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Abstract: Undeclared work is a composite socioeconomic matter severely affecting the welfare of
workers, legitimate companies, and the state by issuing unfair competition in the labour market
and causing considerable state revenue losses by tax evasion. Labour inspectorates are tasked
to deal effectively with this issue but usually lack adequate resources and proper tools, yet they
own large volumes of past inspection data that, if aptly processed through innovative machine
learning techniques, may produce understandable insights into the extent and prevailing patterns of
undeclared work and efficient tools to address it. Such datasets are typically imbalanced regarding
undeclared work, and contain overlapping inspection discoveries, two issues that impede the learning
process. This research points to the problems of class imbalance and class overlap in this domain
and applies combinations of data engineering techniques to address them using a dataset of 16.7 K
actual labour inspections. Three associative classification algorithms are employed, and multiple
classifiers are built and assessed for their predictability and interpretability. The study indicates the
overall benefits for the inspection authorities when integrating machine learning methods in targeting
undeclared work and proves considerable prediction performance improvement when following
data engineering approaches to address the class imbalance and class overlap issues.

Keywords: class imbalance; class overlap; data mining; machine learning; predictive modelling;
undeclared work; labour inspectorate; public authority; informal economy; tax evasion

1. Introduction

Undeclared work is a serious and complex problem that strongly impacts society and
the economy. It is defined as paid activities that are lawful, as regards their nature, but are
not declared to the public authorities to avoid tax and social security contribution payments
and to bypass specific legal standards per labour law [1,2]. Consequently, undeclared work
severely undermines the well-being of workers, who are usually paid below the minimum
wages and may work under unsafe conditions; of the lawful businesses by introducing
unfair competitiveness in the labour market; and of the state through significant losses in tax
revenues and insurance contributions. This illegal employment pattern has several causes
and features and displays considerable heterogeneity since it can be located in various
work environments and business sectors, involving a labour force of different profiles and
backgrounds [3]. In addition, it is inherently hidden, making its detection by the inspection
authorities even more complicated, requiring more sophisticated approaches [4].

In particular, labour inspectorates are tasked to deal with this illegal phenomenon in
the labour market, yet they often face practical issues, lacking the appropriate tools and
resources to plan and coordinate effective deterrence and preventative measures. They
usually perform random checks or ground their inspection scheduling in filed complaints
or risk analysis tools that use red flag indicators, manually configured based on labour
inspection expertise [5]. Yet, these high-risk indicators may contain a lot of bias and finally
exclude specific groups of businesses from being inspected, or may trigger repetitive and
redundant onsite inspections [6]. Hence, a shift towards innovative data-driven solutions
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is indispensable, even more so when large volumes of related data are available and may
be appropriately processed and analysed [7]. Notably, data mining and machine learning
applications can generate models trained on past inspection data, offering predictions on
future checks and understandable knowledge regarding the most prevailing patterns of un-
declared work and other labour law infringements. In addition, machine learning systems
are convenient to use and maintain; they contain less prejudice and more justice [8], and
can explain how predictions are made, raising the user’s confidence in following them [9].

Undeclared work is comprehensively studied in the social and economic sciences,
e.g., [2,10]; multiple surveys are conducted by the EC [1,11,12], targeting to expose its
prevalence, nature, and specificities; and different organisations identify it as one of their
major priorities for policy measures, such as the European Labour Authority (ELA) [13,14]
and the European Platform Tackling Undeclared Work [15], the International Labour Or-
ganization (ILO) [3,4], and the Organization for Economic Cooperation and Development
(OECD) [16]. Although the adverse effects and impact of informal employment on society
and the economy are vastly recognised, not much research was published until recently
related to applying data mining and machine learning techniques in its prediction and
understanding [17]. This fact triggered our first research in the field [18], employing Asso-
ciation Rule Mining (ARM) [19] and a dataset of 2.5 K actual past inspections performed by
the Hellenic Labour Inspectorate (HLI) in a specific area and period. The dataset instances
were labelled per the inspection findings, taking values among four main categories of dis-
coveries, one of which, undeclared work, had our primary interest. That research revealed
the considerable advantages of using innovative data-driven techniques to produce under-
standable outcomes, exposing specific correlations of company and employment features
with inspection outcomes that existed in the dataset but were previously unknown to the
labour inspection experts of the authority. The study also identified the prospects of apply-
ing machine learning in undeclared work prediction and motivated further exploration by
adopting interpretable classification modelling.

Thus, in [20], we applied Associative Classification (AC), which refers to supervised
machine learning using ARM, generating classification models comprised of a set of
interpretable class association rules (CARs), of the simple form of if-then rules, that meet the
user-configurable support and confidence thresholds. Particularly, the Classification Based
on Associations (CBA) [21] algorithm was used, which produces effective and maintainable
classifiers, with a dataset of 18.5 K records of actual inspection outcomes coming from the
inspections conducted by the Hellenic Labour Inspectorate in Attica in 2018–2019. In this
initial application of an explainable classification method in this domain, the three main
categories of violations (undeclared work, underdeclared work, and other infringements)
were united in one, the infringement class (INFR); thus, the dataset was transformed into a
binary (INFR/NO_INFR), and a relatively balanced one. The study was analysed per the
CRISP-DM methodology [22], and the produced model accomplished an overall accuracy
of over 65%, while also extracting interesting knowledge related to patterns of labour law
compliance and noncompliance.

Yet, having all the violation types merged into one, the above study did not provide
focused knowledge on the feature patterns associated specifically with undeclared work,
nor any classification model distinguishing between the infringement categories. This defi-
ciency prompted us for extended research [23], using two types of datasets: the same binary
as above and the corresponding four-class dataset preserving the initial four-categories
labelling based on the inspection findings. The application also embedded two different
AC algorithms, CBA and CBA2 [24]; consequently, four distinct classifiers were generated
and assessed per their prediction performance and knowledge provision. CBA2 is an
enhanced version of CBA that deals with the class imbalance problem by splitting the
user-defined minimum support value to the different classes according to their distribu-
tion in the dataset, hence allowing CAR generation for the minority classes, while also
preventing redundant CAR generation for the majority class. This detailed application
study followed the data mining project analysis phases per the CRISP-DM methodology
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in the business environment of a public authority responsible for facing undeclared work,
the Hellenic Labour Inspectorate. It concluded by identifying different preferable models,
one for maximum prediction yields, trained by the binary dataset, and one for providing
focused insights per type of violation, trained by the four-class dataset.

This research also unveiled that the models generated using the dataset of four classes,
one of which is undeclared work with a ratio of 4%, missed identifying those rare instances
of unregistered employment adequately. The causes of this low performance in undeclared
work prediction are identified in class imbalance and class overlap phenomena existing in
the data space with a non-neglecting ratio.

Class imbalance is a usual problem in machine learning when actual data are used
for training, where often the instances of one class, the majority class, predominate the
instances of the other classes (minority classes), thus impeding the learning process and
introducing a predictive tendency for the majority class [25,26]. In the application domain
of undeclared work prediction, datasets of past inspection visits naturally display a consid-
erable imbalance concerning undeclared work [20,23], since this unlawful phenomenon is
multifaceted and not easily detected in onsite checks, and due to the authorities’ limited
resources, only a small percentage of businesses is inspected [4]. However, in machine
learning applications, when the class of interest is the minority class, such as in fraud detec-
tion systems [27], intrusion detection [28], and undeclared work detection [23], predictive
models favouring the majority class may bring adverse outcomes.

In addition, the prediction performance may further worsen if there are a considerable
number of class overlaps in the dataset, i.e., data instances with the same or similar features
but belonging to different classes, issuing the so-called class overlap problem [29]. In
this application domain, using datasets with details of past inspections, class overlaps are
expected to exist in the dataspace, since several actual checks with similar features may
often conclude with different findings. When class imbalance and class overlap coexist in
the dataspace and no actions are taken to deal with them, the produced predictive models
prove poor performance [23,30,31].

Our latest research [32] focused on addressing these issues by following approaches
at the data level [26] before building the classifiers. We used the same data of actual past
inspections as in [20,23]; still, the dataset was here differently structured, with each tuple
corresponding to an inspection case, and not to an inspection discovery, ending up contain-
ing, finally, 16.7 K inspection instances (an inspection may conclude with several findings).
We applied three different data engineering techniques, in isolation and combination, gen-
erating several classifiers assessed in predicting undeclared work. We used again the CBA
algorithm [21], that we also applied in [20,23], to enable the comparison of the produced
prediction performance results with the previous studies and the identification of the
impact of the suggested approaches on the models’ predictability. This study proved that
applying data engineering methods to solve the class imbalance and class overlap problems
highly enhanced the efficiency of the classification models, raising the ratio of undeclared
work prediction (recall) to more than 70% and still preserving the overall accuracy at 70%.
In addition, with less imbalanced datasets of undeclared and underdeclared work, the
models managed to predict more than 75% of the cases with violations.

The current research paper constitutes an extensive study of the latest one [32], further
examining the challenges of class imbalance and class overlap in the application domain of
undeclared work prediction by focusing and operating on the data and modelling levels.

We suggest and apply four different engineering techniques on the data level, starting
with the complete initial dataset. By setting the target group of violations, we employ data
reduction to create a separate binary final dataset per targeted group of infringements.
In this way, we transform an imbalanced multi-class dataset into several binary datasets
on the grounds of the decision-makers’ targets, thus enhancing the models’ predictability
and eliminating the overlaps among the violation classes. Following this, we implement
class overlap removal (COR) in the binary final datasets to deal with overlaps between
the opposing classes, in isolation or combination with a data balancing method, random
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oversampling (ROS), or random undersampling (RUS) to handle the disparity between the
class of violations and that of no infringements.

