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Abstract: The Box and Blocks Test (BBT) is a widely used outcome measure for manual dexterity
assessments in neurological rehabilitation. The BBT score is based on the maximum number of cubes
that a person is able to displace during a 60s time window. In this paper, a low-cost instrumented
system to automatically obtain the number of cubes using proximity sensors is presented. For that
purpose, the central partition of the BBT was sensorized, aiming to minimise the employed sensors
and minimally alter the physical BBT box. The counting system, connected to the mobile app, allows
for the self-administration of the test as users only need to follow the presented instructions. Firstly,
the methodology used to automate the test scoring is presented, including the sensors’ description
and the prototype design. Then, the obtained success rate in cube counting is shown, with an average
of 98% in trials with five healthy users. Finally, the conclusions and future work are shown. The
results support the use of automated methods for upper limb assessment, providing more objective
results and additional information about user performance.

Keywords: proximity sensing; automatic; manual dexterity; assessment; rehabilitation

1. Introduction

Neurological disorders are heterogeneous diseases that affect the central and periph-
eral nervous system [1]. They involve damage to the brain, spinal cord, cranial nerves,
peripheral nerves, nerve roots, autonomic nervous system, neuromuscular junction, and
muscles. The non-communicable neurological disorders include epilepsy, Alzheimer’s
disease, cerebrovascular diseases including stroke, multiple sclerosis, and Parkinson’s
disease, among others.

Neurorehabilitation aims to treat the impairments and problems caused by neurologi-
cal diseases [2]. Arm and hand function are often impaired in patients with a neurological
disease, strongly reducing their ability to perform activities of daily living (ADL). Classical
upper extremity (UE) impairments may include deteriorations in gripping force, muscle
weakness, or abnormal movement synergies (lack of coordination), among others. Thus, it
is of particular concern to assess the extent of UE impairments to generate patient-tailored
therapy protocols.

The assessment process aims to understand and quantify the functional impairment
level [1,2]. For that purpose, clinicians use standard clinical scales that are specially
designed to measure dysfunctionality at different levels. The Fugl–Meyer Assessment
(FMA) test is one of the most-used scales in clinical trials [3], and it allows for the assessment
of motor functionality, balance, sensations, and ranges of motion for the upper and lower
limbs. Focusing on the assessment of UE motor function, the Wolf Motor Function Test
(WMFT), the Action Research Arm Test (ARAT), the Motor Evaluation Scale for Upper
Extremity in Stroke Patients (MESUPES), or the Unified Parkinson’s Disease Rating Scale
(UPDRS) are widely used clinical scales [4]. These types of scales allow for an evaluation of
the level of autonomy when performing specific tasks. Other scales that are in widespread
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use to measure gross manual dexterity and coordination level are the Box and Block Test
(BBT), the Nine Hole Peg Test (9-HPT), or the Purdue Pegboard Test (PPT).

Thus, it seems clear that numerous assessment tools are available to clinicians to
measure functional limitations in patients with neurological affectations. However, tra-
ditional clinical scales usually do not capture the complete spectrum of UE impairments,
include inter-operator variability, lack quantitative and sensitive readings, and are often
time-consuming to administer. For that reason, there is an active research line regarding
the automation of traditional clinical tests to reduce such drawbacks of classical scales [2].

For example, several studies aim to provide the FMA score automatically. Since the
FMA is a performance-based test, the FMA score is given according to the manner in
which the movements are performed (quality and completion level). Thus, one automation
attempt uses inertial measurement units (IMU) to automatically monitor both shoulder
and elbow movements and rate the UE-section [5]. A more complete study proposes
a framework for automating UE motor assessments that uses low-cost sensors (kinect,
IMU, glove) to collect movement data [6]. The sensor data are then processed through
a machine learning algorithm to determine the score. Scores obtained by the automatic
system are similar to those provided by the traditional FMA without human supervision.
A combination of sensors (kinect V2, force-sensing resistor sensors, body-worn sensors)
was employed in the study conducted by Lee et al. [7] to assign FMA scores according to
a rule-based binary logic classification algorithm. This system exhibited a high scoring
accuracy and an 85% reduction in clinician’s required time. Overall, it can be noted that
better results are obtained when multiple sensors or technologies are used.

For stroke rehabilitation, an automatic assessment method based on the Wolf Motor
Function Test (WMFT) is presented in [8]. Using wearable sensors, the time taken to
complete each item in the test is measured and stored automatically. This system covers 7
of the 17 items in the WMFT. Another example is the automation of the ARAT presented
in [9]. In this case, the automation approach uses one of the physical elements used in
the evaluation procedure (a 7.5 cm wooden cube). Focusing on an evaluation of manual
dexterity, a system based on virtual reality and haptic feedback is presented in [10] to
automate the Nine Hole Peg Test (9-HPT). The hand coordination level was measured
using the grasping force profiles during peg insertion tasks, allowing for healthy and
impaired motor skills to be distinguished. However, the self-administration and system
usability must be improved, as assistance was required to complete the tasks.

