
Citation: Yang, N.; Wang, Y. A

Checkpointing Recovery Approach

for Soft Errors Based on Detector

Locations. Electronics 2023, 12, 805.

https://doi.org/10.3390/

electronics12040805

Academic Editor: Manuel Mazzara

Received: 31 December 2022

Revised: 21 January 2023

Accepted: 3 February 2023

Published: 6 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Checkpointing Recovery Approach for Soft Errors Based on
Detector Locations
Na Yang 1,* and Yun Wang 2,*

1 School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China
2 School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
* Correspondence: yangna@tjcu.edu.cn (N.Y.); ywang_cse@seu.edu.cn (Y.W.)

Abstract: Soft errors are transient errors caused by single-event effects (SEEs) resulting from a
strike by high-energy particles acting on sensitive areas of integrated circuits. Soft errors frequently
occur in the space environment, adversely affecting the reliability of aerospace-based computing.
A recovery process is launched to recover the program when soft errors are detected. A periodic
checkpointing recovery approach is widely utilized to prevent soft errors. However, this approach
does not consider the detector locations, resulting in a large time overhead. This paper proposes a
checkpointing recovery approach for soft errors based on detector locations called DLCKPT. DLCKPT
reduces the time overhead by considering detector locations. The experimental results show that
the percentage decrease in the time overhead between the DLCKPT and the periodic checkpointing
recovery approach is 13.4%. The average recovery rate and average space overhead are 99.3% and
44.4% for the periodic checkpointing recovery approach and 99.4% and 34.6% for the DLCKPT.
These results show that the DLCKPT and the periodic checkpointing recovery approach produce
comparable results for the recovery rate. The DLCKPT has a lower time overhead and a slightly lower
space overhead than the periodic checkpointing recovery approach, demonstrating its effectiveness.

Keywords: soft error; single event effect; software reliability; fault tolerance; transient fault

1. Introduction

Soft errors are caused by energetic particles striking sensitive areas of integrated
circuits, such as alpha particles and cosmic neutrons generated by packaging materials
or radiation [1,2]. The first reports of failures attributed to cosmic rays emerged in 1975
when space-borne electronics malfunctioned [3,4]. Today’s integrated circuits have higher
integration and operating speeds. Therefore, they are more sensitive to soft errors [5]. Soft
errors are transient faults. They do not permanently damage hardware, and the hardware
operates normally after transient faults have occurred. However, soft errors influence data
stored in registers and memory cells, impacting the accuracy of software computations.

Soft errors are a significant threat to software reliability. Therefore, soft error protection
is essential [6]. Soft error protection includes soft error detection and recovery. The former
detects soft errors, and the latter ensures recovery from soft errors. Soft error protection
is conducted at both the hardware and software levels [7–9]. Hardware-based technology
usually changes the processor architecture or attaches special-purpose hardware modules
to the processor. It is expensive and typically not portable [10]. Due to the low-cost and
applicability requirements, most soft error protection solutions have been developed and
widely applied at the software level [11].

Soft error recovery ensures that a program operates correctly after a soft error has
occurred. Software-based soft error recovery is conducted at the compiler level and the
source code level. At the compiler level, instruction duplication and signature-based
mechanisms are applied. The instruction duplication mechanism duplicates instructions
and performs majority voting to recover from soft errors [12,13]. The signature-based

Electronics 2023, 12, 805. https://doi.org/10.3390/electronics12040805 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12040805
https://doi.org/10.3390/electronics12040805
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12040805
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12040805?type=check_update&version=1

Electronics 2023, 12, 805 2 of 18

mechanism detects soft errors using a signature of a program block. The system recovers
from soft errors by transferring control back to the program block that was executed before
the soft errors occurred [14].

At the source code level, duplication-based and checkpoint-based mechanisms are
applied. The duplication-based mechanism uses redundant variables to execute a recovery.
The checkpoint-based mechanism performs recovery by checkpoint and recovery oper-
ations [15]. The checkpoint operation generates a checkpoint with data representing a
copy of the current state of a process. The recovery operation is launched in the event of a
failure. This operation recovers the process to a previously stored state by a checkpoint
and continues from there. The soft error recovery mechanism at the source code level has
been widely studied and implemented because it is straightforward and has a low cost.
However, the following two challenges exist.