On the modelling level, we implement three AC algorithms, the CBA and CBA2, as
used in [23] for results comparison, and the Classification based on Predictive Association
Rules (CPAR) [33], an AC method that was not exploited before in this domain. CPAR
utilises a greedy algorithm to generate rules directly from the training dataset instead of
generating large candidate rules from frequent itemsets, as in the other two AC meth-
ods [34]. It is implemented here to assess its outcomes and sensitivity in class imbalance
and class overlaps in this domain.

Multiple classifiers are built by combining the different modelling and data engineer-
ing techniques, tested, and evaluated for their predictability in this domain. In addition, this
research study sheds light on the interpretability aspect of the produced results at both the
global and local levels [9,35,36], as well as the adaptability of the suggested approaches in
the business environment of an enforcement authority in charge of facing undeclared work.

The present study proves highly significant in multiple ways, mainly because (i) it
demonstrates the application of one more AC method (CPAR) not used before in this appli-
cation domain, (ii) it completes the research of our previous studies by illustrating through
experimentation with actual data all combinations of the suggested data engineering and
modelling techniques, thus enabling comparison and discussion of the results, and (iii) it
also examines in detail the interpretability and adaptability aspects of the recommended
approaches, which are highly significant when adopting machine learning techniques in a
public institution environment.

2. Materials and Methods
2.1. Problem Description

As discussed, the application domain of the current study is the labour inspectorate,
and the objective is to predict undeclared and underdeclared work using machine learning
methods aiming to achieve high predictability, interpretability, and adaptability in the
business environment of the enforcement authority. While undeclared work refers to
work completely unrecorded and concealed from the state, underdeclared work concerns
partially recorded labour, usually taking two forms; with fewer recorded working hours
than actually performed and/or with less reported wages than in reality paid. This research
focuses on addressing these two most severe types of infringement under labour relations
law and uses data coming from the Hellenic Labour Inspectorate (HLI), yet the suggested
approaches may well be applied to other kinds of violations, exploiting data from other
enforcement authorities, such as the social security institutions or tax authorities.

The HLI is organised in 125 local offices countrywide and its central offices in the
capital. It employs around 700 labour inspectors assigned with several duties, including
onsite inspection visits, labour disputes mediation, advising employers and employees on
applying labour law provisions, and investigation of work accidents. One of its primary
tasks is to deal with undeclared and underdeclared work around the country, whose labour
market consists of about 340 K companies and 2.1 M employees, significantly increasing in
the summer months and displaying a large diversity in the different districts. Around 35 K
inspection visits are dedicated to protecting employees’ rights against these two illegal
practices, and the selection is usually random or relies on filed complaints.

The inspectorate owns a risk assessment tool, which is a subsystem of its integrated
information system, for inspection targeting and monthly planning, yet it is not often used
for two main reasons; first, based on red flag indicators user-specified, it needs manual con-
figuration and continuous update, which can be performed only at the central offices and
by labour inspection and risk analysis experts; this task requires devoted and experienced
analysts being in often contact with the local labour inspectors countrywide to achieve
proper feedback collection and efficient tool configuration, which is not always feasible.
Secondly, and as a result of the first deficiency, local labour inspectors are uncertain and dis-
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trustful in following a tool’s suggestions when being mostly excluded by its configuration
process and unaware of its specific features leading to its outcomes.

The inspection authority also owns the ERGANI information system, where all com-
panies are obliged by law and on due dates to declare all their employment data and any
changes made before these are applied. Labour inspectors have access to its data, which
they may examine before, during, or after an inspection visit. However, investigations are
made case by case, and no automated mechanism is available to identify and offer hints on
high-risk businesses for targeted inspections.

Concluding the above, and given the availability of adequate and relevant data
resources, applying innovative data analysis and machine learning methods for effi-
cient inspection planning and meaningful knowledge provision rises as the optimum
solution for achieving increased overall productivity and successful allocation of the
inspectorate’s resources.

2.2. Data Sources and Preprocessing

The present research study uses the data collected and appropriately integrated after a
thorough investigation into the business needs and available data sources of the HLI, going
through the business understanding and data understanding phases per the CRISP-DM
methodology, extensively explained in [23] and summarised here for completeness.

As previously discussed, the HLI offers, through the ERGANI, digital services to
employers to obligatorily use for all kinds of employment declarations, such as commence-
ments and terminations of labour contracts, working day and hour schedules, annual
leaves, overtime, etc. The labour inspectors investigate these declared employment data
during or after an onsite inspection and, based on their findings, may ascertain labour
law violations, such as undeclared or underdeclared work. Thus, since 2013, when this
information system was established, it has gathered large volumes of valuable data on
registered employment in the labour market countrywide.

Meanwhile, through its integrated information system (IIS), the HLI digitalised all
its internal functioning, including registering and monitoring the inspection cases at the
inspections subsystem. Hence, since 2018, when it was formally applied, all labour inspec-
tors are mandated to record all their inspection details in the system and monitor their
cases until they are finalised. In addition, one of the HLI internal processes is handling
the complaints received through different channels; these are all recorded into the IIS and
forwarded to the appropriate local labour inspection department for further examination
and inspection planning.

Integrating inspection data with other details made known to the inspectorate before
the inspections are performed, such as company characteristics and registered employment
data coming from ERGANI, may well form a dataset, which, when labelled per the inspec-
tion discoveries and analysed with machine learning techniques, may provide predictions
for future inspections and extract patterns linked with specific violations.

Following this approach and after the appropriate data cleaning and anonymisation,
i.e., omission of records with no data at crucial features and exclusion of all features related
to the identification of inspection cases, companies, or branches—such as case ID, tax
number, name, address, etc.—we concluded with a dataset of 25 features. Subsequently,
and in close cooperation with domain experts, we proceeded to a meticulous feature
selection and feature construction based on their importance and relevance to the findings
of an inspection, ending up with the set of 12 features illustrated in Table 1. For those taking
numerical values, their range was discretised. For those taking values from a large set of
categories, these were aggregated in fewer groups, ending at the categorical values per
feature, as shown in the table. The last column illustrates the ratio of the number of records
in the whole dataset with this categorical value at the specific feature. These steps relate
to data preprocessing, a crucial stage in the data mining process, and require specialised
knowledge in the application domain to lead to meaningful machine learning outcomes
and avoid overfitting.
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Table 1. Initial dataset: features, set of values per feature, and categorical values ratio in the dataset.

Group Feature Values Description–Ranges Ratio%

Inspection
related features

Inspection Time zone
MORNING 06.01–14.00 68.7
EVENING 14.01–22.00 29.77

NIGHT 22.01–06.00 1.53

Inspection Day WEEKDAY Monday–Friday 86.86
WEEKEND Saturday–Sunday 13.14

Initiation Trigger SCHEDULED Scheduled or random 83.63
COMPLAINT Complaint or other info 16.37

Business related
features

Legal Form CORP Corporation 62.57
SOL_PROP Sole proprietorship 37.43

Business Sector

HORECA Hotel/restaurant/catering 23.6
PROD_CONSTR Production/construction 10.51

SALES All kinds of sales 34.39
SERVICES All kinds of services 31.5

Region

CENTRAL_ATHENS Central part of Athens 28.02
NORTH_ATHENS North part of Athens 15.7
SOUTH_ATHENS South part of Athens 14.94
WEST_ATHENS West part of Athens 7.83

PIRAEUS Piraeus 14.42
WEST_ATTICA West part of Attica 6.98
EAST_ATTICA East part of Attica 12.11

Employment
related features

Workplace Size

SMALL_SIZE 1–10 employees 48.1
MEDIUM_SIZE 11–50 employees 28.16
LARGE_SIZE 51–250 employees 13.09

VERY_LARGE_SIZE >251 employees 10.65

Employment
LOW_EMPL 1–16 h/week 14.27

MEDIUM_EMPL 17–32 h/week 29.31
FULL_EMPL 33–40 h/week 56.42

Payment

LOW_PAID ≤700 EUR/month 48.4
MEDIUM_PAID 701–900 EUR/month 26.17

HIGH_PAID 901–1100 EUR/month 11.1
VERY_HIGH_PAID >1100 EUR/month 14.33

Frequency of working
schedule changes

RARE_CHANGES 0–2.00 changes/employee 67.25
MEDIUM_FREQ_CHANGES 2.01–4 changes/employee 12.57

OFTEN_CHANGES 4.01–10 changes/employee 12.07
VERY_ OFTEN_CHANGES >10.01 changes/employee 8.11

Past inspections
related feature

Past
Compliance

UNINSPECTED No past inspections 68.88
COMPLIANT No past violations 12.88

LOW_DELINQ Low delinquency: <40% 3.55
MED_DELINQ Medium delinquency: 40–100% 12.12
HIGH_DELINQ High delinquency: 100–300% 2.39

VERY_HIGH_DELINQ Very high delinquency: >300% 0.18

Outcome Findings

UDW Undeclared work 2.55
UDW, UNDER_DW Undeclared and underdeclared work 0.44

UDW, OTHER_INFR Undeclared work and
other infringements 0.13

UDW, UNDER_DW,
OTHER_INFR

Undeclared and underdeclared work and
other infringements 0.04

UNDER_DW Underdeclared work 30.71

UNDER_DW, OTHER_INFR Underdeclared work and
other infringements 1.18

OTHER_INFR Other infringements 8.36
NO_INFR No infringements 56.59

Data preprocessing also includes data selection as per the objective of the application.
Taking into account the diversity in the labour market affected by several locality and sea-
sonality factors countrywide, as well as the hidden and multi-faceted nature of undeclared
work, the dataset to be used for classification training should not include all the performed
inspections by the HLI throughout the years because it would lead to generating models
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offering predictions based on the most dominating patterns of violations, thus still keeping
the undeclared work concealed.

Under this given, for the purposes of experimenting with machine learning in this
domain, the initial dataset is constructed to include the labour inspections performed in
Attica in 2018–2019, counting in a total of 16,718 cases, hence studying undeclared work
prediction in this district and period. Data from 2020 and thereafter were excluded from
the dataset because employment was severely affected by the COVID-19 pandemic crisis,
yet it is a factor falling outside the research of this study.

