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Abstract: Non-orthogonal multiple access (NOMA) is one of the most effective techniques for meeting
the spectrum efficiency (SE) requirements of 5G and beyond networks. This paper presents two
novel methods for improving the SE of the downlink (DL) NOMA power domain (PD) integrated
with a cooperative cognitive radio network (CCRN) in a 5G network using single-input and single-
output (SISO), multiple-input and multiple-output (MIMO), and massive MIMO (M-MIMO) in the
same network and in a single cell. In the first method, NOMA users compete for free channels
in a competing channel (C-CH) on the CCRN. The second method provides NOMA users with a
dedicated channel (D-CH) with high priority. The proposed methods are evaluated using the Matlab
software program using the three scenarios with different distances, power location coefficients,
and transmitting power. Four users are assumed to operate on 80 MHz bandwidths (BWs) and use
the quadrature phase shift keying (QPSK) modulation technique in all three scenarios. Successive
interference cancellation (SIC) and unstable channel conditions are also considered when evaluating
the performance of the proposed system under the assumption of frequency selective Rayleigh
fading. The best four-user SE performance obtained by user U4 was 3.9 bps/Hz/cell for SISO DL
NOMA, 5.1 bps/Hz/cell for SISO DL NOMA with CCRN with C-CH, and 7.2 bps/Hz/cell for
SISO DL NOMA with CCRN with D-CH at 40 dBm transmit power. While 64 × 64 MIMO DL
NOMA improved SE performance of the best-use U4 by 51%, 64 × 64 MIMO DL NOMA with C-CH
CCRN enhanced SE performance by 64%, and 64 × 64 MIMO DL NOMA with D-CH CCRN boosted
performance by 65% SE compared to SISO DL NOMA at 40 dB transmit power. While 128 × 128 M-
MIMO DL NOMA improved SE performance for the best U4 user by 79%, 128 × 128 M-MIMO DL
NOMA with C-CH CCRN boosted SE performance by 85%, and 128 × 128 M-MIMO DL NOMA with
D-CH CCRN enhanced SE performance by 86% when compared to SISO DL NOMA SE performance
at 40 dB transmit power. We discovered that the second proposed method, when using D-CH with
CCR-NOMA, produced the best SE performance for users. On the other hand, the spectral efficiency
is significantly increased when applying MIMO and M-MIMO techniques.

Keywords: non-orthogonal multiple access (NOMA); multiple-input multiple-output (MIMO);
massive MIMO (M-MIMO); cooperative cognitive radio (CCR)
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1. Introduction

Non-orthogonal multiple access (NOMA) has long been considered an important
enabling technology for next-generation wireless networks. NOMA can improve the overall
spectrum efficiency (SE) of the system and provide better fairness to serving users [1,2].
Using a superposition coding scheme, NOMA systems depend on the base station (BS) to
assess the difference between signals from different users. The mobile terminal receivers
can remove the intra-beam interference by using a technique called successive interference
cancellation (SIC).

NOMA’s primary tenet was articulated in [3], which can accommodate multiple users
by splitting them by time or rate. It is important to note that, the more orthogonal resources
available, the more NOMA users there are [4–6]. There are two main NOMA domains:
(1) the NOMA power domain (PD) and (2) the NOMA code domain (CD). Many users with
varying power transmissions use the same frequency or time resource in the first category.
For the second group, the codebook with the data matched the design of the codebook for
each user [7]. As a result, the capacity and SE of future systems will have to be dramatically
improved to deal with the expected increase in traffic. The next generations of mobile
networks will greatly increase resource utilization and system capacity [8]. One way to
achieve this is by sharing the spectrum (both in time and space) among multiple users.
With non-orthogonal allocation, NOMA can accommodate more users than the number of
orthogonal resource modules.

Unfortunately, the frequency band that can be used in wireless applications is limited.
Therefore, it is vital to develop new techniques to meet the increasing traffic and service
requirements and overcome the eventual spectrum failure [9]. The use of a cognitive radio
(CR) is a well-known method that can help with spectrum shortages [10]. There are primary
users (PUs) and secondary users (SUs) in the CR network, wherein the SUs can broadcast
over primary spectrum bands if interference from PUs is acceptable.