(1) The duplication-based recovery approach at the source code level generates re-
dundant copies of variables. Soft errors are handled by utilizing redundant copies and
original copies. However, it requires users to modify the source code of programs; thus,
this is not a lightweight approach. Figure 1 provides an example; x is the original copy, and
y is the AN-encoded copy of x, which is set to 3x. AN-codes are a class of arithmetic codes
where the codeword is the original data multiplied by a constant. When 3x is not equal to
y, an error has occurred. If y is divisible by 3, then x is corrupted. In this case, y is used
to correct x. Otherwise, y is corrupted, and x is used to correct y. If x is 2, y is set to 6. As
shown in Figure 1, after the execution of line 1 and line 2, the values of x and y are stored in
registers or memory cells. During the execution of line 3 and line 4, when a soft error occurs
in x, the 3rd bit of x is changed from 0 to 1 so that the value of x is 10 (00001010) rather
than 2 (00000010). In the following program execution, the error is detected in line 5 when
the relationship is not satisfied, i.e., y 6= 3x. In this case, the value of y is used to correct x
(lines 6–7). After the recovery, the value of x is corrected to 2. Figure 1 shows that the
source code has been modified, and multiple statements have been inserted. The original
three lines of codes increases to nine lines of codes.

x=original value;

m=8;

z= m++;

1: let x=original copy;

2: let y= AN-encoded copy;

3: m=8;

4: z= m++;

5: if(3x!= y)

7: x=y/3;

8: else

9: y=3x;

Figure 1. A pseudo-code of duplication-based recovery.

(2) Periodic checkpointing recovery is a popular checkpoint-based approach. It does
not require users to modify the program’s source code. A shell script is usually used
to launch the checkpoint and recovery operations to save the current state of a pro-
cess and recover it to a previously stored state. Figure 2 provides an example; cr_run,
cr_checkpoint, and cr_restart are APIs provided by the checkpointing tool Berkeley Lab
Checkpoint/Restart (BLCR) [15], cr_run starts the program execution, cr_checkpoint launches
the checkpoint operation for generating a checkpoint file, and cr_restart launches the re-
covery operation to resume the process execution by the checkpoint file. The periodic
checkpointing recovery approach does not modify the program codes. However, its time
overhead cannot be substantially decreased because it does not consider detector locations
when it deploys checkpoints. For example, in Figure 3, T is the program execution time, and
the checkpoint interval is T/4. C1, c2, and c3 are checkpoints that are set during T. D1, d2,
· · · , and d5 are detectors that are executed during the program execution of [3T/4, T]. The
first two detectors have ranges of [tp, tq], and the last three detectors have ranges of [tm, tn].

Electronics 2023, 12, 805 3 of 18

The rectangular box shows the code that is executed during [3T/4, T]. The five assertion
statements represent five detectors, d1, d2, · · · , and d5. When d3, d4, and d5 detect an error,
the error recovery time at the recent checkpoint c3 is very long because the program is
rolled back to c3 and continues running from c3. The time of rolling back to c3 is at least
equal to the difference between tm and 3T/4.

1: cr_run ./p_name, p_data

2: get_pid

3: sleep checkpoint_interval

4: cr_checkpoint $pid

…..

5: if an error is detected

6: cr_restart ./checkpoint_file

7: fi

Figure 2. An example of a shell script describing a recovery.

4 2 4

c1 c2 c3 d1d2 d4d3 d5

int x, y, z, r, s, t, i,j;

……

d1: assert(i==10);

……

d2: assert(i==j);

……

x=1, y=0, t=1, r=0;

z=x;

r=f1(z);

y=x+1;

d3: assert(x!=y);

r=x;

s=f2(t);

d4: assert(r==x);

r=r*r;

s=r;

y=f2(z);

d5: assert(s==r);

ca

tqtp tm tn

tm

Figure 3. An example of checkpoints.

This paper proposes a checkpointing recovery approach for soft errors based on
detector locations referred to as DLCKPT. This method executes soft error recovery with a
low time overhead. DLCKPT does not require users to modify source codes, and its process
is straightforward. Our main contributions are summarized as follows:

(1) A novel approach called DLCKPT is proposed for soft error recovery. DLCKPT
recovers from soft errors by using checkpoint mechanism. DLCKPT deploys checkpoints by
considering the location of detectors to reduce the time overhead. For example, as shown
in Figure 3, when the error recovery time detected during [tm, tn] and using c3 is longer
than that of using the checkpoint ca, which is set before tm, the additional checkpoint ca is
set before tm to reduce the time.