Consequently, each tuple in the initial dataset of Table 1 corresponds to an inspection
case performed in Attica in 2018–2019, with its features including the time zone and
day and its trigger to be either a complaint or monthly plan. The inspected business’
characteristics comprise its legal form, economic sector, and the region of Attica where it is
established. Additionally, the employment details of the inspected workplace include the
size based on the number of employees, the type of employment as per the average weekly
working hours, the payment level as per the monthly average wage, and the frequency of
working schedule changes calculated averagely per employee and based on the declared
changes in ERGANI in the last semester before the inspection visit. The past compliance
of the inspected workplace is a constructed feature to indicate if and at what level prior
inspections later affected the reviewed business’ level of labour law compliance. It is
calculated as the ratio of past violations, if any, to the total past inspections, if any. Last,
the outcome of the inspection case is registered, which can be with no infringements, or it
can take values among undeclared work, underdeclared work, other infringements, or a
combination of them, i.e., it is defined by one of the eight distinct categories of inspection
findings as described in Table 1.

Hence, by completing all the data collection, integration, and preprocessing steps,
which include data selection, cleaning and anonymisation, feature selection and construc-
tion, and data discretisation and aggregation, we conclude with the dataset of Table 1,
which is well-structured and contains a considerable number of inspection cases for models
to learn from, yet it cannot be used as-is for classification training.

Indeed, if we take the findings feature as the class, since this is the characteristic that
we wish to predict, and we use this dataset to train classification models, the produced
classifiers would be of poor prediction performance for several reasons. First, it contains
many (eight) class values, i.e., the categorical values of the findings feature; second, most
of these values are severely underrepresented; third, it conceals multiple overlaps among
the different classes. As also seen in [23], these three primary dataset deficiencies impede
the machine learning process and generate poor classifiers; hence, we focus on addressing
them by applying the techniques described in the following paragraphs.

2.3. Target Setting and Data Reduction

The first method applied to deal with the initial dataset complexity and handle uneven
class distributions and class overlapping relates to data reduction reasoning, i.e., eliminating
data irrelevant to the machine learning goal. To be reminded that the aim, in this application
domain, is to effectively predict undeclared work and other labour law violations and then
plan onsite inspections. Thus, all the violation types may be considered interesting for
prediction by the authority. However, since the training of only one classification model
with a dataset containing all infringement categories with irregular dispersion and overlaps
proves inefficient, several different smaller and simpler datasets can be generated per type
of violation that the inspectorate aims to address; hence, subsequently, simpler and more
effective classifiers can be constructed.

Thus, by proceeding with target setting and data reduction, we practically reduce the
data space and select that part that is relevant, each time, to the target of the inspections
to be performed. In other words, for each different violation or group of violations the
inspectorate wishes to target using deterrence or preventative measures, a separate final
dataset is constructed to contain only those past inspection cases that discovered at least one



Electronics 2023, 12, 913 8 of 29

of the target violations and be labelled as positives (P), and those past cases that found the
inspected company compliant with the labour law provisions and be labelled as negatives
(N). Following this approach, we aim at building a distinct classifier, using each of these
final datasets, to identify the riskiest businesses for these violations.

In the present study, we are interested in undeclared and underdeclared work pre-
diction, and for the purposes of testing and evaluation, we create three different final
datasets: one for undeclared work, one for purely underdeclared work, and one to target
both of these violations. Thus, we isolate from the initial dataset the inspection cases that
discovered, among others, undeclared work to form the UDW group, those that discovered
underdeclared work to build the UNDER_DW group, and those that revealed at least one
of the two to create the UDW-or-UNDER_DW group; the cases that found no violations
are gathered to the NO_INFR group. All data-instance groups and their ratios per feature
value are illustrated in Table 2, where multiple preliminary understandings can be derived.

Table 2. Groups of inspection cases per targeting and their ratios per feature value.

Feature Values UDW UNDER_DW UDW-or-UNDER_DW NO_INFR

Inspection Time
MORNING 64.20 59.96 60.38 72.79
EVENING 31.44 36.88 36.35 26.59

NIGHT 4.36 3.16 3.28 0.61

Inspection Day WEEKDAY 82.01 84.39 84.32 87.00
WEEKEND 17.99 15.61 15.68 13.00

Initiation Trigger SCHEDULED 62.50 80.93 79.56 86.99
COMPLAINT 37.50 19.07 20.44 13.01

Legal Form CORP 47.16 59.63 58.58 64.38
SOL_PROP 52.84 40.37 41.42 35.62

Business Sector

HORECA 31.82 35.88 35.44 17.40
PROD_CONSTR 16.29 8.92 9.52 10.62

SALES 22.16 25.26 25.02 42.33
SERVICES 29.73 29.93 30.02 29.65

Region

CENTRAL_ATHENS 39.58 29.45 30.26 26.20
NORTH_ATHENS 12.88 15.02 14.91 15.21
SOUTH_ATHENS 10.98 16.65 16.18 14.45
WEST_ATHENS 8.14 11.12 10.92 6.29

PIRAEUS 10.98 11.83 11.71 16.68
WEST_ATTICA 5.11 7.65 7.47 7.21
EAST_ATTICA 12.31 8.28 8.55 13.96

Workplace Size

SMALL_SIZE 65.34 47.21 48.75 48.72
MEDIUM_SIZE 28.41 35.55 34.80 22.98
LARGE_SIZE 5.11 10.20 9.86 14.59

VERY_LARGE_SIZE 1.14 7.04 6.59 13.72

Employment
LOW_EMPL 24.62 23.45 23.43 9.32

MEDIUM_EMPL 33.14 33.39 33.38 26.97
FULL_EMPL 42.23 43.16 43.19 63.70

Payment

LOW_PAID 57.58 56.65 56.60 44.32
MEDIUM_PAID 27.08 23.84 24.13 27.73

HIGH_PAID 6.25 7.61 7.54 13.06
VERY_HIGH_PAID 9.09 11.90 11.72 14.88

Frequency of changes in the
working schedule

RARE_CHANGES 85.98 76.37 77.06 59.42
MEDIUM_FREQ_CHANGES 6.82 9.42 9.27 15.08

OFTEN_CHANGES 3.60 8.24 7.85 15.52
VERY_ OFTEN_CHANGES 3.60 5.97 5.82 9.98

Level of Past Compliance

UNINSPECTED 81.25 73.04 73.74 67.96
COMPLIANT 6.06 8.19 8.00 16.41

LOW_DELINQ 0.57 1.55 1.48 4.85
MED_DELINQ 9.28 14.34 13.91 9.30
HIGH_DELINQ 2.84 2.64 2.65 1.34

VERY_HIGH_DELINQ 0.00 0.24 0.22 0.13

Total data instances 528 5412 5860 9461
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By uniting each of the first three violation groups of Table 2, whose instances are
labelled positive, with the fourth group of cases with no violations, whose records are
labelled negative, three final datasets are built; the UDW dataset with 9989 records, the
UNDER_DW dataset with 14,873 records, and the UDW-or-UNDER_DW dataset with
15,321 records. Figure 1a illustrates the class distribution of the initial dataset in the
dataspace, where it is perceived that learning can be severely hindered by the obstacles we
previously discussed. Figure 1b–d display the class distributions of the above final datasets.
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Figure 1. Dataset class distributions in the dataspace: (a) initial dataset; (b) UDW final dataset;
(c) UNDER_DW final dataset, and (d) UDW-or-UNDER_DW final dataset.

As also observed in the figures, by applying targeting and data reduction, multi-class
datasets are transformed into several binary ones on the basis of the infringements to be
targeted, also achieving exclude overlaps among the different violation types. Yet, class
overlap and imbalance issues still exist in the produced binary datasets.

Table 3 presents the rate of class imbalance and class overlap in the final datasets.
The UDW dataset displays a considerable imbalance as regards undeclared work (5.29%),
whereas, in all datasets, the overlap ratio, i.e., the percentage of negatives falling on
positives, is non-neglectable, reaching more than 25%. To address these two machine
learning obstacles and assist the generation of efficient classifiers, the following two data
sampling approaches are proposed, which are applied in isolation and in combination in
this study to evaluate their results in increasing prediction performance. Data sampling
should be implemented only in the training part of the data, which is used to produce the
classification models, whereas the testing instances should remain unchanged to avoid the
data leakage phenomenon and extracting misleading and too optimistic prediction results.
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Table 3. Imbalance and overlap ratios in the final datasets.

UDW UNDER_DW UDW-or-UNDER_DW

Total Ratio Total Ratio Total Ratio

Imbalance
YES 528 5.29% 5412 36.39% 5860 38.25%
NO 9461 94.71% 9461 63.61% 9461 61.75%

Overlaps 2544 25.47% 4094 27.53% 4176 27.26%

2.4. Overlaps Handling

In application domains where the cost of misclassifying positives (minority class
instances) is significantly higher than the cost of misclassifying negatives (majority class
instances), class overlap existence in the dataset may result in models with low efficiency.
Even more so in imbalanced datasets, where several negatives may fall over the rare
positives in the dataspace, the classifiers trained with this dataset will probably have
difficulty predicting future positive cases correctly.

In such situations, we need to create well-recognised class clusters in the training
dataspace that can lead to generating explicit CARs and robust models with improved
predictability. Thus, to foster the prediction of instances we especially wish to identify
(the positives), we remove from the training data the less interesting cases (the negatives)
that fall over them; i.e., when the testing and training samples are defined, and before
the classifier is built, the class overlap removal (COR) function examines the training
sample, and if it identifies two data instances as having the same value at all the features
but belonging to opposing classes, it deletes from the training dataset the one labelled as
negative. Even when several negative data instances have the same characteristics with
one positive in the training sample, they are all removed, leaving only the positive case
existing in that particular area of the dataspace, hence assisting the classification model
recognising this area as positive.