Another relevant disorder for which various automatic systems have been developed
to objectively measue functional problems is Parkinson’s disease. For example, a method
based on video processing and deep learning techniques is presented in [11] to compute an
objective bradykinesia score based on the guidelines of the gold-standard MDS-UPDRS
III. This study highlights the potential of deep learning techniques for remote assessment,
for instance, via video conference. Similarly, an approach to symptom quantification
based on motion data captured by Magnetic, Angular Rate, Gravity (MARG) sensors is
presented in [12]. This method shows good results for prono-supination movements, but
covers a poor set of movements. Moreover, a vision-based method is presented in [13],
where an RGB-Depth camera and a pair of black silk gloves are employed to track the
hand gestures. This method presents good results regarding the objective quantification
of UPDRS scores; however, the use of hand gloves would be inadvisable for patients with
severe hand problems.

It should be noted that the automation of clinical procedures for functional assessment
is a relevant topic in neurorehabilitation. Although the test’s administration is an essential
aspect of functional assessment, the automation approaches usually focus on score gen-
eration, aiming to obtain a more objective metric, a novel score, or extended versions of
traditional scores. In this paper, the automation of BBT cube-counting is addressed based
on the direct scoring (DS) method [2]; namely, the outcome is obtained by sensing and
analysing interactions between the user and the environment. For that purpose, a method
based on proximity sensing was used to automatically count the transferred cubes, aiming
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to reduce clinicians’ manual labour, facilitate the digitalisation of results, and explore the
test’s self-administration. The remainder of this paper is organised as follows: Section 2
includes related work regarding the BBT automation. Section 3 presents the methodology
and design principles for the proposed system. Section 4 describes the development of
the automatic cube counting system, including the mechanical solution and cube counting
algorithm. Section 5 summarises the results and trials used to measure the effectiveness in
cube counting. Finally, concluding remarks are presented in Section 7.

2. Background

In this paper, the Box and Blocks Test (BBT) was chosen as the study case. Figure 1
presents the BBT’s components and illustrates the use mode for evaluating the gross manual
dexterity and coordination. The physical components of the system were a wooden box
with two 290 mm wide square compartments and 150 wooden 1 in cubes. A 100 mm
high partition was located between the two compartments to separate them. The BBT was
administered by a physician by placing the patient in front of the box. The two wooden
compartments remained in the mid-line of the patient, and the patient moved the cubes
from one side to the other. The purpose of the test was to move as many cubes as possible,
one at a time, from one compartment to the other, within one minute. Once the minute is
completed, the therapist manually must count the number of transported cubes to calculate
the score. The higher the number of blocks, the higher the level of manual dexterity. A
complete description of the BBT is presented in [14].

Figure 1. Equipment and use mode of the BBT.

The current literature shows that the automation of cube counting for the Box and Block
Test (BBT) has been addressed through various strategies: computer vision, instrumenting
objects, or even virtual reality. On one hand, vision-based approaches aim to count the
number of blocks without altering the physical setup of the BBT [15,16]. These kind
of systems utilise a Kinect sensor to detect the displaced cubes frame by frame. The
effectiveness of this method is 100% for up to 30 cubes [17], and additional metrics are
provided, such as the partial times of cube motion and hand motion tracking.

On the other hand, other systems propose minimally altering the BBT setup by using
wearable sensors on the user’s forearm (wBBT) [18] or embedding sensors into objects
used in this assessment (eBBT) [19]. The wBBT system uses five kinds of time series
signals, including electromyographic, accelerometer, gyroscope, orientation and orientation
Euler [18]. Data from sensors are classified to predict the BBT score, presenting an accuracy
in block counting of 99.31% on average. In the case of the eBBT, the BBT box is sensorized
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by embedding a triaxial accelerometer in the blocks, and the central partition integrates
infrared sensors to detect the hand motion [19].

Finally, another strategy is the use of gaming technology to build a virtual environment,
which can be used to measure the user’s interaction. Various virtual versions of the BBT
have been piloted with healthy subjects [20,21], stroke survivors [22,23], and patients with
Parkinson’s Disease [24]. These studies demonstrated that virtual BBT is a valid tool to
assess manual dexterity, and the main advantage of virtual environment is its ability to
promote a controlled interaction regarding the self-administration of the test [25].

There have been several attempts to automate both the scoring and the administration
of the BBT. However, although automated systems have shown promising results, there is
still room for improvement, since a single technology can not cover all facets (proper data
capturing, automatic scoring, and administration) of the assessment [2]. For example, the
strength of automated systems based on a VR environment is the self-administration of the
test, but the lack of touch-based feedback is a limitation. Instrumented systems have the
advantage of reliable data capturing, with the handicap of increased costs and alterations
in the layout of the physical test. Vision-based approaches do not alter the physical setup of
the test, but the automatic scoring is influenced by external and difficult-to-control pertur-
bations (occlusions, light conditions, etc.). This paper focuses on developing an automatic
method for electronically registering the BBT scoring with a sensorization that minimally
alters the BBT box, retains the touching feedback, and promotes self-administration.