(2) A program is divided into multiple segments using checkpoints. The time overhead
of each program segment is determined, including the checkpointing time and recovery
time. The change in the time overhead of each program segment is evaluated when
checkpoints are inserted or deleted, and the change is used to adjust the checkpoint
deployment.

(3) Experiments are conducted with various programs to evaluate the effectiveness
of DLCKPT. The result shows that DLCKPT reduces the time overhead by considering
detector locations and does not adversely affect the recovery rate and space overhead,
demonstrating its effectiveness.

The remainder of this paper is organized as follows: Section 2 briefly reviews related
work. Section 3 introduces the preliminaries. Section 4 presents the overview of the

Electronics 2023, 12, 805 4 of 18

proposed DLCKPT approach. The detailed process of DLCKPT is given in Section 5.
Section 6 describes the experiment and results. Section 7 concludes the paper and discusses
future work.

2. Related Work

Soft error recovery is an essential part of soft error protection. It recovers programs
after soft errors have occurred. There is a significant body of work on software-based soft
error recovery conducted at the compiler level and source code level.

The instruction duplication mechanism at the compiler level recovers programs from
soft errors by applying redundant instructions. SWIFT-R [13] is a typical instruction
duplication approach. It intertwines three copies of the instruction and uses majority
voting before critical instructions, such as store instructions. Figure 4 presents an example.
Before interacting with the memory cells, SWIFT-R determines the accuracy of the data
using a 2-of-3 majority voting operation, which is represented by the “majority” function
in Figure 4. In line 8, the majority(r1, r1

′
, r1

′′
) means that the data in the three registers are

set to the majority value. If r1 = r1
′

and r1 6= r1
′′
, r1

′′
is set to r1 to correct the data in r1

′′
.

SWIFT-R performs soft error detection and recovery simultaneously on three copies. The
cost of SWIFT-R is high because it adds many redundant instructions. S-SWIFT-R [16] is
a selective SWIFT-R. It selects different register subsets from the microprocessor register
file to be protected rather than protecting all registers. S-SWIFT-R is more flexible than
SWIFT-R. However, there are still many redundant instructions in S-SWIFT-R. SWIFT-R
and S-SWIFT-R only check the operands before executing critical instructions. They do not
protect the result of the critical instructions. NEMESIS [17] was developed to improve soft
error resilience and reduce the performance overhead. It compares the results rather than
the operands of critical instructions. Although many efforts have been made to refine the
duplication space, the cost of instruction duplication remains quite high.

ld r3=[r4]

add r1=r2, r3

st [r1]=r2

1: majority(r4, r4’, r4’’)

2: ld r3=[r4]

3: mov r3’=r3

4: mov r3’’=r3

5: add r1=r2, r3

6: add r1’=r2’, r3’

7: add r1’’=r2’’, r3’’

8: majority(r1, r1’, r1’’)

9: majority(r2, r2’, r2’’)

10: st[r1]=r2

Figure 4. An example of SWIFT-R.

Soft error recovery approaches at the source code level can be classified into duplication-
based and checkpoint-based approaches. TRUMP [13] is a typical duplication-based ap-
proach. Figure 1 shows the recovery pseudo-code of TRUMP. x is the original copy, and y is
the AN-encoded copy of x. y and x have a predefined relationship during normal program
execution: y = 3x. An error is detected if the relationship is not satisfied, namely, y 6= 3x. In
the recovery mechanism, the corrupted copy is inferred by the relationship and is corrected
by using the correct copy. The concept of duplication-based approaches is simple; however,
many statements are required for insertion into source codes.

