pool can be divided into N ∗ N patch. The state matrix srp is used to represent
the occupancy of each resource block in the resource pool. The representation of srp is
as follows:

srp =

p(1,1) · · · p(1,n)
...

. . .
...

p(n,1) · · · p(n,n)


N∗N

(2)

where p(n,n) is the occupancy indication of the resource pool in the (n, n) patch.
(2) Action space
In the satellite resource allocation problem, the available action space A(s) is the

decision space of the satellite control system, and the action at is selected from A(s)
according to the current state st at time t. The available action space depends on the
type of allocated resources and the limitation of resources. It includes the priority action
space Ap and the chosen action space Ac. Formally, A(s) can be defined as:

A(s) =
{(

Ac(i), Ap(j)
)∣∣1 ≤ i ≤ m, j = 0, 1

}
(3)

where ac = Ac(i) is the action of task selection, which indicates the selected task number in
the list in this turn; ap = Ap(j) is the action of resource search priority, which represents
the priority of frequency search or time search during the allocation.

The exploration mechanism of action selection directly affects the sampling perfor-
mance. As such, in the training phase, action selection adopts a ε-greedy strategy. MBDQN
samples from A(s) randomly with probability ε, which can be expressed as

at =
(
ac, ap

)
t =

{
sample from A(s), with probability ε
argmax

a
Q(st, at; ω), others (4)

In the testing phase, MBDQN will select the at with the highest probability in the
probability distribution Q∗(st, at).

(3) Reward definition
In this paper, the resource occupancy rate is used as the optimization objective of the

algorithm, that is, the reward value rt of the network that represents the evaluation of the
selected action at in state st. After the task is allocated, the higher the resource occupancy
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rate, the higher the reward value. For task allocation with the same patch size, the closer
the resource occupancy rate is to the upper limit, the larger the reward value should be.
Based on the above principles, the reward is designed as Equation (5):

r = − log

(
1− ∑M

m=1 om ∗ φ1(tm) ∗ φ2( fm)

∆t ∗ ∆ f
+ ε

)
(5)

where the non-negative multiplier ε is used to avoid infinite values.
(4) Replay memory
For a satellite task allocation system, there exists a salient correlation between the order

of task allocation and the final resource occupancy ratio. However, deep neural networks
require that the input samples are uncorrelated. Hence, in the training phase, we adopt
the replay memory trick to eliminate the correlation of the sample data generated by the
interaction with the environment in the satellite task allocation system. Moreover, replay
memory ensures that a sample can participate in training multiple times, thus improving
learning efficiency. The transition et = 〈st, at, st+1, rt〉 generated in each training step is
saved in a replay memory pool.

(5) Target network
The outcome of the allocated action in a satellite task allocation problem is usually a

positive reward, even though the action is not necessarily optimal, and there will be an
overestimation problem similar to DQN. Meanwhile, every time the binary 〈st, at〉 is used
to update MBDQN parameters ω, MBDQN tends to overestimate the Q value of 〈st, at〉.
Therefore, in the training phase, we use the target network to calculate the TD target, and
SGD only updates the parameters of the DQN without updating those of the target network.
TD target is calculated as

yt = rt + γ ∗max
a

Q′
(
st+1, a; ω−

)
(6)

where γ is the discount factor reward. The parameter of the target network ω− is updated
at regular intervals, with the target update interval empirically set to 100 in MBDQN.
Parameters of the target network are updated by calculating the weighted average of ω
and ω− before assigning the value to ω−.

(6) Loss function
Considering the self-consistency of the Q function, similar to DQN, we update the

action-value function as per the principle of minimizing the estimation error of Q(st, at; ω)
and yt. A minibatch of data 〈st, at, st+1, rt〉 is obtained by model inference in an iteration,
that is, after obtaining the reward value rt between states st and st+1. The loss function
L(ω) is calculated by the following equation

L(ω) = E
[
(yt −Q(st, at; ω))2

]
(7)

where yt is calculated by Equation (6).
MBDQN’s overall operations are outlined in Table 2. During the training phase,

the MBDQN model is initialized by Kaiming initialization [20], and parameters of the
trained model are exported and saved at the end of a full episode. During testing, these
saved parameters are loaded to initialize the MBDQN model, and the action-value function
Q(st, at; ω) is calculated according to the current input state. The action at = argmax

a
Q(st, at; ω)

is selected in a deterministic way, and this loop is executed M times.