The authors in [11] examined an essential CR process. Two methods of achieving
spectrum sharing that allows for greater utilization of radio frequencies are discussed.
These methods aim to avoid interference between simple and cognitive radio licenses.
According to [12]’s spectrum utilization situation, it is possible to categorize the various
forms of spectrum access. In terms of spectrum use, it is possible to sort the different types
of spectrum access studied in [13] into groups. Multiple-input and multiple-output (MIMO)
NOMA technology is used for primary and secondary users to achieve active cooperative
spectrum sensing (CSS) in a cognitive radio network (CRN). The CRN’s capacity is en-
hanced between the additive white Gaussian noise (AWGN) and Rayleigh fading channels.
However, the ways of accessing CRN have not been clarified, and the number of users is
modest. Moreover, the obtained results cannot be generalized to a large network, and the
effect of the power location coefficients is not mentioned [14].

The primary contribution of this work is to, when the primary user experiences channel
unavailability or instability, activate the cooperative cognitive radio (CCR) in the same
network and in a single cell in 5G through the competing channel (C-CH) or a dedicated
channel (D-CH). This results in increased throughput and system efficiency. The following
are some of the other important contributions made by the current work:

In the 5G network, DL PD NOMA was integrated with CCR in two different ways:
with single-input, single-output (SISO) and MIMO (multiple-input, multiple-output) and
MIMO (massive-input, multiple-output).

It has been demonstrated that the proposed model integration enhances SE when
compared to SISO DL NOMA (conventional model).

Establishing a quantitative measure for the degree to which the proposed methods are
used improves performance while utilizing a variety of design parameters.

The following presentation is used in the remaining sections of the paper: Previous
and related works are discussed in Section 2. The proposed mathematical model for the
system is discussed in Section 3. Section 4 reveals the simulation and results, and Section 5
concludes the study with a consideration of possible future research directions.
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2. Related Work

The author of [15] analyzed the CR-NOMA system’s outage probability (OP) and
throughput. Closed expressions of OP were constructed to evaluate secondary network
users’ performance with primary network interference. Numerical findings indicate that
correct power distribution and energy harvesting parameters can assure equitable perfor-
mance for both users. The author verified the spectral structure of the MIMO-CR-NOMA
internet of things (IoTs) frameworks, as well as calculated the throughput per user and
the overall throughput. In [16], the frame rate was calculated for CR-OMA, CR-NOMA,
CR-MIMO, and MIMO-CR-NOMA., with negative conditions such as optimal channel
condition and a linear channel.

The author has formulated and addressed a problem to improve productivity in a
multi-carrier NOMA system. Using a CRN base in a multi-carrier NOMA network increases
the total system throughput at a modest PU throughput loss rate without exceeding the
base target rate [17].

The author found asymptotic expressions for a NOMA-based, overlaid CRN for
Industry 5.0 [18] with the help of OP analytical expressions and the ergodic rate for primary
and secondary users.

The impacts of capacitance, phase, and power distribution on system performance are
explored via simulation. For multi-carrier NOMA systems exposed to user fairness require-
ments, in [19], the author suggested a low-complexity resource allocation approach that
offered a compromise between energy efficiency and spectrum efficiency. The proposed
NOMA system produces higher energy efficiency (EE) and SE than state-of-the-art ap-
proaches, and does so with minimal complexity, as demonstrated by the numerical results.
The NOMA cognitive system’s interruption efficiency is examined in combination with an
imperfect SIC. Closed models are used to determine how likely it is that the primary and
secondary users will have outages, and simulations are used to ensure that the performance
study results are corrected [20].

An active refracting reconfigurable intelligent surface (RIS)-based transmitter was
investigated for the purpose of sending the confidential signal over an IoT network, while a
passive reflective RIS was used to enhance the secrecy performance of users in the presence
of multiple eavesdroppers. The simulated results prove the efficacy of the proposed design,
which maximizes the weighted sum secrecy rate by coordinating the power allocation,
transmit beamforming (BF), and phase shifts of the refracting and reflective RIS [21].