3. Methodology

Since the principal outcome of the BBT is the total number of transferred blocks, a
frequent research goal was to obtain the total block count automatically. However, the
majority of systems do not address automatic administration. As was presented previously,
different techniques have been used to automate the cube counting, such as computer
vision, virtual reality, or embedding sensors into the objects used in the assessment. In
this paper, we propose a method based on this latter idea (instrumenting the objects),
but aiming to (1) minimise the sensors used; (2) minimally alter the physical BBT box;
(3) provide simple instructions for the self-administration of the test through a specially
designed mobile app.

For that purpose, the movement dynamic during the transference of cubes by a healthy
user was analysed to identify the best automatic method to detect and count the cubes. As
shown in Figure 1, the cubes are released from the top of the central barrier, usually falling
into the box compartment by the middle or near the barrier [26]. Note that, depending on
the mobility restriction level, cubes could be moved in different ways, and its influence on
the proposed method is beyond the scope of this study.

Hence, this paper proposes a method using proximity sensors in the central barrier
to detect the cubes while falling. Note that the sensorization of the central partition does
not alter the traditional BBT performance. Figure 2 illustrates the proposed system for
automatic cube counting and the digitalization of results. Since providing digital results is a
relevant feature to distinguish the novel system from the classical one, the proposed system
automatically stores the collected data on the cloud via an app running on a smartphone,
storing the user records and associated progress during the weeks of treatment.

The proximity sensors suitable for this application must comply with: (1) a compact
size to be embedded in the BBT central partition and (2) an adequate detecting range to
cover the compartment area.
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Figure 2. Proposed system for automatic cube counting based on sensorized barrier and Wizard app.

Proximity Sensors

The proximity sensor SI1143 (Modern Device, 2022) was chosen for this application [27]
because it is suitable for light-sensing applications, such as gesture sensing, ambient light
measuring, or proximity motion sensing. This proximity sensor includes photo-diodes and
driver circuitry for three LEDs in a compact board (32 mm × 32 mm).

Figure 3a shows the development board, including the three LED infrared emitters
and the receptor device. LEDs were arranged in an equilateral triangle-shaped layout,
occupying each vertex, and the light receptor was placed at the centre of the triangle. Each
LED can be driven independently, generating the approximate detection volume of a cone
for each LED (see Figure 3b).

The effective proximity detection ranged up to 20 cm for small moving objects. Accord-
ing to the datasheet, the sensor could detect a static object up to 50 cm away under optimal
conditions. However, the detection range was reduced to 30 cm in the case of moving
objects. Additionally, as the sensor measures reflected light, for the case of small objects, the
amount of reflected light can be reduced by one-fourth, resulting in a considerable object
detection difficulty for distances above 20 cm.

Additionally, phase-based sensing can be implemented using the arrangement of the
three LED emitters. This method involves looking solely at the raw data from the proximity
measurements and the timing of the changes in feedback for each LED [28]. When an object
is swiped across two LEDs, the direction of the swipe can be determined by looking at
which LED’s feedback is raised first. For the case of Figure 3a, if an object falls vertically in
front of the sensor, it is first detected by LED 3, and subsequently by LEDs 1 and 2. That
is, the LED activation order depends on the direction from which an object approaches
the sensor, allowing for direction from which the object has come to be identified. Thus, a
phase-based sensing method is suitable for detecting the cube falling in the BBT.

(a) SI1143 sensor (b) Detection volume

Figure 3. Proximity sensor and approximate detection volume.
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4. System Development

The physical structure of the BBT box allows for the proximity sensors to be arranged
in different zones to detect the falling cubes. One option is to place the sensors in the
lateral walls of the BBT compartment. The second option is to include sensors in the central
partition. After careful consideration of sensor functionality and experimental trials in the
laboratory, testing several layout configurations, the following guidelines were obtained
for the final design:

• The effective sensing distance is 20 cm; therefore, a single sensor does not cover the
full box width (26 cm) or the diagonal of the compartment.

• Sensors positioned on a different plane (ahead of each other or laterally) produce
interference (cross-talking effect).

• There is a dead angle in the field of view of sensors near to the base of the conical
detection volume (see Figure 3b).

• Sensors placed in the internal wall of compartments and closer to the corners detect
the adjunct lateral wall, altering the signal.

• Raising the position of the sensors to the outside of the compartment reduces the
interference caused by side walls.

On account of the above, a suitable sensing configuration based on the SI1143 sensor
must incorporate sensors that are: (1) arranged in the same plane and (2) placed in a raised
position concerning the compartment. For that reason, the central barrier was selected to
host the proximity sensors. This piece rises 10 cm above the upper edge of the compart-
ments, and it also allows for the placement of the sensors without altering the physical
structure of the BBT and avoids hindering the development of the test. The following
section describes the components and development details of the sensorized barrier.

4.1. Sensorized Barrier

The architecture of the system proposed in this manuscript is presented in Figure 4.
In addition to the SI1143 sensors, an Arduino Mega ADK board was used to receive the
raw data from sensors via the I2C protocol [29]. The Arduino board implements the signal
processing and the algorithm used for cube counting. Moreover, the Wi-Fi module ESP-
O1 was used to enable wireless communication between the sensorized barrier and a
smartphone. In this way, the data registered by the sensorized barrier were sent to an APP
to automatically store and visualize the result.