Checkpoint-based approaches achieve soft error recovery by preserving and restoring
a historical state of a program. Coordinated checkpointing is widely used in parallel
systems, where the nodes collectively reach a barrier that serves as a consistent state for
restarting from a checkpoint. One problem of coordinated checkpointing is that it produces
massive amounts of input/output (I/O) from nodes at the checkpoint barrier, resulting
in a considerable time overhead. Amrizal et al. proposed a speculative checkpointing
technique to tackle this problem [18]. They predicted whether a memory write was the last

Electronics 2023, 12, 805 5 of 18

one before the next checkpoint and thus can be speculatively checkpointed early. Although
this approach performed well, it is only applicable to parallel systems, limiting its wide
applicability. The graph theory has been widely used in many research fields [19,20].
Sharanyan et al. used the graph theory and integer linear programming to set checkpoints
for programs [21]. They partitioned the control flow and data flow graphs of the programs.
Only variables used for further program execution were saved at the partition points.
Although this approach reduces the size of checkpoints, i.e., the space overhead, it does not
consider the time overhead. Periodic checkpointing recovery sets checkpoints at a fixed
interval. However, the work of [22] demonstrated theoretically that this approach is not
the optimal checkpointing strategy for reducing the time overhead. The authors did not
propose a solution to optimize the method and did not focus on implementation.

3. Preliminaries

We first describe the fault tolerance process in checkpointing recovery to clarify the
time overhead. Then, the necessity for considering the detection locations in deploying
checkpoints is explained. The meanings of frequently used terms are listed in Table 1.

Table 1. Meanings of terms

Name Meaning

Checkpointing time The time required to preserve a program’s running state.
Recovery time of a historical state The time required to restore the data of the latest checkpoint.

Recovery time of a current state The time required to execute a program from the latest checkpoint
to the place where an error is reported by a detector.

Recovery time The time required to recover the historical state and current state.
Fault tolerance time The checkpointing time and recovery time.
Overall program execution time The original program execution time and fault tolerance time.

A program is blocked during a checkpoint operation and resumes after the operation.
As shown in Figure 5, when no soft errors are detected during program execution, the
overall program execution time is T + t0 + t1 + t4, where T is the original program execution
time, and t0, t1 and t4 are the checkpointing times of the three checkpoints. T + t0 + t1 + t4
represents the sum of the original program execution time and the checkpointing time. The
fault tolerance time includes the checkpointing time and recovery time. In this case, the
checkpointing time is the fault tolerance time since the recovery time is zero. If a soft error
occurs and is detected by a detector during program execution, the program is rolled back
to the latest checkpoint and resumes. If a soft error is detected at F, the program rolls back
to c2 and then continues executing until it ends. At this time, the overall program execution
time is T + ∑4

i=0 ti, where t2 is the time of restoring the data of c2, i.e., the recovery time of
the historical state, and t3 is the execution time from c2 to F, i.e., the recovery time of the
current state. T + ∑4

i=0 ti represents the sum of the original program execution time, the
checkpointing time and the recovery time, i.e., the sum of the original program execution
time and the fault tolerance time.

4 2 4

tp tq tm tn

Figure 5. The time overhead of a program.

This description of the time overhead indicates that the overall program execution
time decreases with a decrease in the fault tolerance time because the original program
execution time does not change. Besides, a decrease in the overall program execution time
also reflects a decrease in the fault tolerance time.

Soft errors can be categorized as crash, hang, benign, and silent data corruption
(SDC) [10]. Crash and hang refer to a hardware exception and program timeout, respec-

Electronics 2023, 12, 805 6 of 18

tively [23]. SDC means that an error causes an incorrect program result without any
warnings [24]. Being benign means that an error is masked during program execution and
does not affect the program results. Different variables or instructions produce different
soft error types [9,24,25]. Detectors are placed at program points where errors with adverse
effects or of high concern to users may occur to improve detection efficiency. As a result,
the distribution of detectors in a program is asymmetric. Periodic checkpointing recovery
does not consider the detector locations when setting checkpoints; thus, the time overhead
of this method is high. As shown in Figure 5, the recovery time of the current state is very
long when an error is detected in [tm, tn]. An additional checkpoint can be placed at tm
when the checkpointing time at tm is short to reduce the time overhead. Therefore, it is
necessary to consider the detection location in checkpointing recovery. The objective of this
study is to reduce the time overhead of fault tolerance. Therefore, the checkpoints in the
periodic checkpointing recovery approach are redeployed. The redeployment is conducted
by evaluating the time overhead and considering the detector location.

4. Overview of the DLCKPT Approach

An overview of the DLCKPT approach is presented in Figure 6. It includes four parts.
The first two parts perform preparation, such as deploying the initial checkpoints and
assessing the time overhead. The last two parts redeploy the checkpoints based on the
results of the first two parts.