Following this approach, the training data class distribution of the imbalanced UDW
dataset displayed in Figure 2a is transformed into that of Figure 2b. Negatives that overlap
positives are eliminated, and the learning process may now be more effective with respect
to predicting undeclared work.

2.5. Data Balancing

Handling overlaps between negatives and positives may be combined with a data
balancing technique to deal with the class imbalance issue. As observed in Figure 2b,
the few positives are now clearly ‘seen’ in the dataspace, yet the negative class is highly
dominant and may affect the classification training and the generation of an effective model.
Hence, balancing the training data shall increase the produced classifiers’ predictability of
the positives.

In this research study, we employ two simple methods to obtain balanced training
data, random oversampling (ROS) and random undersampling (RUS) with replacement.
ROS suggests adding to the training data copies of randomly selected data instances from
the minority class, while RUS refers to deleting from the training data randomly chosen
majority class records. Both approaches aim at adjusting the training data class distribution
to a user-defined balance and assist the machine learning process. They are implemented
here to achieve an equal distribution of positive and negative training data samples for
testing and assessment purposes.

Figure 2c,e illustrate the class distribution in the data space when ROS and RUS are applied
correspondingly. If COR is also employed, which should be implemented before ROS or RUS,
the dispersion of the classes in the training data is represented in Figure 2d,f accordingly.
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Figure 2. UDW training data class distributions in the dataspace: (a) final dataset (FD); (b) final
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2.6. Modelling

As discussed, in the present research, we engage associative classification to build
the classification models. AC was initially selected for application in this domain for
two main reasons; first, several studies [33,37,38] evidenced that AC models achieve
increased predictive accuracy than other interpretable machine learning methods, such
as rule induction [39,40] and decision trees [41,42]. Indeed, AC can reveal further hidden
knowledge often missed by other classification techniques due to its practices in extracting
associations between feature values and classes. Secondly, interpretability is, as explained,
of principle significance in this domain. AC generates models consisting of simple, of the
type if-then, rules that are conveniently understandable and manually updated, if need be,
by the domain users [37].

AC algorithms operate in three main phases; rule discovery, rule sorting and pruning
to generate the classifier, and testing set prediction to evaluate its effectiveness [37]. Several
algorithms exploit different methodologies at each step to improve their predictability. This
research study tests and assesses the application of the CBA [21], CBA2 [24], and CPAR [33]
algorithms in the domain of undeclared work prediction, with their parameters setting to
follow the authors’ recommendations.

CBA was used in [20,23,32] and CBA2 in [23]; hence, they were also applied here for
results comparison and to enable distinguishing the prediction improvement brought by the
suggested approaches. CBA was one of the first research studies that utilised ARM [19] for
classification purposes, employing the Apriori algorithm for rule generation. Rule sorting
is based on confidence, support, and the length of the rules’ antecedent. Rule pruning uses
the database coverage method that also includes a default class at the end of the classifier.
Last, class prediction in CBA is based on one rule, the highest sorted rule that matches the
test case body [37]. CBA2 is an enhanced version of CBA, as regards the class imbalance
problem, differentiating only at the learning phase where the user-defined minimum
support threshold is distributed to the different classes according to their frequency in
the input dataset. CPAR, however, follows completely different techniques at all AC
stages. In rule generation, it utilises an improved adaptation of the FOIL [40] algorithm,
a greedy approach that generates rules directly from the training set [33,34]. In addition,
it uses the Laplace accuracy measure for rule evaluation and pruning, as well as for class
assignment to the test cases during prediction. CPAR generates much smaller classifiers
than other AC algorithms [33]; yet, it proves, through various experimentations [33,37], that
it is highly competitive concerning predictive accuracy compared to, e.g., CBA, hence its
involvement in the present study. Using these three distinct AC algorithms in combination
with the six types of training data class distributions, as illustrated in Figure 2, we produce
eighteen different classification models per each final dataset (Figure 1b–d) and evaluate
their prediction performance. Thus, in total, fifty-four models are created and assessed, as
presented in the next section.

2.7. Performance Evaluation Metrics

To train and test each of the classifiers, the stratified 10-fold cross-validation method is
followed, which divides the input data into ten stratified folds, with each fold maintaining
the class distribution of the input dataset, and uses the nine folds for training and the tenth
fold for testing. As explained, the data sampling techniques, COR, ROS, and RUS, are applied
only in the training part of the data, i.e., the nine folds, keeping the testing fold unaffected.

The process iterates along the ten folds, employing each time a different fold for testing,
i.e., another 10% of the data sample is classified by the model trained by the remaining
90% of the sample; thus, in the end, classification results are collected for all the instances
of the input dataset and depicted in the confusion matrix of Table 4. True positives (TP)
represent the positives (inspection cases with violations) correctly predicted by the model,
while false negatives (FN) refer to their misclassifications. Similarly, true negatives (TN)
are the negatives (inspections with no infringements) correctly identified by the classifier,
whereas false positives (FP) correspond to their misidentifications. In addition, there can
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be cases of data instances remaining unclassified when the applied AC algorithm does not
include a default class in its classifiers, such as CPAR. Hence, we denote UNP and UNN
the unclassified positives and negatives accordingly.

Table 4. Confusion matrix.

PREDICTED
UNCLASSIFIED

Positives (P) Negatives (N)

ACTUAL
Positives (P) TP FN UNP

Negatives (N) FP TN UNN

The confusion matrix values may be used to calculate various performance evaluation
metrics, enabling the comparison between the produced classifiers and, also, with the
results of the previous studies [23,32].

In the research area of classification problems and techniques, numerous and diverse
assessment metrics are proposed [43], of which, the most used and easily perceived are
employed here.

First, accuracy (Acc) (1) refers to the total prediction accuracy of the model, considering
both the prediction correctness of positives and negatives, and is calculated as the ratio of
correct classifications to the total instances.

Acc = (TP + TN)/(TP + FN + FP + TN + UNP + UNN) (1)

Yet, when highly imbalanced datasets are involved, accuracy can be misleading when
it may still offer very high yields, while the minority class remains hidden. Thus, two other
metrics are considered, focusing on the minority class; precision (p) (2), which is the ratio of
positives correctly classified to all predicted positives and indicates the model’s exactness,

p = TP/(TP + FP), (2)

and recall (r) (3), which is calculated as the ratio of positives rightly predicted to all actual
positives, revealing the model’s completeness,

r = TP/(TP + FN + UNP) = TP/P. (3)

Precision and recall are complementary parameters; thus, we also utilise the weighted
harmonic mean of these, Fβ-score (Fβ) (4), where β is defined by the user indicating the
weight (importance) of recall in comparison to precision, in the domain of application.

Fβ-score = ((1 + β2) × p × r)/(β2 × p + r) (4)

Last, specificity (s) (5) refers to the prediction of negatives and is calculated as the ratio
of correctly identified negatives to all actual negatives, i.e.,

s = TN/(FP + TN + UNN) = TN/N. (5)

Last, before we proceed with the performance assessment calculations, the β factor of
the Fβ-score must be defined for the current application domain. With respect to this, one
needs to consider the cost of misclassifications for the inspectorate of positives and negatives.

False negatives correspond to inspection cases revealing violations, but the model
fails to predict them as such; on the contrary, it classifies the cases as “labour law com-
pliant”, i.e., with no infringements. In such events, the inspectorate does not proceed to
perform onsite inspections, but it allocates its resources toward checking other, predicted
as riskier, businesses. Hence, it fails to detect these violations, leading to several negative
consequences, such as, among others, significant losses in state revenues.
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On the other hand, false positives refer to negative cases that are wrongly predicted as
positives, thus triggering unnecessary onsite inspections, which, cost-wise, may be seen as
human and financial resources of the inspectorate being wasted inefficiently. Thus, false
negatives, in comparison to false positives, are a lot costlier for the state and society, leading
to the pursuit of higher recall yields than precision.

Thus, based on the severity of each targeted group of violations, we define β to be five
for undeclared work (UDW), three for underdeclared work (UNDER_DW), and four when
targeting both (UDW-or-UNDER_DW).

Concluding with the methodology, Figure 3 illustrates all the steps followed in this study,
starting with data collection and ending with the performance evaluation of the models.
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Figure 3. Methodology steps to create the initial dataset and then, after target setting, to construct a
final dataset, e.g., the UDW dataset. From the same final dataset and using the same AC algorithm,
six models are produced, based on the different training data class distributions, and evaluated.

3. Results
3.1. Classification Results

As described in Figure 3, six classifiers are produced correspondingly to the six
different training data class distribution approaches using the same final dataset and AC
algorithm, as summarised in Table 5. The first is the final dataset, produced from the initial
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dataset after the target setting. The rest are combinations of the data engineering methods
COR, ROS, and RUS, as described in the previous section.

Table 5. Summary of the six class distributions induced by the application of training data engineering
methods.

Training Data
Engineering Method Description Class Distribution

FD Final dataset. No training data
engineering method applied. Figure 2a

FD_COR Final dataset with class overlap
removal (COR) applied. Figure 2b

FD_ROS Final dataset with random
oversampling (ROS) applied. Figure 2c

FD_COR_ROS
Final dataset with class overlap

removal (COR) and random
oversampling (ROS) applied.

Figure 2d

FD_RUS Final dataset with random
undersampling (RUS) applied. Figure 2e

FD_COR_RUS
Final dataset with class overlap

removal (COR) and random
undersampling (RUS) applied.

Figure 2f

For each of the three final datasets, UDW, UNDER_DW, and UDW-or-UNDER_DW,
by combining the three AC algorithms of Section 2.6, i.e., CBA, CBA2, and CPAR, with the
six different training sample class distributions of Table 5, eighteen models are produced
using LAC [44], an associative classification java library. Their classification results are
gathered and presented in the confusion matrixes illustrated in Tables 6–8 correspondingly.