The author proposed a joint optimization design for the NOMA-based satellite–
terrestrial integrated network (STIN), where a satellite multicast communication network
shares the millimeter wave spectrum with a cellular network employing NOMA technology.
The simulation results confirm the effectiveness and superiority of the proposed approach
in comparison to existing approaches, assuming that the satellite uses a multibeam antenna
array and the base station uses a uniform planar array [22].

The author explores secure energy efficient beamforming in multibeam satellite sys-
tems where an eavesdropper is present in each beam with an aim to maximize the system’s
secrecy energy efficiency (SEE) within the constraints of the total transmit power bud-
get. Simulation results are provided to prove that the proposed scheme outperforms the
benchmark schemes, unlike the existing schemes, which are much more complicated [23].

An active refracting RIS-based transmitter is investigated for sending the confidential
signal over an IoT network, while a passive reflective RIS is used to enhance the secrecy
performance of users in the presence of multiple eavesdroppers. Simulated results prove
the efficacy of the proposed design, which maximizes the weighted sum secrecy rate by
coordinating the power allocation, transmit beamforming (BF), and phase shifts of the
refracting and reflective RIS [24].

For a large-scale, cell-free uplink MIMO system, the author presented a partial collab-
orative zero-impact decoding (PCZF) strategy, wherein neighboring access points (APs)
around each user’s equipment (UE) exchange CSI and work together to minimize interfer-
ence via zero-effect decoding. The numerical findings verify the accuracy of the theoretical
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analysis and the efficacy of the suggested energy control algorithms after the analogy based
optimization of the aggregation rate [25].

3. System Model
3.1. SIOS DL NOMA

The study was divided into three typical scenarios, each with three models, as depicted
in the next sections. As shown in Figure 1, the SISO DL NONA system is considered (i.e.,
no multiple antenna elements). The NOMA system performs with and without adopting
cooperative cognitive radio network (CCRN) integration for free and dedicated channels in
the same network and single cell.
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Figure 1. Depicts the wireless network with four users (DL-NOMA PD).

Suppose that the wireless network has four NOMA users (U1, U2, U3, and U4), each
located a certain distance from the BS and denoted by d1, d2, d3, and d4, respectively. Note
that, based on the users’ location, U1 (who is located far away from the BS) is expected to
receive a weaker signal compared to U4 (who is the closest to the BS). Let h1, h2, h3, and
h4 represent the Rayleigh fading coefficients that they correspond to |h1|2|h2|2|h3|2. Their
current power coefficients are denoted by α1, α2, α3, and α4, respectively.

The NOMA PD principles state that the user with a stronger signal (i.e., located close
to the BS) should be allocated less power. In comparison, the user with a weaker signal
(i.e., located far away from the BS) should be allocated more power. As a result, adjusted
power coefficients are denoted by x1, x2, x3, and x4. For simplicity, we use a set of power
coefficients in this paper. To improve efficiency, several dynamic power coefficient strategies
are available. Let the adjusted power coefficients x1, x2, x3, and x4 exceed the quadrature
phase-shift keying (QPSK) messages that will be sent to the base stations. The BS’s encoded
overlay signal can then be expressed as x =

√
p(
√

α1x1 +
√

α2x2 +
√

α3x3 +
√

α4x4). The
signal received by the ith user can be expressed as: yi = hix + ni, where ni denotes AWGN
experienced by the ith user (Ui).
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The strongest signal is used to decode y1 since it interacts directly with the other three
signals. Achievable maximums are provided in [26,27].