The first part deploys initial checkpoints and generates program segments. Initial
checkpoints are deployed for a program using the checkpointing interval (denoted by d in
Figure 6) of the periodic checkpointing recovery approach. Then, the program is divided
into multiple segments based on the initial checkpoints. As a result, every program segment
has one checkpoint. The handling time of the errors detected by the detectors in a program
segment is called the time overhead of the program segment. In the second part, the time
overhead of each program segment is assessed by considering the detector locations. The
time overhead includes the checkpointing time and recovery time.

The third part handles each program segment. It determines whether the checkpoints
of a program segment are adequate and inserts additional checkpoints when they are
inadequate. Additional checkpoints are initially inserted into the current program segment,
and the time overhead is evaluated. If the time overhead is not reduced, the checkpoints are
adequate. Otherwise, the checkpoints are inadequate. When the checkpoints are adequate,
the process moves to the fourth part. Otherwise, additional checkpoints are inserted, and
the next program segment is handled. It should be noted that adequate (inadequate) refers
to the adequate (inadequate) number of checkpoints.

The fourth part determines whether the checkpoints of a program segment are redun-
dant, in which case they are deleted. The checkpoints of a program segment are initially
deleted, and its time overhead is evaluated. If the time overhead is reduced, the checkpoints
are redundant and are deleted. Otherwise, the checkpoints are not redundant and cannot
be deleted. When the current program segment has been handled, the process moves to the
next program segment. When all program segments have been dealt with, the DLCKPT
process ends.

Electronics 2023, 12, 805 7 of 18

deploy initial checkpoints using

evaluate the checkpointing time

insert additional checkpoints

into the current program

segment

checkpoints are

inadequate

delete the checkpoints of

the current program

segment

 checkpoints are

redundant

checkpoints are not

redundant

checkpoints are

adequate

insert additional checkpoints into

the current program segment

delete checkpoints

Y

Y N

N

determine whether the checkpoints of a program segment are

adequate and insert additional checkpoints when they are inadequate

determine whether

the checkpoints of a

program segment are

redundant and delete

them when they are

redundant.

the current program segment has been handled

Is the time overhead

reduced

Is the time overhead

reduced

re
d

e
p

lo
y

 ch
e

ck
p

o
in

ts fo
r e

v
e

ry
 p

ro
g

ra
m

 se
g

m
e

n
t

evaluate the recovery time based

on detector locations

determine the time overhead

assess the time overhead by

considering detector locations

divide a program into multiple

program segments based on the initial

checkpoints

deploy initial checkpoints and

generate program segments

checkpoints cannot

be deleted

preparation work

Y N

Figure 6. The overview of the DLCKPT approach.

5. The DLCKPT Approach

The four parts of the proposed DLCKPT approach are described in detail in
Sections 5.1–5.4, and the overall process of DLCKPT is presented in Section 5.5.

5.1. Deploy Initial Checkpoints and Generate Program Segments

The checkpoints of a program are deployed based on the checkpointing interval of the
periodic checkpointing recovery approach. These checkpoints are called initial checkpoints.
Then, the program segments are generated based on the initial checkpoints. Figure 7 shows
the division of the program segments. At the program level, c1–cn are checkpoints. They

Electronics 2023, 12, 805 8 of 18

divide a program into n program segments, p1–pn. At the instruction level, the dynamic
instructions of the program are also divided into n instruction segments, s1–sn. i1–in∗∆s
represents the dynamic instructions, where ∆s refers to the number of instructions in every
instruction segment. The program execution time between two checkpoints is the same in
the periodic checkpointing recovery. Therefore, the instruction segments typically have
the same size when dynamic instructions are considered. The instructions of instruction
segment sj are im(sj)

–ij∗∆s, where m(sj) is the number of the first instruction of sj. The value
of m(sj) is expressed by Equation (1). As shown in Equation (1), m(sj) is related to the
number of instructions in every instruction segment, i.e., ∆s and the number of sj, i.e., j.

m(sj) =

{
(j− 1)× ∆s + 1, j > 1,

1, j = 1.
(1)

()

Figure 7. The division of program segments.