Table 6. UDW classification results (confusion matrixes) per algorithm and training data engineering
method.

UDW Dataset: P = 528/N = 9461

CBA CBA2 CPAR

Training Data
Engineering Method

Predicted Predicted Predicted
UnclassifiedP N P N P N

FD
P 32 496 23 505 219 164 145
N 51 9410 16 9445 1115 6219 2127

FD_COR
P 76 452 70 458 282 137 109
N 265 9196 310 9151 1801 5661 1999

FD_ROS
P 295 233 347 181 260 114 154
N 1695 7766 3046 6415 1521 5355 2585

FD_COR_ROS
P 302 226 327 201 322 124 82
N 2222 7239 2770 6691 2278 5477 1706

FD_RUS
P 372 156 350 178 288 113 127
N 2873 6588 2820 6641 1804 5454 2203

FD_COR_RUS
P 370 158 354 174 333 103 92
N 3342 6119 3211 6250 2375 5229 1857
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Table 7. UNDER_DW classification results (confusion matrixes) per algorithm and training data
engineering method.

UNDER_DW Dataset: P = 5412/N = 9461

CBA CBA2 CPAR

Training Data
Engineering Method

Predicted Predicted Predicted
UnclassifiedP N P N P N

FD
P 1774 3638 1776 3636 2541 2028 843
N 966 8495 770 8691 2259 5844 1358

FD_COR
P 4133 1279 4117 1295 3773 1639 0
N 4857 4604 4724 4737 4401 5060 0

FD_ROS
P 3457 1955 3451 1961 2805 1607 1000
N 3055 6406 2934 6527 2506 5267 1688

FD_COR_ROS
P 4138 1274 4130 1282 3729 1683 0
N 4850 4611 4702 4759 4372 5089 0

FD_RUS
P 3538 1874 3590 1822 2823 1650 939
N 3148 6313 3205 6256 2617 5216 1628

FD_COR_RUS
P 4130 1282 4133 1279 3734 1678 0
N 4804 4657 4686 4775 4394 5067 0

Table 8. UDW-or-UNDER_DW classification results (confusion matrixes) per algorithm and training
data engineering method.

UDW-or-UNDER_DW Dataset: P = 5860/N = 9461

CBA CBA2 CPAR

Training Data
Engineering Method

Predicted Predicted Predicted
UnclassifiedP N P N P N

FD
P 1645 4215 1913 3947 2725 2056 1079
N 782 8679 965 8496 2080 5690 1691

FD_COR
P 4691 1169 4630 1230 4124 1736 0
N 5331 4130 5066 4395 4401 5060 0

FD_ROS
P 3815 2045 3726 2134 2971 1818 1071
N 3170 6291 3041 6420 2391 5460 1610

FD_COR_ROS
P 4444 1416 4473 1387 3981 1879 0
N 4824 4637 4742 4719 4212 5249 0

FD_RUS
P 3875 1985 3852 2008 2960 1746 1154
N 3279 6182 3226 6235 2335 5343 1783

FD_COR_RUS
P 4461 1399 4475 1385 3986 1874 0
N 4808 4653 4729 4732 4227 5234 0

Several preliminary conclusions may be derived by examining the results in Tables 6–8,
identifying the most effective combinations of algorithms and training data sampling meth-
ods in increasing the true positives. However, for a thorough evaluation analysis, the perfor-
mance evaluation metrics given in Section 2.7 are calculated and presented in the following
subsection, while, at the same time, various application domain aspects are considered.

3.2. Performance Evaluation Results

Tables 9–11 illustrate the prediction performance measurements of all the models
coming from the different combinations of the three AC algorithms and six data engineering
methods using the three final datasets. They are calculated using the values in Tables 6–8
correspondingly.
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Table 9. Classification assessment of the 18 models produced using the UDW dataset.

Prediction Performance Measurements of the 18 Models Produced Using the UDW Dataset

AC
Algorithm

Data Engineering
Method Acc % p % r % F5 % s %

CBA

FD 94.52 38.55 6.06 6.26 99.46
FD_COR 92.82 22.29 14.39 14.59 97.2
FD_ROS 80.7 14.82 55.87 50.49 82.08

FD_COR_ROS 75.49 11.97 57.2 49.94 76.51
FD_RUS 69.68 11.46 70.45 58.81 69.63

FD_COR_RUS 64.96 9.97 70.08 56.89 64.68

CBA2

FD 94.78 58.97 4.36 4.52 99.83
FD_COR 92.31 18.42 13.26 13.40 96.72
FD_ROS 67.69 10.23 65.72 54.38 67.8

FD_COR_ROS 70.26 10.56 61.93 52.17 70.72
FD_RUS 69.99 11.04 66.29 55.59 70.19

FD_COR_RUS 66.11 9.93 67.05 54.90 66.06

CPAR

FD 64.45 16.42 41.48 39.18 65.73
FD_COR 59.5 13.54 53.41 47.98 59.84
FD_ROS 56.21 14.6 49.24 45.12 56.60

FD_COR_ROS 58.05 12.38 60.98 52.98 57.89
FD_RUS 57.48 13.77 54.55 48.97 57.65

FD_COR_RUS 55.68 12.3 63.07 54.43 55.27

Table 10. Classification assessment of the 18 models generated using the UNDER_DW dataset.

Prediction Performance Measurements of the 18 Models Generated
Using the UNDER_DW Dataset

AC
Algorithm

Data Engineering
Method Acc % p % r % F3 % s %

CBA

FD 69.04 64.74 32.78 34.48 89.79
FD_COR 58.74 45.97 76.37 71.63 48.66
FD_ROS 66.31 53.09 63.88 62.61 67.71

FD_COR_ROS 58.82 46.04 76.46 71.72 48.74
FD_RUS 66.23 52.92 65.37 63.87 66.73

FD_COR_RUS 59.08 46.23 76.31 71.65 49.22

CBA2

FD 70.38 69.76 32.82 34.66 91.86
FD_COR 59.53 46.57 76.07 71.54 50.07
FD_ROS 67.09 54.05 63.77 62.64 68.99

FD_COR_ROS 59.77 46.76 76.31 71.77 50.3
FD_RUS 66.2 52.83 66.33 64.68 66.12

FD_COR_RUS 59.89 46.86 76.37 71.85 50.47

CPAR

FD 56.38 52.94 46.95 47.49 61.77
FD_COR 59.39 46.16 69.72 66.33 53.48
FD_ROS 54.27 52.81 51.83 51.93 55.67

FD_COR_ROS 59.29 46.03 68.90 65.64 53.79
FD_RUS 54.05 51.89 52.16 52.13 55.13

FD_COR_RUS 59.17 45.94 68.99 65.70 53.56
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Table 11. Classification assessment of the 18 models built using the UDW-or-UNDER_DW dataset.

Prediction Performance Measurements of the 18 Models Generated Using the
UDW-or-UNDER_DW Dataset

AC
Algorithm

Data Engineering
Method Acc % p % r % F4 % s %

CBA

FD 67.38 67.78 28.07 29.07 91.73
FD_COR 57.57 46.81 80.05 76.84 43.65
FD_ROS 65.96 54.62 65.1 64.37 66.49

FD_COR_ROS 59.27 47.95 75.84 73.33 49.01
FD_RUS 65.64 54.17 66.13 65.28 65.34

FD_COR_RUS 59.49 48.13 76.13 73.61 49.18

CBA2

FD 67.94 66.47 32.65 33.66 89.8
FD_COR 58.91 47.75 79.01 76.08 46.45
FD_ROS 66.22 55.06 63.58 63.01 67.86

FD_COR_ROS 60 48.54 76.33 73.84 49.88
FD_RUS 65.84 54.42 65.73 64.94 65.9

FD_COR_RUS 60.09 48.62 76.37 73.89 50.02

CPAR

FD 54.92 56.71 46.50 47.00 60.14
FD_COR 59.94 48.38 70.38 68.54 53.48
FD_ROS 55.03 55.41 50.70 50.95 57.71

FD_COR_ROS 60.24 48.59 67.94 66.38 55.48
FD_RUS 54.19 55.9 50.51 50.80 56.47

FD_COR_RUS 60.18 48.53 68.02 66.45 55.32

In Tables 9–11, the highest values per performance evaluation metric are identified
in bold, where one can realise that accuracy, precision, and sensitivity favour different
models than recall and F-score. For instance, when targeting undeclared work (Table 9),
the classifier generated by CBA2 with no engineering in training data (FD) achieves the
highest accuracy, reaching 94.78%, precision at 58.97%, and sensitivity at 99.83%. However,
it identifies only 4.36% of the cases with undeclared work (recall) and proves completely
inefficient. Thus, for the reasons we explained previously, we mainly focus on the recall
and F-score metrics to identify the most effective models per final dataset.

For undeclared work prediction (Table 9), the model produced by CBA and trained
with RUS proves to be the most successful, identifying more than 70% (r) of the unde-
clared work cases while still attaining an overall accuracy and sensitivity near 70%. This
is considered a significantly improved performance by the domain experts because, in
practice, if this classifier were used for planning inspections against undeclared work, it
would trigger only 32.48% of the total inspection cases (TP + FP) to reveal 70.45% of the
existing undeclared work, raising the inspection yields (p) from the current ratio of 5.29%
to 11.46%. Additionally, compared with the results of undeclared work prediction (r) by
the CBA and CBA2 models trained with the four-class dataset in [23] being near 0% and
7.5%, respectively, the outcomes of the suggested approach to deal with class imbalance
prove substantially improved.