R1 = log2

(
1 +

α1P|h1|2

α2P|h1|2 + α3P|h1|2 + α4P|h1|2 + σ2

)
(1)

After some manipulations, the achievable maximums produced in (1) can be written as:

R1 = log2

(
1 +

α1P|h1|2

(α2 + α3 + α4)P|h1|2 + σ2

)
(2)

As illustrated in Equation (2), since the denominator is the sum of the power coeffi-
cients from the other three users (α2 + α3 + α4), this means that the power coefficient of the
intended user (i.e., α1) should satisfy the condition: α1 > α2 + α3 + α4. The power of the
first user (U1) is then dominated by the transmitted signal x and the received signal y1. Let
us now write the equation for the second user (U2) rate. First, U1′s data must be removed
and regarded as an interference, as α2 < α1, and α2 > α3 > α4 using SIC. After SIC deletes
the U1 data, the achieved rate is U2.

R3 = log2

(
1 +

α3P|h3|2

α4P|h3|2 + σ2

)
(3)

Next, y3, despite U1, U2, U3, and U4 (α3 < α1, α3 < α2), is in the denominator’s
overlapping term. Finally, canceled data y3 required the execution of three SIC functions.
Because α1 prevails, it must be removed first. Following that, the α3 term must be removed.
Then, the achievable rate is written using:

R3 = log2

(
1 +

α3P|h3|2

α4P|h3|2 + σ2

)
(4)

The achieved y4, illustrated as U1, U2, U3, and U4 (α3 < α1, α3 < α2, α3 < α4 ),
is in the denominator’s intersecting term. Eventually, removed data y4 necessitates the
implementation of two SIC functions. Because the α1 reign is supreme, it must be deleted
first. Following that, the α3 term must be eliminated. The attainable rate was,

R4 = log2

(
1 +

α4P|h4|2

σ2

)
(5)

3.1.1. CCRN-Based Free Channels

Assume the wireless network has four NOMA users (U1, U2, U3, and U4), where
(α3 < α1, α3 < α2) and the cooperative cognitive radio (CCR) network is depicted as in
Figure 2. Let us represent their respective BS distances d1, d2, d3, and d4. In terms of BS
usage, U1 is the weaker/far user, while U4 is the stronger/near user. To represent the
Rayleigh fading values, we can use the following formula:|h1|2|h2|2|h3|2|h4|2.

The CCR spectrum investigated the status of the channel and the possibility of using
it for communication. Suppose the channel status is unstable and communication is weak.
In that case, two options are related to the CCR channel status (available or not). When the
CCR channel is available, NOMA can use it.
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CR must use the whole spectrum window to complete packet transmission (s). As-
suming that Twindow denotes such a spectrum window period, it is obvious that [28]:

Twindow ≥ Tsense + TCR − Transmission + Tramp − up + Tramp − down (6)

where Tsense denotes the minimum sensing and duration required to ensure the CR transmis-
sion opportunity and acquisition of related communication parameters, TCR Transmission
denotes the transmission period for CR packets, and Tramp up/down denotes the trans-
mission ramping (up or down) period. Figure 3 shows the CR transmission opportunity
window when the beacon signals have fixed separation [29].

PD =
Number o f acquisitions

Total number o f opportunities
=

Over_Num
NOP

(7)

Spectrum Sensing

To choose between the two hypotheses, spectrum sensing on link-level targets in a
single primary system is used.

y[n] = {w[n] h s[n] + w[n] n = 1 . . . N
H0

H1
(8)

where y[n] represents the complex signal received by the CR, s[n] represents the primary
user’s transmitted signal, w[n] represents AWGN, h represents the complex gain of an ideal
channel, and N represents the observation interval. If the channel is not perfect, h and
s[n] are convolved rather than multiplied. H0 denotes the null hypothesis that no primary
user is present. In contrast, H1 denotes the alternate hypothesis that a primary user signal
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exists. Spectrum sensing techniques were divided into two categories: energy based and
feature-based [30].
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Energy Detection

Over the observation interval, the received signal is squared and integrated. The
integrator’s output is then compared to a threshold to determine whether the primary user
exists. In other words, the following binary choice is made:{

H0, i f ∑N
n=1

∣∣∣y[n]2∣∣∣ ≤ λ

H1, otherwise
(9)

where λ is the threshold that is affected by the receiver noise.