5.2. The Time Overhead of a Program Segment

The time overhead of a program segment refers to the handling time of the errors
detected by the detectors in the program segment, i.e., the fault tolerance time. Figure 8
presents an example to illustrate the time overhead. It shows the segment “bitstrng” with
the detectors, where “bitstrng” is a program in the Mibench benchmark suite that prints
a bit pattern of bytes formatted as a string. The detectors are widely applied program
invariant assertions and are represented by the assertion statements [4,10] in lines 2, 5, and
9. In this case, the time overhead of this segment is the handling time of the errors detected
by the assertion detectors.

The time overhead of a program segment consists of the checkpointing time and
recovery time. The latter includes the recovery time of the historical state and the current
state. Next, the evaluation of the time overhead is presented in detail. In Figure 9, it is
assumed that the detector at F detects an error. In this case, the time overhead consists of
the time to generate cj, i.e., the checkpointing time, the time to restore the data of cj, i.e., the
recovery time of the historical state, and the execution time from cj to F, i.e., the recovery
time of the current state. In this paper, we assume that the time to generate a checkpoint
and the time to restore the checkpoint data are the same; therefore, the checkpointing time
and the recovery time of the historical state are the same. The checkpointing time of cj is
denoted as tc(cj); thus, the recovery time of the historical state can be represented by tc(cj).
Two checkpoints have different checkpointing times and recovery times of the historical
state. They depend on the size of the checkpointing data. As mentioned above, the recovery
time of the current state is the execution time from the latest checkpoint to the location
where the error is detected. The recovery time of the current state can be represented by the
execution time of the instructions between the latest checkpoint and the location where the
error is detected. A program segment may have multiple detectors. Its recovery time of the
current state is considered the average recovery time of the current state for all locations
of the detectors. The recovery time of pj is defined in Equation (2), where the second item
represents the recovery time of the current state, c(pj) is the number of dynamic detectors
in pj, θ is the average execution time of one dynamic program instruction, and a(pj, k) is
the instruction number of the k-th dynamic detector in pj. A detector at the program level
corresponds to multiple instructions at the instruction level. In this paper, the number of

Electronics 2023, 12, 805 9 of 18

the detector is the number of the first instruction corresponding to the detector. Finally, the
time overhead of pj is expressed by Equation (3).

tr(pj) = tc(cj) + (
∑

c(pj)

k=1 (a(pj, k)−m(sj))

c(pj)
× θ) (2)

o(pj) = tc(cj) + tr(pj) (3)

1: j = strwid - (biz + (biz >> 2)- (biz % 4 ? 0 : 1));

2: assert(byze >= 1);

3: for (i = 0; i < j; i++)

4: *str++ = ' ‘;

5: assert(biz >= -1);

6: while (--biz >= 0)

7: {

8: *str++ = ((byze >> biz) & 1) + '0’;

9: assert(strwid>i);

10: if (!(biz % 4) && biz)

……

}

Figure 8. An example of a program segment.

()

Figure 9. The time overhead of a program segment.

5.3. Determine the Adequacy of Checkpoints

The time overhead of a program segment is evaluated after adding an additional
checkpoint to determine if the checkpoints of the program segment are adequate. The
additional checkpoint is only inserted into the middle of the program segment. If the
time overhead is reduced after adding the checkpoint, the checkpoints of the program
segment are inadequate. In this case, a checkpoint is inserted into the middle of the
program segment. Otherwise, the checkpoints of the program segment are adequate, and
no additional checkpoints are inserted. Next, we evaluate the change in the time overhead
of pj when a checkpoint is inserted into the middle of pj.

In Figure 10, a checkpoint called acj is inserted into the middle of pj. Then, pj is
divided into two parts. The errors detected by the detectors in the second part of pj is
handled by utilizing acj rather than cj, changing the recovery time of pj. The new recovery
time of pj is represented by Equation (6), where A is the recovery time of the historical
state, B is the recovery time of the current state, u(pj) in B is the number of detectors in
the first half of pj. The insertion of acj also changes the checkpointing time of pj. The new
checkpointing time of pj is expressed by Equation (7).

()

Figure 10. An example of adding a checkpoint.