Meanwhile, we should not neglect the performance of the CPAR algorithm in com-
parison with the other two when no data engineering is applied (FD) for undeclared work
detection. Indeed, even in such a highly imbalanced dataspace (UDW) with more than
25% overlaps, this algorithm proves to perform well, identifying more than 41% (r) of the
undeclared work cases while activating only 13.35% of the total inspections, thus tripling
their gains to more than 16% (p). Conversely, CBA and CBA2 face difficulties with the class
imbalance and display a disappointing prediction performance until this issue is solved,
whereas eliminating the class overlap does not seem to improve the performance.

When less imbalanced datasets are involved (Tables 10 and 11) and no sampling meth-
ods are applied to handle class imbalance and class overlap (FD), CPAR again demonstrates
a considerably improved performance compared to CBA and CBA2 in terms of predicting
the cases with violations, succeeding to identify around 47% of them while keeping the
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precision to decent levels: at 53% for underdeclared work (Table 10) and 56.7% when both
infringements are targeted (Table 11). CBA and CBA2 models, in these cases, trigger a small
number of inspections whose accuracy, though, is very high, up to more than 67%, with the
CBA2 model offering slightly increased yields compared to CBA. However, these models
do not manage to identify a competent number of existing violations, discovering only
around one-third of them. This deficiency originates, as verified, from the class overlap
issue, which, when handled (as in FD_COR models), boosts the recall ratio to more than
76%, while maintaining the overall accuracy on average to 59–60%.

More specifically, when focusing on underdeclared work (UNDER_DW final dataset)
or both undeclared and underdeclared work (UDW-or-UNDER_DW final dataset), the
application of CBA using training data with no overlaps (FD_COR) produces the classifiers
that identify most of the actual cases with violations, accomplishing a recall of 76.37%
and 80.05%, accordingly. In this case, the success ratio (precision) rises from the present
36.39% (Table 3) to 45.97% (Table 10) for underdeclared work and from 38.25% (Table 3) to
46.81% (Table 11) for both violations. In the meantime, it is demonstrated that applying
oversampling and undersampling techniques (ROS and RUS) does not enhance the models’
prediction performance. Last, comparing these performance results for detecting underde-
clared work with the outcomes of the CBA and CBA2 algorithms trained with the four-class
dataset in [23] achieving a recall of 34.64% and 39.98%, respectively, one can recognise the
substantive improvements of the proposed methods even when less rare (than undeclared
work) violations are targeted.

Concluding, when highly imbalanced datasets are involved, such as the UDW with
the minority class reaching only 5.29%, even if class overlaps coexist in the dataspace, it is
the imbalance issue that mainly affects the CBA and CBA2 classifiers performance. Once
RUS is applied, these models reach maximum recall.

On the other hand, as regards the other two less imbalanced datasets, it is the class
overlap that impedes the CBA and CBA2 learning process, which is remarkably improved
when the negatives falling on positives are eliminated from the training data. If balancing
techniques are applied in such datasets, no further enhancements are observed.

Contrarywise, CPAR operates differently from CBA and CBA2 at all associative classi-
fication stages, hence its disparate behaviour per final dataset and data engineering method.
As discussed, CPAR is not so sensitive to class imbalance and class overlap. It performs
satisfactorily well, even with significantly uneven class distributions and/or a considerable
ratio of overlaps. Yet, to maximise its prediction efficiency, it needs the application of both
COR and RUS for the UDW dataset, whereas only COR is necessary for the other two final
datasets. Compared to CBA and CBA2, though, when the appropriate data engineering
methods are employed, CPAR is less successful in predicting violations.

3.3. Models Explainability

As initially discussed, being able to understand and interpret the outputs of a machine
learning model is of major significance in the present application domain because, first,
it will enhance the labour inspectors’ knowledge about the most predominant attributes
highly connected with each type of violation and, secondly, it will build their trust in the
model’s suggestions for onsite inspections.

In the current study, we integrate approaches to support the models’ explainability
on two levels. In data preprocessing, through cooperation with labour inspection experts,
we create a set of domain-identifiable qualitative features taking values easily perceivable
to the labour inspectors. Additionally, in modelling, we use associative classification
algorithms, creating white-box models consisting of class association rules (CARs) of the if-
then form that provide understandable results for experts in the domain. These approaches
foster the interpretability of the produced classifiers at both the global and local levels.
Global interpretations refer to a model’s extractions explaining the general relationships
it learned, such as the patterns associated with a predicted response. On the other hand,
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local interpretations focus on explaining specific predictions given by a model, such as the
attributes and interactions that drove the particular prediction [36].

Table 12 summarises all the classification models produced by the three final datasets
and the combinations of the three AC algorithms with the six class distributions of Table 5.
The last column displays the average number of CARs contained in the models, calculated
by the ten classifiers generated for each model during the 10-fold cross-validation method.
CPAR is observed to create significantly smaller classifiers than the other two algorithms,
with CBA2 models being, on average, ten times bigger. Additionally, differences are noticed
between the models of the same dataset and algorithm but of different class distributions.

The AC classifiers use their CARs to predict an unseen data instance following their
algorithm classification method. The rule, or rules, used for determining the class of a data
instance also reveals the reasoning for this classification, i.e., the local explanations. Global
explanations can be extracted by examining the high-order ranked rules of a classifier and
summarising their attribute correlations most often seen.

Table 12. Classification models and the corresponding number of CARs.

Summary of the Generated Classification Models and Their Number of Class Association Rules (CARs)

Final Dataset AC Algorithm Data Engineering
Method No. Classification Model Num of CARs

UDW

CBA

FD 1 UDW-CBA-FD 762
FD_COR 2 UDW-CBA-FD_COR 679
FD_ROS 3 UDW-CBA-FD_ROS 451

FD_COR_ROS 4 UDW-CBA-FD_COR_ROS 483
FD_RUS 5 UDW-CBA-FD_RUS 265

FD_COR_RUS 6 UDW-CBA-FD_COR_RUS 269

CBA2

FD 7 UDW-CBA2-FD 788
FD_COR 8 UDW-CBA2-FD_COR 737
FD_ROS 9 UDW-CBA2-FD_ROS 217

FD_COR_ROS 10 UDW-CBA2-FD_COR_ROS 283
FD_RUS 11 UDW-CBA2-FD_RUS 303

FD_COR_RUS 12 UDW-CBA2-FD_COR_RUS 311

CPAR

FD 13 UDW-CPAR-FD 76
FD_COR 14 UDW- CPAR-FD_COR 71
FD_ROS 15 UDW-CPAR-FD_ROS 129

FD_COR_ROS 16 UDW-CPAR-FD_COR_ROS 118
FD_RUS 17 UDW-CPAR-FD_RUS 46

FD_COR_RUS 18 UDW-CPAR-FD_COR_RUS 49

UNDER_DW

CBA

FD 19 UNDER_DW-CBA-FD 893
FD_COR 20 UNDER_DW-CBA-FD_COR 1069
FD_ROS 21 UNDER_DW-CBA-FD_ROS 766

FD_COR_ROS 22 UNDER_DW-CBA-FD_COR_ROS 1075
FD_RUS 23 UNDER_DW-CBA-FD_RUS 726

FD_COR_RUS 24 UNDER_DW-CBA-FD_COR_RUS 1062

CBA2

FD 25 UNDER_DW-CBA2-FD 1394
FD_COR 26 UNDER_DW-CBA2-FD_COR 1574
FD_ROS 27 UNDER_DW-CBA2-FD_ROS 1376

FD_COR_ROS 28 UNDER_DW-CBA2-FD_COR_ROS 1594
FD_RUS 29 UNDER_DW-CBA2-FD_RUS 1220

FD_COR_RUS 30 UNDER_DW-CBA2-FD_COR_RUS 1573

CPAR

FD 31 UNDER_DW-CPAR-FD 121
FD_COR 32 UNDER_DW-CPAR-FD_COR 93
FD_ROS 33 UNDER_DW-CPAR-FD_ROS 145

FD_COR_ROS 34 UNDER_DW-CPAR-FD_COR_ROS 96
FD_RUS 35 UNDER_DW-CPAR-FD_RUS 109

FD_COR_RUS 36 UNDER_DW-CPAR-FD_COR_RUS 99
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Table 12. Cont.

Summary of the Generated Classification Models and Their Number of Class Association Rules (CARs)

Final Dataset AC Algorithm Data Engineering
Method No. Classification Model Num of CARs

UDW-or-
UNDER_DW

CBA

FD 37 UDW-or-UNDER_DW-CBA-FD 938
FD_COR 38 UDW-or-UNDER_DW-CBA-FD_COR 1127
FD_ROS 39 UDW-or-UNDER_DW-CBA-FD_ROS 744

FD_COR_ROS 40 UDW-or-UNDER_DW-CBA-FD_COR_ROS 1118
FD_RUS 41 UDW-or-UNDER_DW-CBA-FD_RUS 687

FD_COR_RUS 42 UDW-or-UNDER_DW-CBA-FD_COR_RUS 1108

CBA2

FD 43 UDW-or-UNDER_DW-CBA2-FD 1426
FD_COR 44 UDW-or-UNDER_DW-CBA2-FD_COR 1670
FD_ROS 45 UDW-or-UNDER_DW-CBA2-FD_ROS 1316

FD_COR_ROS 46 UDW-or-UNDER_DW-CBA2-FD_COR_ROS 1688
FD_RUS 47 UDW-or-UNDER_DW-CBA2-FD_RUS 1234

FD_COR_RUS 48 UDW-or-UNDER_DW-CBA2-FD_COR_RUS 1608

CPAR

FD 49 UDW-or-UNDER_DW-CPAR-FD 122
FD_COR 50 UDW-or-UNDER_DW-CPAR-FD_COR 96
FD_ROS 51 UDW-or-UNDER_DW-CPAR-FD_ROS 144

FD_COR_ROS 52 UDW-or-UNDER_DW-CPAR-FD_COR_ROS 97
FD_RUS 53 UDW-or-UNDER_DW-CPAR-FD_RUS 113

FD_COR_RUS 54 UDW-or-UNDER_DW-CPAR-FD_COR_RUS 101

Rule ranking is a pre-processing phase in AC mining that sorts the generated rules
based on specific criteria, which can be different per AC algorithm, and is later used in
prediction [37]. CBA and CBA2 rank their classification rules based on their confidence,
support, and antecedent length (shortest). In contrast, CPAR ranks its rules on the grounds
of their expected accuracy, i.e., the probability that a test case satisfying the rule’s body
belongs to its class [33]. Thus, in any case, the highest-ordered CARs of a classifier have the
strongest prediction power, revealing the most dominant attribute correlations with each class.