PF = P
(

H1

H0

)
= P

(
PU
H0

)
= P

(
yn

H0

)
= 1− FH0(Th) (10)

False alarm probability and FH0 represent the cumulative distribution function (CDF) [31].

PD =
Number o f acquisitions

Total number o f opportunities
=

Over_Num
NOP

(11)

PD = 1− PM = 1− P
(

H0

H1

)
(12)

PD =

[
e
−Th

2 ∗ 1
n!

(
Th
2

)n]
+

[
e
−Th

2(1+L) ∗
(

1 + L
L

) ]
−
[

e
−Th

2 ∗ 1
n!
∗ Th ∗ L

2(1 + L)

]
(13)

Pm = 1− PD (14)

where PD represents the detection probability and Th is the threshold and L is the SNR; PM
represents the probability of missed detection and PFA is the false-alarm probability [32].

The probability of error,

Pe = PF ∗ P(H0)
+ PMriP(H1)

(15)
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3.1.2. CCR-Based Dedicated Channel

The CCR examined the state of the channel and how it could be used for communi-
cation when a primary communication system is running and when the channel state is
unstable or communication is weak. In this case, there is only one condition in which the
CCR channel is available (high priority), and NOMA users can use it (see Figure 2).

3.2. MIMO DL PD NOMA

Consider 64× 64 MIMO DL NOMA PD, 64× 64 MIMO DL NOMA PD with CCRN
C-CH, and 64× 64 MIMO DL NOMA PD with CCRN D-CH under the assumption that
there are N users, U1, U2, U3, . . . , UN (α2 < α1, α3 < α2, α4 < α2) in a single cell in the
5G network.

x =
√

P(
√

α1x1 +
√

α2x2 +
√

α3x3 +
√

α4x4) (16)

where α are the NOMA power allocation coefficients [33]. The transmit antennas all
broadcast x simultaneously. From this, we know what UN is detecting as a signal:

yN = xhN1 + xhN2 + . . . + xhNN (17)

where nN is the total number of samples from the AWGN with a zero-mean and σ2 variation
and N is the number of users [34]. For each user, we can calculate their Rayleigh fading
channel as:

hik = ∑k
i=1 hik (18)

Where i = 1, 2, 3, 4 is the number of users; k = 64 is the total number of available
channels. Moreover, the signal is received by the BS.

y =
√

Px1h1N +
√

Px2h2N +
√

Px3h3N +
√

Px4h4N (19)

To analyze the channel’s state and its possibilities for communication, we used the
same model, with the CCR spectrum included. Suppose the channel state is unstable and
communication is poor. In that case, the state of the CCR channel provides two possibilities:
C-CH or D-CH [35].

3.3. Massive MIMO DL PD NOMA

Regarding 128× 128 M-MIMO DL NOMA PD, 128× 128 M-MIMO DL NOMA PD
with a CCRN competitive channel (C-CH), and 128× 128 M-MIMO DL NOMA PD with
a CCRN dedicated channel (D-CH), in this section, we assume that the wireless network
has four users, represented by U1, U2, U3, UN4 (α2 < α1, α3 < α2, < α4 < α3), located at
varying distances from one another and all using the 128× 128 M-MIMO DL NOMA PD
under the same conditions as before.

We employ the same methodology to evaluate the channel’s current accuracy and
viability as a communication medium. Users with NOMA can use the CR channel if it
becomes operational. Here, we maintain the same basic idea, wherein NOMA users can
tune into the CCR frequency on a significant priority [36]. For each user, we can calculate
their Rayleigh fading channel as:

hjM = ∑M
j=1 hjM (20)

where j = 1, 2, 3, 4 is the number of users; M = 128 is the total number of available channels.

4. Numerical Simulation and Results

The DL NOMA PD in 5G networks employing MIMO and M-MIMO was developed
in MATLAB, along with the system model and simulator settings for those technologies.
Table 1 shows an accurate consideration of the simulation parameters.
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Table 1. Simulator parameters for the DL scenario.