Figure 4. Architecture of the sensorized barrier.
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This application used three SI1143 sensors arranged in-line on the central partition. The
sensors were arranged in such a way that the sensing field of view covers the compartment
area, and the sensor layout optimizes the sensing. Figure 5 presents the layout of the
sensors and their orientation in the central partition.

(a) Position and orientation of sensors

(b) Lateral view of compartment

Figure 5. Layout of sensorized barrier. (a) Allocation of sensors, and (b) lateral view of sensing
barrier (Distances of interest: a = 273, b = 305, c = 226). (All distances are in mm).

On the one hand, the orientation of sensors implies that the LEDs 1 and 2 were aligned
at the top and LEDs 3 at the bottom to optimize the cube sensing (see Figure 5a). This
disposition allows for a higher optical barrier, with six LEDs (two per sensor), to be obtained
for primary operation, and a lower optical barrier with three LEDs (one per sensor) to
support the detecting barrier presented above. During the usual cube trajectory, first, the
cube would cross the higher barrier and activate some of the LEDs 1 or 2. Then, the cube
would cross the lower barrier and activate some LEDs 3. The signals produced by the LEDs
allow for the implementation of a method of phase-based sensing, relating the falling cube
with a specific LED activation sequence.

On the other hand, the sensor layout aims to cover the majority of the compartment
area and reduce interference. As previously mentioned, the sensors’ field of view has a
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death angle. Therefore, it is necessary to reduce these blind spots to avoid a cube not being
registered if it crosses over this zone. Based on empirical trials, a distance of 7.5 cm between
sensors reduces the blind spots. Hence, it is possible to cover the necessary area to detect
the cubes used in the BBT with three SI1143 sensors. Moreover, these sensors were placed
at a height of 8.5 cm from the partition base. Thus, the total height of the sensors was 16 cm
from the base of the compartment (see Figure 5b). This reduces the interference generated
by adjacent sensors because the farthest wall and the base are in a low-intensity infrared
zone. As shown in Figure 5b, the areas highlighted in a light red colour illustrate the zone
with limited sensing, and the area marked in a red colour represents the high-detecting
zone. Thus, the areas farthest from the sensor (distances greater than 20 cm), as the external
corners of the BBT compartment, have low capacity for cube detection. This error could
be tolerable in people with no severe motor restrictions because, during the expected
development of the BBT test, the cubes would not fall directly through that area but would
first cross an area that is closer to the central partition and, consequently, the sensors. Note
that assistance with cube counting would be beneficial for clinicians in the case of patients
with higher dexterity because, the higher the dexterity, the more cubes are transferred.

4.2. Cube Counting Algorithm

The automatic cube detection process using the SI1143 sensors has three components:
(1) compartment recognition, (2) sensor signal processing, and (3) cube detection algorithm.

4.2.1. Compartment Recognition

As described in Section 2, to administer the BBT, one of the compartments must be
empty prior to starting the assessment. The user must transport as many cubes as possible
to the empty compartment from the opposite compartment. Therefore, the sensing system
focuses on the empty compartment. This means that, at the beginning of the test, the unique
detectable objects are the compartment itself, as illustrated in Figure 5b. Since part of the
compartment is inside the sensors’ detection range, it is necessary to quantify the sensor’s
readings due to the BBT box or other detectable elements.

For that purpose, the sensorized barrier gathers data from the surroundings for 200 ms
to scan the static sources of interference, such as the lateral walls, the bottom of the empty
compartment, or another possible nearby objects such as the user’s body. Once the readings
from the detectable objects are captured, they are discarded using a Foreground Suppres-
sion (FGS) method [30]. Thus, the detection range was calibrated according to baseline
interference sources to avoid including static errors from the compartment surroundings
during cube detection.

The raw data for sensor readings derive from an analog-digital converter (ADC).
The averaged and maximum values of ADC readings form the basis for the foreground
suppression method. The averaged readings were used set a baseline threshold, which
was improved through the error peak and a correction factor (see Equation (1)). Namely,
the threshold value was increased somewhat to ensure the baseline perturbations were
discarded. The correction factor was empirically obtained for indoor ambient light levels
using the light ambient measurement given by the SI1143 sensor, which has photodiodes
that can measure both visible and infrared light. The quotient between these latter results
provided the correction factor.

ADCFGS = ADCavg(α + e) (1)

In Equation (1), ADCFGS is the final threshold value for the foreground suppression
method, ADCavg is the averaged value from the ADC sensor signals, α is the correction
factor that depends on the environmental lightning, and e is the error defined as the
relationship between the averaged and maximum values of the ADC.
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4.2.2. Signal Processing

Two principal disturbances appear in the signal obtained by the sensors during typical
system operation: ambient noise and interference from other sensors.

Sensor readings from were roughly constant in a static environment, with a mea-
surement of around 375 ± 15 ADC units. However, the infrared light emitted by adjacent
sensors may affect the measurements since the sensors are working in a semi-closed area.
This interference is similar to the signal produced when a cube is detected in the central
area of the BBT box, resulting in false positives.