Aiming to exhibit and explain the interpretability aspect of the classifiers generated in
this research study, we select one from each final dataset and different AC algorithm that
accomplishes high recall yields and, in the following tables, we present the first high-ranked
classification rules, thereby disclosing the most prevailing feature patterns of compliance
and non-compliance as regards the violation they are targeting.

In particular, Table 13 illustrates the feature interactions associated with undeclared
work and those with compliance, as identified by the UDW-CBA-FD_RUS classifier (No. 5,
Table 12), which is built from the UDW dataset, using the CBA algorithm and applying RUS
to training data to address the class imbalance. As per the recall and F5 metric (Table 9), this
is the most efficient classifier in undeclared work prediction revealing more than 70% of the
actual cases. As previously explained, an inspection case from the testing set is classified
as risky or non-risky (YES/NO) based on a prediction mechanism using the generated
CARs; thus, one or more of these rules contributes to defining the most suitable class for
the given test case body. This rule practically offers also the local interpretation for the
given prediction. For instance, the second rule of Table 13 explains that if a complaint is
filed for a company of the HORECA business sector making rare changes in the employees’
working schedule and using low employment, then an onsite inspection shall most probably
reveal undeclared work. On the other hand, the first rule says that if a scheduled audit is
performed in a large-sized company in the sales sector with full-time employees, it will
most likely find the employer labour law compliant.

Global interpretations may be derived for risky and non-risky businesses by examining
the components of each group of rules predicting these two classes. In Table 13, the most
dominant features are identified in bold, revealing that if at least three of these coexist, then
there is a strong indication of undeclared work: filed complaint, performing an evening or
night inspection, to a company of the HORECA sector, established in central Athens, using
low employment, paying low wages, and making rare changes in the working schedule.
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Table 13. Prevailing patterns of compliance and non-compliance as regards undeclared work.

Highest-Ranked Class Association Rules from the UDW-CBA-FD_RUS Model 1

No. Body/Feature Values Class/Risky
1 SCHEDULED, LARGE_SIZE, FULL_EMPL, SALES NO
2 COMPLAINT, RARE_CHANGES, LOW_EMPL, HORECA YES
3 COMPLAINT, RARE_CHANGES, HORECA, CENTRAL_ATHENS YES
4 SCHEDULED, MORNING, VERY_LARGE_SIZE, FULL_EMPL, CORP NO
5 MORNING, WEEKDAY, VERY_LARGE_SIZE, FULL_EMPL, CORP NO
6 WEEKDAY, VERY_LARGE_SIZE, FULL_EMPL, CORP, SERVICES NO
7 COMPLAINT, WEEKEND, LOW_PAID YES
8 COMPLAINT, RARE_CHANGES, LOW_EMPL, CENTRAL_ATHENS YES
9 WEEKDAY, LOW_PAST_INFR NO
10 SCHEDULED, OFTEN_CHANGES, FULL_EMPL, MEDIUM_PAID NO
11 COMPLAINT, LOW_EMPL, CORP YES
12 SCHEDULED, OFTEN_CHANGES, MEDIUM_PAID, CORP NO
13 EVENING, WEEKDAY, RARE_CHANGES, HORECA, CENTRAL_ATHENS YES
14 COMPLAINT, SMALL_SIZE, RARE_CHANGES, LOW_PAID, SOL_PROP, HORECA YES
15 VERY_LARGE_SIZE, NORTH_ATHENS NO
16 COMPLAINT, EVENING, RARE_CHANGES, LOW_EMPL YES
17 MEDIUM_SIZE, RARE_CHANGES, MEDIUM_PAID, HORECA YES
18 MEDIUM_FREQ_CHANGES, CORP, NORTH_ATHENS NO
19 SCHEDULED, VERY_OFTEN_CHANGES, CORP, SALES NO
20 WEEKDAY, MEDIUM_SIZE, LOW_EMPL, CENTRAL_ATHENS YES
21 SCHEDULED, WEEKDAY, CORP, SALES, NORTH_ATHENS NO
22 SCHEDULED, MORNING, NO_PAST_INSP, CORP, SALES, EAST_ATTICA NO
23 SCHEDULED, MEDIUM_FREQ_CHANGES, PIRAEUS NO
24 NIGHT, RARE_CHANGES, NO_PAST_INSP YES
25 COMPLAINT, MORNING, LOW_EMPL, CENTRAL_ATHENS YES
26 COMPLAINT, MORNING, HORECA, CENTRAL_ATHENS YES
27 COMPLAINT, MEDIUM_SIZE, LOW_EMPL YES

1 Classifier generated by the UDW final dataset, using the CBA algorithm, and applying RUS in the training data.

Non-risky businesses are recognised when combining three or more characteristics:
scheduled inspection, to a sales business, of legal form corporation, of large or very large
size, with full-time employees, making medium or often or very often changes in the
working schedule.

Table 14 presents the ten top-ranked rules linked with underdeclared work and
the corresponding ten high-ordered rules associated with compliance, generated by the
UNDER_DW-CBA2-FD_COR classifier (No. 26, Table 12), which is built from the UN-
DER_DW dataset, using the CBA2 algorithm and COR implementation in training data.
As per Table 10, this model is among the most successful ones in identifying underde-
clared work. Here, from the extracted global interpretations, one may notice differences
in the dominating features associated with this type of violation compared with those
of undeclared work. For instance, underdeclared work is significantly revealed through
scheduled inspections, whereas, as regards undeclared work prediction, this attribute was
mainly linked with compliant businesses, as per the UDW classifier (Table 13). Addition-
ally, underdeclared work is discovered primarily in companies that were never inspected
before (NO_PAST_INSP). In contrast, businesses that were checked and found compli-
ant with labour law (NO_PAST_INFR) will probably be found compliant again. These
characteristics, though, did not appear in the rules of undeclared work prediction.
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Table 14. Prevailing patterns of compliance and non-compliance as regards underdeclared work.

Highest-Ranked Class Association Rules from the UNDER_DW-CBA2-FD_COR Model 1

No. Body/Feature Values Class/Risky

1 SCHEDULED, MORNING, WEEKDAY, SMALL_SIZE, RARE_CHANGES, LOW_PAID,
NO_PAST_INSP, CENTRAL_ATHENS YES

2 SCHEDULED, WEEKDAY, MEDIUM_SIZE, RARE_CHANGES, LOW_EMPL, LOW_PAID,
NO_PAST_INSP, HORECA YES

3 SCHEDULED, MEDIUM_SIZE, RARE_CHANGES, LOW_PAID, MED_PAST_INFR, CORP,
HORECA YES

4 SCHEDULED, WEEKDAY, SMALL_SIZE, RARE_CHANGES, MEDIUM_EMPL,
LOW_PAID, NO_PAST_INSP, SOL_PROP, SERVICES YES

5 SCHEDULED, RARE_CHANGES, LOW_EMPL, LOW_PAID, NO_PAST_INSP,
WEST_ATHENS YES

6 SCHEDULED, MORNING, SMALL_SIZE, RARE_CHANGES, MEDIUM_EMPL,
LOW_PAID, NO_PAST_INSP, SOL_PROP SALES YES

7 SCHEDULED, MORNING, WEEKDAY, SMALL_SIZE, RARE_CHANGES,
MEDIUM_EMPL, LOW_PAID, NO_PAST_INSP, SERVICES YES

8 MORNING, SMALL_SIZE, RARE_CHANGES, LOW_PAID, NO_PAST_INSP, HORECA,
CENTRAL_ATHENS YES

9 SCHEDULED, MORNING, SMALL_SIZE, RARE_CHANGES, LOW_PAID,
NO_PAST_INSP, SERVICES, CENTRAL_ATHENS YES

10 EVENING, SMALL_SIZE, RARE_CHANGES, MEDIUM_EMPL, LOW_PAID,
NO_PAST_INSP, CENTRAL_ATHENS YES

11 MORNING, FULL_EMPL, NO_PAST_INFR, SALES PIRAEUS NO
12 WEEKEND, VERY_LARGE_SIZE, NO_PAST_INFR NO
13 VERY_OFTEN_CHANGES, SALES, PIRAEUS NO
14 MORNING, NO_PAST_INFR, CORP, SALES, PIRAEUS NO
15 SCHEDULED, WEEKEND, VERY_LARGE_SIZE, HIGH_PAID NO
16 SCHEDULED, MEDIUM_SIZE, OFTEN_CHANGES, NO_PAST_INFR, CORP NO
17 SCHEDULED, MORNING, RARE_CHANGES, FULL_EMPL, NO_PAST_INFR, PIRAEUS NO
18 MORNING, NO_PAST_INFR, SALES, PIRAEUS NO
19 MORNING, MEDIUM_FREQ_CHANGES, FULL_EMPL, NO_PAST_INFR, SALES NO
20 MEDIUM_SIZE, OFTEN_CHANGES, NO_PAST_INFR, CORP NO

1 Classifier generated by the UNDER_DW final dataset, using the CBA2 algorithm, and applying COR in the
training data.

These differences in the global interpretations extracted as regards the detecting, on the
one, undeclared work and, on the other, underdeclared work, clearly show the effectiveness
of the approach to create different final datasets per targeted violation. Not only did the
prediction performance improve significantly, as previously explained, but the derived
knowledge is now more precise for each targeted violation, as seen here.