3.3. Structure of MBDQN

This section describes the network structure of the proposed MBDQN, including
its RP-Branch, TL-Branch, and Value-Branch, as well as the detailed structure (as shown
in Figure 4).
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Table 2. Overall operations of the MBDQN model.

1. Training Process:
2. Initialize params of MBDQN and target network ω = ω−

3. Initialize hyperparams for training
4. For step in episode do:
5. Observe states srp and stl from environment at time t
6. Format srp and stl , and obtain state st
7. Evaluate MBDQN and obtain Q(st, at; ω)
8. Select action at by Equation (4)
9. Execute action at and observe state st+1
10. Calculate the reward rt by Equation (5)
11. Save transition 〈st, at, st+1, rt〉 in replay memory
12. Sample a minibatch of 〈st, at, st+1, rt〉 from replay memory
13. Calculate TD target yt by Equation (6)
14. Calculate loss function L(ω) by Equation (7)
15. Update params ω of MBDQN through SGD optimizer
16. For every T step, update params ω− of target network
17. End For
18. Save and export params ω

After training
1. Testing Process:
2. Load and initialize the trained params ω of MBDQN
3. For m in number M do:
4. Observe states srp and stl from environment at time t
5. Format srp and stl , and obtain state st
6. Evaluate MBDQN and obtain Q(st, at; ω)
7. Select action at = argmax

a
Q(st, at; ω)

8. Execute action at and observe state st+1
9. End For
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RP-Branch is a convolutional neural network (CNN) composed of convolutional
modules, each consisting of convolutional layers, batch normalization (BN) layers [20],
and ReLU activation. The resource pool state matrix srp calculated from Equation (2) has
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an input size of N * N that resembles a 2D image. Therefore, CNNs are more conducive
to extracting discriminative features frp of the satellite resource pool state. The role of
RP-Branch is to extract features from the input srp and leverage them as the prerequisite for
deriving the action-value function. TL-Branch is a fully connected (FC) neural network. The
satellite task list input sequence stl with an input size of 3 * M is calculated by Equation (1).
Input data stl are serialized for FC layers to extract features from them. The objective
of TL-Branch is to extract the features from the input stl , which are used to estimate the
action-value function together with frp. RP-Branch and TL-Branch are in parallel, and their
outputs are concatenated via a Concat layer. Then, frp and ftl are concatenated to yield the
global feature f for action-value function estimation, which is subsequently used as the
input of Value-Branch to calculate Q(st, at; ω). Similar to TL-Branch, Value-Branch is also a
neural network based on FC layers.

TL-Branch, RP-Branch, and Value-Branch jointly constitute MBDQN’s overall struc-
ture, as depicted in Table 3. Compared with general reinforcement learning models,
MBDQN combines the characteristics of multiple satellite resource types, is more suitable
for different types of state inputs, and is more attentive to the resource state of the satel-
lite communication system. In particular, a deeper and more complex network could be
leveraged as the backbone of the MBDQN model, depending on the complexity of the
satellite allocation problem to be solved (e.g., number of tasks, size of the resource pool
block division). Nevertheless, the choice of backbone structure is beyond the scope of this
paper. For simplicity, MBDQN only employs a relatively shallow network for investigation.

Table 3. Detailed network of Multi-Branch DQN.