No. Parameters Values

1. Number of users 4 users
2. Transmit power 0 to 30 dBm
3. Bandwidth BW 80 MHz

4. Distances

U1 900 m
U2 700 m
U3 400 m
U4 200 m

5. Power coefficients

U1 0.75
U2 0.188
U3 0.047
U4 0.011

6. Path loss exponent 4
7. SISO 1× 1
8. MIMO 64× 64
9. M-MIMO 128× 128

10. Modulation QPSK

Based on the software’s execution in the three scenarios, the following figures dis-
played SE evaluation versus transmit power for DL NOMA PD and CCRN with SISO, with
64× 64 MIMO and 128× 128 M-MIMO in same network and single cell [37].

4.1. SISO DL NOMA PD

For SISO DL NOMA PD with an unstable channel state, Figure 4 depicted the SE vs.
transmit power of four users U1, U2, U3, and U4 in distances of 900 m, 700 m, 400 m, and
200 m, with power location coefficients of 0.75, 0.188, 0.047, and 0.011, respectively. Ac-
cording to the findings, the SE increased as the transmit power increased. The best result
of SE is 3.9 bps/Hz/cell at a transmitting power of 30 dBm for U4, who was physically
closest to the BS, followed by U3, U2, and finally U1.
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Figure 5 shows SE against transmitting power for four users with different distances
and power location coefficients for SISO DL NOMA PD combined with the CCRN with the
C-CH free channel (first model). The highest SE outcome is 5.09 bps/Hz/cell for U4, at a
transmit power of 30 dBm.
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For SISO DL NOMA PD integrated with the CCRN with the D-CH (dedicated channel
second model), the SE versus transmit power is demonstrated in Figure 6 for four users with
various distances and power location coefficients. The greatest SE result is 7.2 bps/Hz/cell
for U4, at a transmit power of 30 dBm.
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4.2. MIMO DL-NOMA PD

Figure 7 exhibited 64 × 64 MIMO DL NOMA PD with an unstable channel state
SE vs. the transmit power result of four users (U1, U2, U3, and U4) at distances of
800 m, 600 m, 300 m, and 100 m, with power location coefficients of 0.6, 0.3, 0.075, and
0.01875, accordingly. Increases in transmit power are reflected in a proportional rise in
SE. The nearest user to the BS U4 has the best SE values of 12.23 bps/Hz/cell, followed
by U3, U2, and U1 at a transmitting power of 40 dBm. After adopting 64× 64 MIMO
technology with NOMA, the best user, U4, boosted the SE by 8.33 bps/Hz/cell at a
transmission power of 40 dBm when compared with the SISO DL NOMA PD.
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Figure 8 depicted the SE against the transmit power for four users with varied dis-
tances and power location coefficients, using a 64× 64 MIMO DL NOMA PD integrated
with the CCRN for the C-CH. The nearest user to the BS U4 has the highest SE perfor-
mance of 17.75 bps/Hz/cell at a transmitting power of 40 dBm. After implementing
64× 64 MIMO technology with CCRN NOMA (C-CH), the best user, U4, improved the SE
by 12.66 bps/Hz/cell at a transmitting power of 40 dBm when compared with the SISO DL
CCR-NOMA PD for the C-CH.
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Four users with varied distances and power location coefficients are displayed in
Figure 9, exhibiting SE vs. transmit power for a 64× 64 MIMO DL NOMA PD in connection
with the CCRN for the D-CH. The user nearest to the BS, U4, has the greatest SE performance
of 18.51 bps/Hz/cell at a transmitting power of 40 dBm. When analyzing the performance
of the best user, U4, and after applying 64× 64 MIMO technology with CCRN NOMA with
C-CH, the SE was enhanced by 11.31 bps/Hz/cell at a transmitting power of 40 dBm when
compared with the SISO DL CCR-NOMA PD for the D-CH. The results obtained are more
significant than the SE performance in reference [38].
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4.3. M-MIMO DL NOMA PD