Although the above disturbances could be reduced by the FGS method, a simple
exponential smoothing (SES) [31] was applied to the native output of the ADC to improve
its measurements. The SES is a time series forecasting method for univariate data, without a
trend or seasonality. The basic idea of this model is to assume that the future will be more or
less the same as the (recent) past. This model requires a single parameter, denoted as alpha
(α) or the smoothing coefficient, which determines how much importance is given to the
most recent demand observation. This model is mathematically represented in Equation (2):

ADCi = ADCi−1 + α(ADCreal − ADCi−1) (2)

where α is the smoothing factor, ADCi is the value of smoothed ADC measurement, ADCi−1
is the value of the previous smoothed ADC measurement, and ADCreal is the current value
of the ADC output. For this application, the smoothing factor was empirically established
to be 0.8, and the averaged threshold given by the FGS method was used to initialize the
SES model.

4.2.3. Cube Detection Algorithm

Figure 6 illustrates the flowchart for the cube counting algorithm and details the
process used to detect a cube using phase-based sensing. Note that this process was applied
to the ADC readings from each LED of the SI1143 sensor.

Figure 6. Flowchart for cube detection.
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When a cube is thrown into the compartment, it follows a straight trajectory from
the hand to the base of the compartment, obtaining a signal from the ADCs that is used
to draw a bell-shaped curve (see Figure 7). Three clear parts can be distinguished: rising
edge, maximum peak, and falling edge. The first part shows a pronounced increase in
the signal values, indicating that an object enters the detection area from one of the flanks.
This rising edge is detected when the ADC readings are above the ADCFGS parameter
obtained by the FGS method. Next, a single maximum point of the curve is obtained. The
presence of several peaks indicates that the object has changed trajectory within the sensor
detection field. Finally, a downward phase is obtained in the curve, which is symmetrical
to the upward phase. This falling edge finalises when the ADC readings reach the ADCFGS
parameter. Considering a single LED, this is the simplified process for cube detection
and registering.

Figure 7. ADC readings from SI1143 sensor when a cube falls.

However, to complete the cube identification process, the layout of the LEDs presented
in Figure 5a should be considered. It can be seen that a cube crosses top-down. Therefore, a
cube first concurrently produces rising edges in LEDs 1 and 2, and then produces a rising
edge in LED 3. In other words, the bell-shaped curves in LEDs 1 and 2 are roughly aligned
each other, but shift regarding the bell-shaped curve in LED 3. When using this approach,
a cube is preliminarily given as valid.

Finally, an additional condition that must be fuilfilled before determining a cube as
valid is that the cube first crosses one LED in the higher line sensing and then one LED in
the lower line sensing. This condition also helps to reduce the effects of cube rebound. At
the beginning of the test, the effects of the cube rebounds are null because the compartment
is empty. However, as time passes, the cubes accumulate in the compartment and rebound
each other. A user with high dexterity can move more than 80 cubes in the allowed BBT
time window, so cube stacking could produce some false positives during cube counting.

4.3. App for Smartphone

A mobile application (App) for a smartphone was developed to make the use of the
sensorized barrier more intuitive and store the BBT scores automatically (see Figure 8). The
application has a client–server architecture, where the client part is the mobile device, and
Firebase is the server part, which hosts the database.

The Firebase Realtime Database (FRD) [32] is a cloud-hosted database from Google
LLC. A relevant functionality is that data persist locally, and even while offline, real-time
events continue to fire, providing the end-user with a responsive experience. When the
device regains connection, the FRD synchronizes the local data changes with the remote
updates that occurred while the client was offline, automatically merging any conflicts.
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The app was developed using the Android Studio IDE and the design aimed to cover
functional requirements, such as user management, an easy-to-use interface, an intuitive
display of BBT test results, and automatic result storage. The application communicates
with the sensorized barrier by employing the ESP-01 Wi-Fi module, which is built on
the ESP8266 micro-controller. For proper operation of the ESP-01 module, the ESP8266
microprocessor driver (Generic ESP8266 Module) and library (esp8266wifi.h) must first
be imported. It is also necessary to include the library (FirebaseArduino.h) to connect to
the server and to define the host address and the token that will allow for authentication
and the execution of read and write actions in the FRD database. Finally, the name and
password of the Wi-Fi access point to which the module is to be connected are entered.

(a) Main menu (b) Log up screen (c) Options screen (d) Results screen

Figure 8. Screens of the mobile application for the automated BBT.

Regarding app navigation, if the user does not have an active account on the mobile
device, the app displays a login screen where the user must be correctly identified. If
the user does not have an account, one can be created on the registration screen. Once
inside the app, the user goes to the “HomePatient” screen, which has two buttons: the
first one allows for the consultation of previous BBT records, and the second button allows
for the BBT test to be launched. In the BBT launching screen, a button is used to start
the BBT counting system. This button sends a command to the sensorized barrier to start
the counting process. This screen also displays the time in a chronometer to reach the
normative 60 seconds of the BBT.

5. System Validation

The implemented system is presented in Figure 9. The central partition was replicated
using 3D printing to house the three SI1143 sensors according to the designed layout. In
this prototype, only one lateral face of the central partition was sensorized because the main
goal was to evaluate the cube counting performance of the proximity sensing-based method.
Thus, Figure 9 shows that the Arduino board is not yet embedded in the central partition.
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Figure 9. Prototype of the sensorized barrier.