Block Module Module Structure Tensor Size

RP-Branch

Conv1 Conv(K = 3)-BN-ReLU-
MaxPool

(1,N,N)→
(32,N/2,N/2)

Conv2 Conv(K = 1,3,1)-BN-ReLU, (32,N/2,N/2)→
(64,N/4,N/4)

Conv3 Conv(K = 1,3,1)-BN-ReLU, (64,N/4,N/4)→
(128,N/4,N/4)

GAP Global Average Pooling (128,N/4,N/4) →
(128,1)

TL-Branch

FC1 FC(128)-BN-Dropout(0.5)-FC(256) (3 * M,1)→
(256,1)

FC2 FC(256)-BN-Dropout(0.5)-FC(128) (256,1)→
(128,1)

Value-Branch

Concat Concat(GAP, FC2) [(128,1),(128,1)]→
(256,1)

FC3 FC(256)-BN-Dropout(0.5)-FC(128) (256,1)→
(128,1)

FC4 FC(128)-BN-Dropout(0.5)-FC(128) (256,1)→
(128,1)

Q-value [FC(2),FC(M)] (128,1)→
[(2,1),(M,1)]

The detailed network structure of the MBDQN model is presented in Table 3. The
height and width of the input to the RP-Branch are both N. In addition, the trick of
expanding the feature map is applied at the third convolutional layer (Conv3 in Table 3).
Batch normalization [21] and dropout are also employed in MBDQN to alleviate internal
covariate shift and overfitting problems. Once training is completed, the de-BN operation
is performed to improve the inference speed of the model.
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4. Experiments

In this section, the dataset generation and the detailed algorithm implementation of
the experiments in this paper are illustrated in detail. The comparative experimental results
and experimental analyses are also discussed.

4.1. Datasets and Implementation
4.1.1. Generation of Datasets

Due to the absence of standard satellite resource allocation datasets, the reinforcement
learning model lacks a sufficient amount of data for training. In view of this, this paper
adopts two generation methods to randomly generate the satellite task list dataset. The first
method is the zero-waste satellite task list dataset (ZW-Dataset) generation method, which
is more conducive to comparing the performance between different allocation methods.
The second is the non-zero waste dataset (NZW-Dataset) generation method, which is more
consistent with the actual condition of a satellite task list.

The ZW-Dataset generation method refers to the binned data generation algorithm
proposed by [22]. Its core idea is to continuously divide a large task that fills the satellite
resource pool, and randomly select subtasks with an area of not less than 2m/γ for cutting
each time, where m is the maximum area of the task in the task sequence and γ is the aspect
ratio parameter. Finally, it is divided into a list of several tasks that satisfy a certain area
ratio γ and an aspect ratio ρ (both set to 3 in this paper). The optimal allocation result of
the tasks can be known on the ZW-Dataset due to the zero-waste setting. The generation
method of ZW-Dataset is demonstrated in Table 4.

Table 4. Zero-waste satellite task list dataset generation.

1. Input:
2. Frequency range ∆ f and time range ∆t
3. Number of tasks N
4. Area ratio γ and aspect ratio ρ
5. Initialize set task_list = [[∆ f , ∆t]]
6. For n in N − 1 do:
7. Calculate max product m = fm ∗ tm in task_list
8. Randomly select tl in task_list, satisfying ftl ∗ ttl > 2m/γ
9. Delete tl from task_list
10. Randomly select slicing dimension, satisfying 1/ρ < ftl/ttl < ρ
11. Slice tl = [tl1, tl2] to subtasks
12. Add tl1, tl2 in task_list
13. End For
14. Return task_list

By setting different parameters in the NZW-Dataset generation method, we can control
the number of satellite tasks in the dataset, as well as the resource occupation in the time
and frequency ranges. In this paper, the frequency and time in the resource pool are
divided into ten segments and each task occupies at least one of them. The time range for
the generated dataset is set to ti ∈ [∆t/N, ∆t/2] and the time range to fi ∈ [∆ f /N, ∆ f /2].