Last, Table 15 illustrates the mined knowledge when targeting both undeclared and
underdeclared work, coming from the first high-ranked rules for both classes of the UDW-
or-UNDER_DW-CPAR-FD_COR classification model (No. 50, Table 12), generated by the
UDW-or-UNDER_DW dataset, employing the CPAR method and applying COR in training
data. According to the recall metric of Table 11, among the CPAR classifiers generated
by this dataset, this model achieves the highest performance, reaching to more than 70%.
In this set of rules, one may notice that the dominating feature patterns have different
compositions, comprising combinations of characteristics prevailing in the previous two
groups of global interpretations.
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Table 15. Prevailing patterns of compliance and non-compliance as regards undeclared or underde-
clared work.

Highest-Ranked Class Association Rules from the UDW-or-UNDER_DW-CPAR-FD_COR Model 1

No. Body/Feature Values Class/Risky

1 RARE_CHANGES, LOW_EMPL, LOW_PAID, NO_PAST_INSP, HORECA, PIRAEUS YES

2 WEEKDAY, RARE_CHANGES, LOW_EMPL, LOW_PAID, NO_PAST_INSP,
HORECA, CENTRAL_ATHENS YES

3 RARE_CHANGES, LOW_EMPL, LOW_PAID, NO_PAST_INSP, HORECA,
SOUTH_ATHENS YES

4 MORNING, RARE_CHANGES, LOW_PAID, NO_PAST_INSP, HORECA,
WEST_ATHENS YES

5 RARE_CHANGES, LOW_PAID, NO_PAST_INSP, HORECA YES

6 MORNING, MEDIUM_SIZE, RARE_CHANGES, LOW_EMPL, MED_PAST_INFR,
CORP, HORECA YES

7 NIGHT, RARE_CHANGES, PROD_CONSTR YES
8 NIGHT, RARE_CHANGES, HIGH_PAID YES
9 RARE_CHANGES, LOW_EMPL, HIGH_PAST_INFR, CORP YES

10 MORNING, FULL_EMPL, MEDIUM_PAID, NO_PAST_INFR, SALES, PIRAEUS NO
11 MEDIUM_SIZE, OFTEN_CHANGES, FULL_EMPL, NO_PAST_INFR, SALES NO
12 WEEKEND, OFTEN_CHANGES, FULL_EMPL, NO_PAST_INFR, SALES NO
13 FULL_EMPL, HIGH_PAID, NO_PAST_INFR, SALES, EAST_ATTICA NO
14 VERY_LARGE_SIZE, FULL_EMPL, NO_PAST_INFR, EAST_ATTICA NO

15 MORNING, VERY_LARGE_SIZE, MEDIUM_FREQ_CHANGES, FULL_EMPL,
HIGH_PAID NO

16 MORNING, MEDIUM_FREQ_CHANGES, FULL_EMPL, MEDIUM_PAID,
EAST_ATTICA NO

17 SMALL_SIZE, OFTEN_CHANGES, FULL_EMPL, HIGH_PAID, SALES NO
1 Classifier generated by the UDW-or-UNDER_DW final dataset, using the CPAR algorithm, and applying COR
in the training data.

4. Discussion

In this research study, we discuss the impact of undeclared work on society and the
economy and the problems the enforcement authorities face in addressing it. We investigate
the business needs and available data sources of a labour inspectorate, a public institution
responsible for dealing with this employers’ illegal practice, and put forward the necessity
for applying innovative machine learning methods towards improving its effectiveness in
this direction. We use a large block of actual past inspection data and focus on the class
imbalance and class overlap issues that naturally exist in such domain datasets, obstructing
the machine learning process.

To overcome these issues, we propose and apply combinations of data engineering
techniques. Initially, we use data reduction based on the decision makers’ selections of the
target group of violations. With the aim of testing, evaluation, and demonstration, we create
three different final datasets per the inspectorate’s priorities for deterring infringements; one
solely for undeclared work, one for underdeclared work, and one for both of these severe
violations. Then we implement the class overlap removal (COR) method, which deletes
from the training data the negatives that fall on positives, either isolated or in combination
with random oversampling (ROS) or random undersampling (RUS) that handle class
imbalance in the datasets. Hence, we create six diverse training data class distributions
per final dataset, which are then compounded with three different AC algorithms, the
CBA, CBA2, and CPAR, to build multiple classifiers, which are subsequently evaluated in
detecting the targeted violations.

Based on considerations regarding the costs of positive and negative misclassifications
for the inspectorate, we focus on the recall assessment metric to identify the most effective
classifier per targeted violation. We conclude that for undeclared work prediction involving
highly imbalanced datasets, using CBA and applying random undersampling suffices to
boost the recall from 6% to more than 70% while maintaining accuracy to 70%. When
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only underdeclared work or both violations are targeted, and less imbalanced datasets
are related, removing the class overlapping achieves the highest recall at 76–80% with the
same algorithm. CPAR is also introduced in this study, displaying less sensitivity in class
imbalance and class overlap in this application domain, achieving good results in all final
datasets, even without data engineering applications to training sets.

Overall, this machine learning application illustrates the outputs of fifty-four clas-
sification models derived by the combinations of the AC algorithms, the final datasets,
and the data engineering techniques, enabling the comprehension of the strengths and
weaknesses of each approach and the identification of the most suitable model per the
needs and resources of the enforcement authority. Indeed, there is no best model for all
required tasks of inspection planning and targeting violations; on the contrary, several
considerations must always be taken into account, such as the available time and number
of inspections that can be performed to achieve a specific goal.

For instance, the models that attain increased recall fall short on precision and speci-
ficity, i.e., they would trigger several inspections that would finally conclude with no
violations (false positives). These models are appropriate when the inspectorate wishes to
detect most of the actual fraudulent businesses, e.g., in a specific area and period and can
allocate adequate resources to perform several onsite visits; such are the cases when the
HLI runs an action plan targeting undeclared and underdeclared work in tourist places,
and a group of inspectors visits an area for this purpose.

On the other hand, on occasions when limited resources and time are available and
high inspection yields are sought, the experts should choose a model with increased
precision that initiate few onsite visits yet their success rate is high, such as the CBA2-
FD for targeting underdeclared work, reaching violation prediction success at 70% and
specificity at 92%.

The present research paper is of significant value in this application domain, not
only because of the detailed demonstration of the classifiers’ prediction performance and
methods for improvement, as previously discussed, but also due to presenting knowledge
extraction, which is valuable to the domain users.

In particular, we follow different approaches to enhance the interpretability of the
outcomes; we use qualitative features that take comprehensible (by the domain users)
values; we employ associative classification algorithms that produce simple and under-
standable rules of the if-then form; also, we create different final datasets per targeted group
of violations to build classifiers devoted to these violations and derive focused knowledge
related to them.

Thereby, the domain users’ benefit in enhanced knowledge is two-fold. First, they
obtain understandable explanations (local interpretations) for each inspection case or
business classified as risky or non-risky as per a particular classifier, e.g., a UDW classifier.
Hence, they can perceive the reasoning and estimate the fairness of a model’s suggestion
and be involved in the decision-making process of inspection planning; thus, their trust
and acceptance in the models’ outputs are increased. Secondly, they gain insights into the
predominant trends and attribute patterns associated with the targeted violations. Indeed,
in this application, we showed that the global interpretations derived by the classifiers
targeting undeclared work display some differences from those of underdeclared work,
proving that the proposed approaches can unveil attribute associations with each type of
infringement that would remain hidden otherwise.

5. Conclusions

In the previous section, we summarised the outcomes related to the predictability and
interpretability aspects of the classification models produced through the methodology
we introduced in this study, and we concluded with the substantial improvements they
offer both in the area of inspection planning and also in the domain knowledge provision.
However, an even more crucial aspect one needs to examine when integrating such in-
novative machine learning techniques into the routine processes of a public enforcement
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authority, such as the labour inspectorate, is the adaptability and the level of user accep-
tance. Several innovative systems introduced into public institutions ended up being of
very limited use or abandoned mainly due to several adaptation complications in their
working environment or poor user acceptance.

The proposed methods in the current study can be easily adapted in the working
environment of an enforcement authority accountable to address undeclared work and
other severe labour law violations. Figure 4 illustrates a machine learning system with
the characteristics we described so far being integrated into the business cycle of a labour
inspectorate, e.g., the HLI. It may be configured to periodically draw and incorporate
data from databases containing past inspections and other relevant information, such as
employment and company characteristics, and create or update datasets per the users’
needs or the authority’s targets, as we presented for the HLI. Through a simple user
interface, the managers can make selections on the data areas and attributes to be included
in the datasets, thus building distinct classifiers per targeted violation, business sector,
region, etc. Following this, they can test and evaluate the models while including, if
necessary, techniques to face class imbalance and class overlap, and finally select the most
appropriate classifiers on each occasion while considering the available resources and other
inspection planning details.
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No particular ICT or machine learning knowledge shall be necessary for the users to
build different models per their needs in such a configurable system. The labour inspection
managers are, thus, encouraged to actively engage in goal setting and inspection scheduling
while exploiting the benefits of an innovative machine learning tool. Additionally, once
the most successful classifiers are identified per the authority’s goals and managers’ needs
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labour inspectors regarding their findings to update the models. This task can be a system
process scheduled to run periodically, automatically updating the classification models by
integrating the new inspection data or other related details inserted into the databases, as
depicted in Figure 4.

Concluding, an inspection recommendation system integrating interpretable machine
learning techniques and the proposed approaches for class imbalance and class overlap may
well adapt to the business environment of a labour inspectorate and be effortlessly accepted
by the domain users, offering multiple benefits and solving all the deficiencies arising from
a risk analysis tool manually configurable based on users’ perceptions and experiences.
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