5.1. Experimental Protocol

The feasibility of the automatic cube counting system was evaluated through several
trials in the laboratory with healthy users. Firstly, the experiments aimed to quantify
the absolute success rate for automatic cube detection when transferring the 150 cubes,
without the normative time window limit. Secondly, an additional goal was to identify
the limitations in cube detection according to the zone in which a cube falls. Finally, an
additional goal was to conduct a preliminary evaluation of the user’s experience with the
whole system (sensorized barrier and app). The participants’ appreciation would be useful
when preparing pilot trials with patients with neurological disorders.

Pilot trials were conducted at the Assistive Robotics Laboratory of the Universidad
Carlos III de Madrid (UC3M). Five young users without reported mobility problems in
the upper extremity participated in this study. The demographic data of participants are
summarised in Table 1.

Table 1. Demographic data of participants.

Variable Data

Age † 22.6 (±1.52)
Sex (male/female) 3/2

Dominant side (right/left) 4/1
† Mean (± SD).

System settings are the same as those one shown in Figure 9. Trials were carried out on
different days in the same week. The individuals were encouraged to perform the test with
their more dexterous hand (dominant). Note that participants were encouraged to move
cubes at different hand speeds, as intuitively defined by the participant. Hand speed was
not measured. At the end of each stage, an evaluator proceeded to manually count the total
of displaced cubes. The manual counting was compared with the automatic counting to
quantify the system’s effectiveness. Note that participants tested the traditional BBT setup
(including the no-sensorized barrier) to familiarise themselves with the test’s development.
This was useful when identifying the differences between both systems. The following
sections present the results of the trials.

5.2. Results
5.2.1. Effectiveness in Automatic Cube Counting

Several trials without time limits were carried out to determine the effectiveness of
automatic cube counting in the proposed system. The cubes were individually transferred
in batches, and the batch size increased by ten cubes for each repetition until reaching
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150 cubes. Therefore, each participant performed 15 batches, beginning with ten cubes,
and progressively increasing by ten cubes after each attempt. At the end of each batch, the
system was reset (compartment emptied). In consequence, a total of 75 cube-transferring
batches were used in this feasibility study for all participants.

Figure 10 shows the number of cubes detected by the proposed automatic system
during trials, presenting an excellent and roughly constant success rate. The system showed
100% accuracy when 30 cubes are transferred, while an effective detection rate of 97% was
obtained for more than 30 transferred cubes. Overall, the success rate for automatic cube
counting was 98.22% on average (percentage of correct recognition).

According to the normative data of the BBT [14], the average number of transferred
cubes for females was 78.4 ± 10.4 and for males, the number was 76.9 ± 11.6. Hence, it
seems that the proposed system could be suitable for the automatic detection of cubes in
the usual operating range of the BBT. However, more trials are needed to support this
approach and evaluate the performance of the cube counting algorithm in the normative
one-minute window.

Figure 10. Success rate for cube counting.

5.2.2. Detection Performance by Compartment Areas

Since the proposed method is based on proximity sensing, it is relevant to quantify the
cube detection performance according to compartment zone. For that purpose, the total
compartment area was divided into 13 subareas of interest to identify the limitations in
automatic cube detection in such subareas (see Figure 11a). These subareas were defined
according to the position of sensors and the expected cube trajectories observed in previous
work [16,17]. Ten cubes were dropped from a height of 20 cm in each area of interest
in freefall.

The results of these trials are shown in Figure 11b. As noted, the better performance
(marked in green colour) was obtained near the sensorized barrier (areas from 1 to 7) and in
the middle of the compartment, while the worst performance (marked in red colour) was
identified in the most distant corners. The cube detection success rate was above 98% in the
surroundings of the sensorized barrier and above 96% in the vertical central band (subareas
8, 9, and 10) of the compartment. Note that, in front of sensors, the system detected 100%
of cubes. Howeve, the furthest vertical band (subareas 11, 12, and 13) presents a detection
success of approximately 4%.
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(a) Areas of interest (b) Map of success rate by zone

Figure 11. Estimation of success rate by compartment areas (Green colour denotes high detection
areas and red colour the lowest detection zones).

5.2.3. Preliminary Usability Testing

A secondary interest of this study was related to the user experience. Participants
were invited to fill in a questionnaire to assess the usability of the automated system and
the app. Questions were classified into two categories: app utility and use mode of the
sensorized barrier. The features were evaluated by each user expressing their opinions
through satisfaction scores ranging from −2 (strongly disagree) to +2 (strongly agree).
Regarding the number of users required for a proper usability evaluation, five is a proper
sample size for usability testing [33,34].

Overall, the user experience with the sensorized barrier and app was satisfactory, and
the results are summarised in Table 2. The best results were obtained regarding the use
mode of the automatic system. Participants highlighted its simplicity to use (Q7), and
most of them found it handy (Q8). The majority preferred the automatic system to manual
counting (Q9). The app’s utility was considered positive, but it was shown to require some
improvements. The intuitive navigation (Q5) and simple layout (Q3) were moderately
accepted. Participants pointed out that the graphic design requires improvements and
the policies of universal design need to be included. However, the function of automatic
data storage (Q2) in the cloud was considered highly valuable. There were no connectivity
issues (Q4) because the system was prepared to auto-link.