4.1.2. Implementation Details

In all experiments, the batch size was fixed at 32, using the SGD optimizer with
momentum of 0.9 and weight decay of 5 × 10−4 for different episodes. We used BN
and ReLU in all hidden layers and linear activation in the output layers, and initialized
parameters by Kaiming initialization [20]. To eliminate random factors, the random seed
is manually fixed when training the model to ensure that the initialized parameters of
the model are consistent across different runs so as to avoid compromised validity and
rationality of the comparative experiments. We use warmup [23] to update the learning
rates, and the initial learning rates of TL-Branch, Value-Branch, and RL-Branch are set to
0.001, 0.001, and 0.01, respectively. The buffer size of replay memory is set to 1 × 105 and
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the hyperparameters of replay memory are set as follows: α = 0.3, β = 0.5, η = 5 × 10−6,
and ε = 1 × 10−7, respectively. Gradient clipping is set to 20 and the discount factor reward
γ to 0.95. The target network solves the overestimation problem in the training phase with
a target update interval of 100. The nonnegative multiplier ε is empirically set to 0.1.

4.2. Results and Analysis

Based on the zero-waste and non-zero-waste datasets generated in 4.1.1, we conduct
comparative experiments on the resource allocation performance and running time per-
formance, which proves the effectiveness of the proposed MBDQN model. Specifically,
the comparative experiments of this paper are shown in Table 5, and the performance of
MBDQN and the traditional greedy and heuristic algorithms are mainly compared. In
addition, the experimental results and how the reinforcement learning-based MBDQN
model affects the algorithm for satellite resource allocation are analyzed.

Table 5. Comparisons of the proposed MBQDN with existing methods [6,7,11] on the zero-waste dataset.

Task Number
Bottom Left [6] Bee Colony [7] GA-PSO [11] MBDQN (Ours)

AOP (%) RO (s) AOP (%) RO (s) AOP (%) RO (s) AOP (%) RO (s)

M = 10 85.2 0.13 97.5 4.16 97.9 10.42 97.7 0.59
M = 20 86.9 0.22 93.5 9.32 95.1 18.96 95.3 0.83
M = 30 89.1 0.30 93.0 13.05 93.7 24.50 94.6 1.21
M = 40 91.3 0.37 92.6 19.41 93.9 32.54 95.1 1.47

As shown in Table 5, compared with the greedy algorithm and the heuristic algorithm,
MBDQN gives rise to a significant improvement in the average resource occupancy perfor-
mance (AOP) and runtime overhead (RO) when tested on the zero-waste dataset. MBDQN
can substantially improve the AOP compared with the greedy algorithm (Bottom Left [5])
within the time limit. In addition, the performance improvement of MBDQN is more
obvious with the increase of the satellite task number. For instance, when M is equal to 40,
the performance of MBDQN is obviously higher than that of GA-PSO [10] (93.9% vs. 95.1%,
AOP). This is due to MBDQN’s ability to learn from prior experience, and different branches
can accurately learn and extract multi-state features, rather than heuristic exploration for
each prediction. In particular, in terms of time complexity, MBDQN significantly reduces
the runtime overhead of a complete allocation (32.54 s vs. 1.47 s, M = 40). The reason is that
RL-based methods get rid of the iterative process time compared with heuristic algorithms
such as Bee Colony [6] and GA-PSO. MBDQN’s training, albeit long, can be performed
offline, and only the trained model is used for inference in practice.

To assess the performance of MBDQN in a more extensive and realistic setting, we
also conduct experiments on the NZW-Dataset generation method. The parameters for the
training and testing of each model are the same as the previous settings. The experimental
results (presented in Table 6) are on par with those on ZW-Dataset. Due to the non-zero
waste, the optimal allocation result on this dataset cannot be known, but AOP can still be
used to compare the performance of each method. Compared with Bee Colony and GA-PSO,
MBDQN also achieves the best performance in terms of both AOP (87.9 vs. 88.4 vs. 89.6,
M = 40) and runtime overhead (21.39 vs. 31.81 s vs. 1.52 s, M = 40).