Figure 10 depicts the SE versus transmit power for four users (U1, U2, U3, and U4) in
the 128× 128 M-MIMO DL NOMA PD at varying distances and power location coefficients.
A higher transmit power typically results in higher SE. U4, the user closest to the BS, has
the best SE performance at 40 dBm of 33.89 bps/Hz/cell, followed by U3, U2, and U1.
When 128 × 128 M-MIMO technology with NOMA was used, the best user, U4, saw an
increase of 29.99 bps/Hz/cell in SE at 40 dBm transmit power compared to the SISO DL
NOMA PD.
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Figure 11 shows SE vs. transmit power for 128× 128, DL, NOMA, and PD integration,
with the CCRN using C-CH. At 40 dBm of transmit power, the SE performance of U4, who
is physically closest to the BS, is the best, at 50.12 bps/Hz/cell, when compared to the SISO
DL CCR-NOMA PD for the C-CH; moreover, the SE was improved by 45.03 bits/s/Hz/cell
after installing 128× 128 M-MIMO technology with NOMA.
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Figure 12 depicts the M-MIMO DL NOMA PD paired with the CCRN D-CH, showing
the SE versus transmitting power for four users at different distances and power location
factors. At a transmission level of 40 dBm, U4, the user closest to the BS, achieved the best
SE performance, at 53.29 bps/Hz/cell. Comparing U4’s SE improvement with the SISO
DL CCR-NOMA PD for the D-CH, the SE was improved by 46.09 bps/Hz/cell at 40 dBm
after employing 128× 128 M-MIMO technology with NOMA. These findings are more
substantial than the SE performance in reported other works.
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Figure 12. SE versus transmitting power for 4 users’ 128 × 128 M-MIMO DL NOMA PD with
D-CH CCRN.
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5. Conclusions

This paper demonstrated the SE performances of DL NOMA PDs in a 5G network
combined with SISO, 64× 64 MIMO, and 128× 128 M-MIMO technologies integrated with
the CCRN in two novel ways: the first method allowed users to access CCRN channels
through the competition channel (C-CH), and the second method permitted the CCRN to
meet any of the channel needs of users via the dedicated channel (D-CH), with all users
varying in different distances, PLCs, and transmit power. In particular, the performance
evaluation considered the SIC, unstable channels, and AWGN under Rayleigh fading. The
DL NOMA system results showed that 64× 64 MIMO and 128× 128 M-MIMO integrated in
the same network and in a single cell, with CCRN, significantly improved SE performance.
The results indicated that the best SE performance for the user U4 is 3.9 bps/Hz/cell for
SISO DL NOMA, 5.1 bps/Hz/cell for SISO DL NOMA with the CCRN with C-CH, and
7.2 bps/Hz/cell for SISO DL NOMA with the CCRN with D-CH at a 40 dBm transmit
power. Moreover, DL 64× 64 MIMO NOMA most effectively enhanced SE performance for
U4 by 51%, 64× 64 MIMO DL NOMA with CCRN (C-CH) improved the SE performance
by 64%, while 64× 64 MIMO DL NOMA with CCRN (D-CH) enhanced the SE performance
by 65% at a 40 dBm transmit power when compared to the SE performance of SISO DL
NOMA. While DL 128× 128 M-MIMO NOMA improved SE performance for the best
user, U4, by 79%, 128× 128 M-MIMO DL NOMA with CCRN (C-CH) enhanced the SE
performance by 85%, and 128× 128 M-MIMO DL NOMA with CCRN (D-CH) improved it
by 86% at a 40 dBm transmit power, when compared to SISO DL NOMA’s SE performance.
The combination of the SISO 64× 64 MIMO and 128× 128 M-MIMO DL NOMA systems
with CCRN considerably improved SE.

From the results, the main ways to improve SE are to add more users and use M-
MIMO, as well as to use efficient channel coding methods, effective bandwidth shaping
methods, and massive multiple access methods. A future study target is the exploration of
a combination between massive MIMO cooperative NOMA and cognitive radio for uplink.
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