Table 2. Results of the usability questionnaires.

Nº Question Mean Mode SD

App utility

Q1 Could the app help to administer the test? 1.4 1 0.55
Q2 Is the automatic data storage useful? 1.8 2 0.45
Q3 Is the app design proper to this application? −1 −1 0.71
Q4 There was no troubles when connectivity 0.2 0 0.84
Q5 Can you navigate intuitively through the screen? 1.2 1 0.45

Use mode of sensorized barrier

Q6 I do not require assistance to use the system 1.6 2 0.55
Q7 Automatic system was confusing to use −1.4 −1 0.55
Q8 I consider the system useful 1.6 2 0.55
Q9 I prefer not to use the sensorized method −1.2 −2 0.45
Q10 Have the system taken a lot of effort from you −1 −1 0.71



Electronics 2023, 12, 914 15 of 18

6. Discussion

At present, the automation of traditional clinical tests for functional assessment is a
recurrent topic in neurorehabilitation [35]. This is understandable, as the traditional assess-
ment procedures have some drawbacks, such as inter-operator variability (subjectivity),
their being labour-intensive and requiring manual administration, and the lack of digital
results. The development of automated assessment systems (AAS) may help to reduce the
above limitations of classical functional evaluation.

Hence, this study focused on validating an instrumented system based on proximity
sensors to automatically score the BBT test, which is widely used in manual dexterity
assessments. Since the main goal is to evaluate the feasibility of the proposed cube counting
system, the instrumented system was piloted with five healthy users. A total of 75 cube
counting trials were performed. On this basis, the present study presented three relevant
findings: (1) the success rate in automatic cube detection using proximity sensing with the
proposed layout is elevated, (2) the sensorization of the central partition seems adequate,
not altering the usual test’s administration, and (3) the use of a mobile app facilitates
data management.

The success rate for automatic cube counting up of to 150 cubes is elevated, with an
average correct recognition of 98%, better than vision-based methods [15–17] and similar to
other instrumented methods [19]. Trials were performed on different days of the same week
but at different hourly segments. In the morning, the room was illuminated by natural
ambient light and, in the afternoon, by conventional artificial indoor light. Consequently,
the environmental light conditions were different during the performance of the trial. The
cube counting esults suggest that ambient or artificial light does not significantly influence
automatic cube detection. This is a relevant feature, as other systems aiming to automate
BBT scoring reported the high influence of environmental light conditions because they
used computer vision methods [15–17]. However, the detection rate slightly varies in the
proposed system according to dynamical factors such as the speed of cube displacement
or cube stacking. However, the variation seems to be systematic for 150 cubes and could
be discarded.

The results demonstrate that sensorization of the central partition of the BBT does not
influence the typical test administration process. During trials, participants had no reported
difficulties displacing the cubes using either classical or sensor-based central partition. Note
that participants used the classical BBT setup to familiarise themselves with the method.
However, one of the identified limitations of this proximity sensing method is that the
rules of the BBT, such as not displacing more than one cube at a time or [14], cannot be
checked. Another concern is the inability to distinguish between cube and hand, resulting
in possible false positives. To deal with these aspects, the Wizard app was designed to
include a brief video tutorial to instruct the user throughout the BBT stages, promotin
automatic test administration. No execution time score is provided on the app screen to
avoid cheating or user frustration while performing the test.

Finally, it seems that using a mobile app is a viable approach to help with data
management without increasing the labour of patients or clinicians. It was suggested that
storing the collected data in an online database such as Firebase is suitable for digitalising
the BBT scores. Previously, the smartphone was configured to obtain access to this BBDD
using the user profile in anonymous way, storing and retrieving the scores of all the
previous sessions. Regarding usability, participants have not reported discomfort with the
app. All of them were able to easily navigate the screens and visualise the results after
the trials. Although the user experience was gathered from healthy users, the preliminary
results would be convenient when enhancing the app design and preparing for future
clinical trials featuring patients with neurological disorders.

Despite the good results obtained for cube counting, the system can be improved
in different ways; for example, improvements with the detection issues and the self-
administration of the test. Firstly, the SI1143 sensor was used in this paper due to its small
size and easy-to-use features. However, the reduced sensing range was a drawback when
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attempting to cover the furthest areas of compartments. This issue could be solved by using
another sensor with a more extensive detection range, while maintaining the reduced board
size. Secondly, as the system’s focus is automatic cube counting, assistance with the test’s
administration was limited to brief user instructions regarding the test’s rules and stages
via the app. Therefore, a remaining issue is how to include more strategies to address the
automatic administration of the test, which would be a relevant aspect in tele-rehabilitation.
The major concern may be the assistance level that a user can demand. Namely, the
preliminary stages of the BBT evaluation consist of obtaining one empty compartment,
which involves grasping capabilities. However, depending on the affectation level, a user
cannot prepare the test for administration. Thus, self-administration is a relevant unsolved
problem when attempting to obtain fully automated assessment systems.