From Tables 5 and 6, it can be concluded that: (a) compared with the greedy (i.e., Bottom
Left) and heuristic (i.e., Bee Colony, GA-PSO) algorithms, the proposed MBDQN has
resulted in boosted AOP on both non-zero waste and zero waste datasets, and the improve-
ment becomes more obvious as the number of tasks increases. (b) The MBDQN model
has the advantage of shorter allocation time compared to heuristic algorithms such as Bee
Colony and GA-PSO, which is due to the fact that MBDQN does not need iteration in the
test phase. The network itself has a relatively small number of layers and the removal
of BN further improves its inference speed. These results indicate that the trained multi-
branch-based DQN model can effectively solve the problem of satellite resource allocation,
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and TL-Branch and RP-Branch can accurately extract discriminative features of resource
pool state and task state. In addition, the results also highlight an effective application of
reinforcement learning to the satellite resource allocation problem.

Table 6. Comparisons of the proposed MBQDN with existing methods [6,7,11] on the non-zero
waste dataset.

Task Number
Bottom Left [6] Bee Colony [7] GA-PSO [11] MBDQN (Ours)

AOP (%) RO (s) AOP (%) RO (s) AOP (%) RO (s) AOP (%) RO (s)

M = 10 76.3 0.12 85.1 4.52 85.2 11.44 85.5 0.63
M = 20 80.5 0.22 85.8 10.65 85.8 18.90 86.4 0.86
M = 30 82.4 0.31 86.2 14.20 87.0 24.43 87.7 1.24
M = 40 83.8 0.36 87.9 21.39 88.4 31.81 89.6 1.52

5. Conclusions

In this paper, MBDQN is proposed as the first reinforcement learning solution for the
satellite resource allocation problem based on the transparent transponder. By introducing
TL-Branch and RP-Branch into the network, the discriminative features of the resource
pool and the task list are accurately extracted. Based on the structure of DQN, a multi-
type action-value function, including priority and task index number, is selected through
Value-Branch, which considerably improves the performance of average occupancy per-
centage and time consumption. Finally, comprehensive experiments demonstrated that our
proposed MBDQN performed better than both traditional greedy methods and heuristic
methods on both the generated zero-waste task dataset and non-zero waste task dataset.
These experimental results highlight the effectiveness and reliability of MBDQN in solving
satellite resource allocation problems.

Author Contributions: Conceptualization, M.J., N.M., W.Z. and W.S.; methodology, W.Z. and W.S.;
software and validation, N.M. and W.S.; formal analysis, N.M. and W.S.; investigation, W.S.; resources,
M.J.; data curation, N.M.; writing—original draft preparation, W.Z. and W.S.; writing—review and
editing, N.M. and M.J.; visualization, W.S.; supervision, M.J.; project administration, N.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China No. 62231012, Natu-
ral Science Foundation for Outstanding Young Scholars of Heilongjiang Province under Grant YQ2020F001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this research are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jia, M.; Zhang, X.; Sun, J.; Gu, X.; Guo, Q. Intelligent resource management for satellite and terrestrial spectrum shared networking

toward B5G. IEEE Wirel. Commun. 2020, 27, 54–61. [CrossRef]
2. Yanlei, D.; Chunting, W.; Chenhua, S.; Yusheng, L.; Qing, X. Performance Evaluation for Satellite Communication Networks Based

on AHP-BP Algorithm. In Proceedings of the 2018 10th International Conference on Communication Software and Networks
(ICCSN), Chengdu, China, 6–9 July 2018; pp. 311–316.

3. Bai, Y.; Liang, C.; Chen, Q. Network Slice Admission Control and Resource Allocation in LEO Satellite Networks: A Robust
Optimization Approach. In Proceedings of the 2022 27th Asia Pacific Conference on Communications (APCC), Jeju Island,
Republic of Korea, 19–21 October 2022; pp. 1–6.

4. Guo, B.; Wang, H.; Wu, P. Application of constraint-based satellite mission planning model in forest fire monitoring. AIP Conf.
Proc. 2017, 1890, 030012.