Electronics 2023, 12, 805 10 of 18

A =
tc(cj) + tc(acj)

2
(4)

B =
∑

u(pj)

k=1 (a(pj, k)−m(sj)) + ∑
c(pj)

k=u(pj)+1 (a(pj, k)− (m(sj) +
∆s−1

2))

c(pj)
× θ (5)

tr(pj)
′ = A + B (6)

tc(pj)
′ = tc(cj) + tc(acj) (7)

The time overhead of pj after inserting acj is defined in Equation (8), and the change
in the time overhead of pj is expressed by Equation (9). Equation (9) indicates that the time
overhead of pj is reduced when ag(pj) > 0. In this case, the checkpoint of pj is inadequate;
thus, a checkpoint is inserted into the middle of pj. Otherwise, the time overhead of pj is
not reduced, indicating that the checkpoint of pj is adequate, and no additional checkpoints
are required.

o(pj)
′ = tr(pj)

′ + tc(pj)
′ (8)

ag(pj) = o(pj)− o(pj)
′ (9)

5.4. Determine the Redundancy of Checkpoints

The time overhead of a program segment is evaluated when its checkpoints are deleted
to determine if the checkpoints are redundant. If they are redundant, they are deleted and
vice versa.

In Figure 11, cj and cj−1 are the checkpoints of pj and pj−1, respectively. We merge pj
and pj−1 to create a new program segment, pm. In pm, the errors detected by the detectors
in pj−1 are handled by utilizing cj−1, and the errors detected by the detectors in pj are
handled by utilizing cj. When cj is deleted, the errors detected by the detectors in pj are
handled by utilizing cj−1 rather than cj, changing the time overhead of pj and pm. Since
deleting cj does not affect the time overhead of pj−1, the change in the time overhead of pm
can be considered the change in the time overhead of pj. Next, we evaluate the change in
the time overhead of pm to determine whether cj is redundant.

()

()

()
()

()

Figure 11. An example of deleting a checkpoint.

Equation (10) expresses the time overhead of pm when cj is not deleted. If it is deleted,
the time overhead of pm changes. The new time overhead of pm is defined by Equation (11).
Thus, the change in the time overhead of pm is expressed by Equation (12). Equation (12)
indicates that the time overhead of pm is reduced when dg(pm) > 0. In this case, the
checkpoint of pj is redundant and can be deleted. Otherwise, the time overhead of pm is
not reduced. Thus, the checkpoint of pj is not redundant and cannot be deleted.

o(pm) =
∑

c(pj−1)

k=1 (a(pj−1, k)−m(sj−1)) + ∑
c(pj)

k=1 (a(pj, k)−m(sj))

c(pj−1) + c(pj)
× θ

+
tc(cj−1) + tc(cj)

2
+ tc(cj−1) + tc(cj)

(10)

Electronics 2023, 12, 805 11 of 18

o(pm)
′
=

∑
c(pj−1)

k=1 (a(pj−1, k)−m(sj−1)) + ∑
c(pj)

k=1 (a(pj, k)−m(sj) + ∆s)
c(pj−1) + c(pj)

× θ+

2× tc(cj−1)

(11)

dg(pm) = o(pm)− o(pm)
′

(12)

5.5. The Process of DLCKPT

This section describes the process of DLCKPT in detail. The processes of the first two
parts of DLCKPT are presented in Algorithm 1. The inputs of Algorithm 1 are the check-
pointing interval of the periodic checkpointing recovery approach and a program. They are
denoted by ∆t and P, respectively. The outputs of Algorithm 1 are the program segments
and their time overheads, which are represented by the sets PS and OH, respectively.

Algorithm 1 The Processes of the First Two Parts of DLCKPT

Require: ∆t, P
Ensure: PS, OH

1: acquire T and di(P) by executing P
2: n = T/∆t
3: deploy initial checkpoints, c1-cn
4: generate program segments, p1-pn
5: ∆s = size(di(P))/n
6: θ = T/size(di(P))
7: for j = 1→ n do
8: determine m(sj) by (1)
9: evaluate tc(cj)

10: determine c(pj) based on di(P)
11: r = 0, z = 0
12: for k = 1→ c(pj) do
13: get a(pj, k)
14: r = r + (a(pj, k)−m(sj))
15: end for
16: z = r

c(pj)
× θ

17: calculate tr(pj) by (2)
18: calculate o(pj) by (3)
19: put o(pj) into OH
20: put pj into PS
21: end for