In summary, including sensors in the central partition seems to be the best strategy
to automate cube counting without disturbing the normal assessment procedure. This
automatic counting system, complemented by the app, is a step towards obtaining a feasible
tool for the assessment of UE functional impairments in tele-rehabilitation, whose relevance
was highlighted after the COVID-19 pandemic [36,37].

Limitations

This study has some limitations. Firstly, the results presented in this paper were
obtained with a few, healthy, young participants. Therefore, the conclusions cannot be
directly applied to patients with neurological impairments. The level of mobility restrictions
must be considered in future trials to identify the most suitable target population for this
application. Secondly, the usability tests performed in this article offer preliminary insights.
The goal was to gather the user experience of participants to set a baseline to prepare for
future clinical trials. Aspects such as participants’ familiarity with technological devices
and smartphones must be considered. Finally, the current layout entails that it is not
possible to track hand motion nor distinguish between hand and cube. Therefore, false
positives could be introduced in the final counting. Including additional sensors at the
partition’s top or combining the proposed system with vision-based systems could help to
reduce this limitation.

7. Conclusions

This paper presents a method based on low-cost proximity sensors, which can au-
tomate cube counting during manual dexterity assessments using the BBT. The design
principle is to minimise the number of sensors without obstructing the typical BBT admin-
istration. The sensorization of the central partition is a feasible solution that fulfils these
requirements. The effectiveness of automatic cube counting using the sensorized barrier
was excellent, obtaining an average success rate of 98% for up to 150 cubes with healthy
users. This supports the use of proximity sensing to automate BBT scoring. Additionally,
the use of a mobile application was proposed to digitalise the results and promote the
self-administration of the test, showing positive acceptance.

Author Contributions: Conceptualisation, E.D.O. and A.J.; methodology, E.D.O. and A.J.; software,
E.D.O.; validation, E.D.O. and A.J.; formal analysis, E.D.O. and A.J.; investigation, E.D.O. and
A.J.; resources, A.J. and C.B.; data curation, E.D.O.; writing—original draft preparation, E.D.O.;
writing—review and editing, E.D.O. and A.J.; visualization, A.J.; project administration, A.J.; funding
acquisition, A.J. and C.B. All authors have read and agreed to the published version of the manuscript.

Funding: The research leading to these results has received funding from the Spanish Ministry of
Economy and Competitiveness as part of the project: “ROBOASSET: Intelligent robotic systems
for assessment and rehabilitation in upper limb therapies” (PID2020-113508RB-I00), and from the
RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub, S2018/NMT-4331, funded by
“Programas de Actividades I+D en la Comunidad de Madrid” and cofunded by the European Social
Funds (FSE) of the EU.



Electronics 2023, 12, 914 17 of 18

Institutional Review Board Statement: This is a non-interventional study and did not require ethical
approval.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would thank all the participants in this study.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BBT Box and blocks test
AAS Automated assessment systems
ADC Analog-to-digital converter
FGS Foreground suppression
SES Simple exponential smoothing

References
1. World Health Organization. Neurological Disorders: Public Health Challenges; WHO Press: Geneva, Switzerland, 2006. Available

online: https://www.who.int/publications/i/item/9789241563369 (accessed on 22 November 2022).
2. Oña-Simbaña, E.D.; Sánchez-Herrera Baeza, P.; Jardón Huete, A.; Balaguer, C. Review of automated systems for upper limbs

functional assessment in neurorehabilitation. IEEE Access 2019, 7, 32352–32367. [CrossRef]
3. Santisteban, L.; Térémetz, M.; Bleton, J.P.; Baron, J.C.; Maier, M.A.; Lindberg, P.G. Upper limb outcome measures used in stroke

rehabilitation studies: a systematic literature review. PLoS ONE 2016, 11, e0154792. [CrossRef]
4. Salter, K.; Campbell, N.; Richardson, M.; Mehta, S.; Jutai, J.; Zettler, L.; Moses, M.; McClure, A.; Mays, R.; Foley, N.; et al. Outcome

Measures in Stroke Rehabilitation. In Proceedings of the Evidence-Based Review of Stroke Rehabilitation. Heart and Stroke Foundation;
Canadian Partnership for Stroke Recovery: Ottawa, ON, Canada, 2014.

5. Wang, J.; Yu, L.; Wang, J.; Guo, L.; Gu, X.; Fang, Q. Automated fugl-meyer assessment using SVR model. In Proceedings of the
2014 IEEE International Symposium on Bioelectronics and Bioinformatics (ISBB), Chung Li, Taiwan, 11–14 April 2014; IEEE:
New York, NY, USA, 2014; pp. 1–4.

6. Otten, P.; Kim, J.; Son, S.H. A Framework to Automate Assessment of Upper-Limb Motor Function Impairment: A Feasibility
Study. Sensors 2015, 15, 20097. [CrossRef] [PubMed]

7. Lee, S.; Lee, Y.S.; Kim, J. Automated evaluation of upper-limb motor function impairment using Fugl-Meyer assessment. IEEE
Trans. Neural Syst. Rehabil. Eng. 2017, 26, 125–134. [CrossRef] [PubMed]
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