5. Lin, Z.; An, K.; Niu, H.; Hu, Y.; Chatzinotas, S.; Zheng, G.; Wang, J. SLNR-based secure energy efficient beamforming in
Multibeam Satellite Systems. IEEE Trans. Aerosp. Electron. Syst. 2022; early access. [CrossRef]

http://doi.org/10.1109/MWC.001.1900238
http://doi.org/10.1109/TAES.2022.3190238


Electronics 2023, 12, 916 13 of 13

6. Daoden, K.; Thaiupathump, T. Applying shuffled frog leaping algorithm and bottom left fill algorithm in rectangular packing
problem. In Proceedings of the 2017 7th IEEE International Conference on Electronics Information and Emergency Communication
(ICEIEC), Macau, China, 21–23 July 2017; pp. 136–139.

7. Karaboga, D.; Gorkemli, B.; Ozturk, C.; Karaboga, N. A comprehensive survey: Artificial bee colony (ABC) algorithm and
applications. Artif. Intell. Rev. 2014, 42, 21–57. [CrossRef]

8. Chen, H.; Zhong, Z.; Wu, J.; Jing, N. Multi-satellite data downlink resource scheduling algorithm for incremental observation tasks
based on evolutionary computation. In Proceedings of the 2015 Seventh International Conference on Advanced Computational
Intelligence (ICACI), Wuyi, China, 27–29 March 2015; pp. 251–256.

9. Zhang, Z.; Hu, F.; Zhang, N. Ant colony algorithm for satellite control resource scheduling problem. Appl. Intell. 2018,
48, 3295–3305. [CrossRef]

10. Sarkheyli, A.; Bagheri, A.; Ghorbani-Vaghei, B.; Askari-Moghadam, R. Using an effective tabu search in interactive resources
scheduling problem for LEO satellites missions. Aerosp. Sci. Technol. 2013, 29, 287–295. [CrossRef]

11. Pachler, N.; Luis, J.J.G.; Guerster, M.; Crawley, E.; Cameron, B. Allocating power and bandwidth in multibeam satellite systems
using particle swarm optimization. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020;
pp. 1–11.

12. Hu, X.; Liu, S.; Chen, R.; Wang, W.; Wang, C. A deep reinforcement learning-based framework for dynamic resource allocation in
multibeam satellite systems. IEEE Commun. Lett. 2018, 22, 1612–1615. [CrossRef]

13. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. In Proceedings of the International
Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 1889–1897.

14. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

15. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep
reinforcement learning. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 20–22 June
2016; pp. 1928–1937.

16. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

17. Cai, Q.; Hang, W.; Mirhoseini, A.; Tucker, G.; Wang, J.; Wei, W. Reinforcement learning driven heuristic optimization. arXiv 2019,
arXiv:1906.06639.

18. Deng, B.; Jiang, C.; Yao, H.; Guo, S.; Zhao, S. The next generation heterogeneous satellite communication networks: Integration of
resource management and deep reinforcement learning. IEEE Wirel. Commun. 2019, 27, 105–111. [CrossRef]

19. Huang, Y.; Mu, Z.; Wu, S.; Cui, B.; Duan, Y. Revising the observation satellite scheduling problem based on deep reinforcement
learning. Remote Sens. 2021, 13, 2377. [CrossRef]

20. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.

21. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.

22. Bortfeldt, A.; Gehring, H. New Large benchmark instances for the two-dimensional strip packing problem with rectangular
pieces. In Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS’06), Kauai, HI, USA,
4–7 January 2006; p. 30b.

23. Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Han, J. On the variance of the adaptive learning rate and beyond. arXiv 2019,
arXiv:1908.03265.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s10462-012-9328-0
http://doi.org/10.1007/s10489-018-1144-z
http://doi.org/10.1016/j.ast.2013.04.001
http://doi.org/10.1109/LCOMM.2018.2844243
http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://doi.org/10.1109/MWC.001.1900178
http://doi.org/10.3390/rs13122377

	Introduction 
	Related Work 
	Proposed Method 
	Problem Formulation 
	Modeling of MBDQN 
	Structure of MBDQN 

	Experiments 
	Datasets and Implementation 
	Generation of Datasets 
	Implementation Details 

	Results and Analysis 

	Conclusions 
	References