In Algorithm 1, the execution time and the dynamic instruction set of P are acquired
by executing P (Line 1), which are denoted by T and di(P), respectively. Then the number
of initial checkpoints is determined based on ∆t and T (Line 2). Next, the initial checkpoints
are deployed, and program segments are generated (Lines 3–4). The size of every instruc-
tion segment and the average execution time of one program instruction are determined
(Lines 5–6). The program segments are handled sequentially. First, the number of the
first instruction is determined by Equation (1) (Line 8) for handling the current program
segment. Then, the checkpointing time is evaluated (Line 9), and the number of dynamic
detectors is determined (Line 10). Next, the sum of the number of the re-executed instruc-
tions in all detector locations is determined (Lines 12–15), which is represented by r. The
re-executed instructions refer to the instructions that are re-executed during a recovery
operation. The average recovery time for all detector locations is calculated by Equation (2)
(Line 17). Further, the time overhead is calculated by Equation (3), and is inputted into

Electronics 2023, 12, 805 12 of 18

the set of the time overhead of program segments, namely, OH (Lines 18–19). Finally, the
current program segment is input into the set of program segments, namely, PS (Line 20).

The processes of the last two parts of DLCKPT are presented in Algorithm 2. The inputs
of Algorithm 2 are the outputs of Algorithm 1, i.e., PS and OH. The output of Algorithm 2
is the set of redeployed checkpoints, RC. In Algorithm 2, the program segments are handled
sequentially. An additional checkpoint is initially set in the middle of the current program
segment (Line 3). Then, the number of detectors in the first half is determined (Line 4).
The checkpointing time of the additional checkpoint is evaluated (Line 5). Next, the new
average recovery time of the historical state and the current state for all detector locations
are determined by Equations (4) and (5), respectively (Line 6). Next, the new recovery time
and checkpointing time are calculated by Equations (6) and (7), respectively (Line 7). The
new time overhead is determined by Equation (8) (Line 8). Finally, the change in the time
overhead is obtained from Equation (9) (Line 9).

Algorithm 2 The Processes of the Last Two Parts of DLCKPT

Require: PS, OH
Ensure: RC

1: plas = p1
2: for j = 1→ n do
3: set an additional checkpoint acj in the middle of pj
4: determine u(pj)
5: evaluate tc(acj)
6: determine A and B by (4) and (5)
7: calculate tr(pj)

′, tc(pj)
′ by (6) and (7)

8: determine o(pj)
′ by (8)

9: obtain ag(pj) by (9)
10: if ag(pj) > 0 then
11: set acj in the middle of pj at last
12: put cj and acj into RC
13: plas = second(pj)
14: continue
15: else
16: pm = merge(pj, plas)
17: obtain o(pm) and o(pm)′ from (10) and (11)
18: calculate dg(pm) by (12)
19: if dg(pm) < 0 then
20: put cj into RC
21: plas = pj
22: else
23: delete cj
24: plas = pm
25: end if
26: end if
27: end for

When the change in the time overhead is greater than 0, an additional checkpoint
is set in the middle of the current program segment, and the additional checkpoint and
the original checkpoint of the current program segment are input into RC (Lines 11–12).
The second half of the current program segment is considered the latest program segment,
and the next program segment is handled (Line 13). At the beginning of Algorithm 2,
the first program segment is considered the latest program segment. When the change in
the time overhead is less than 0, the latest and current program segments are merged to
create a new program segment, pm (Line 16). Then, the time overhead of pm is obtained
from Equation (10). In addition, the time overhead of pm after deleting the checkpoint
of the current program segment is obtained from Equation (11) (Line 17). The change in

Electronics 2023, 12, 805 13 of 18

the time overhead of pm is calculated by Equation (12) (Line 18). When the change in the
time overhead of pm is less than 0, the checkpoint of the current program segment remains
and is input into RC (Line 20). The current program segment is then considered the latest
program segment (Line 21). Otherwise, the checkpoint of the current program segment is
deleted, and pm is considered the latest program segment (Lines 23–24).

6. Experiment and Results

An experiment was conducted to evaluate the DLCKPT approach. The experimental
setup is presented in Section 6.1, and the results are described in Section 6.2. The overall
program execution time, recovery rate, and space overhead of the DLCKPT are compared
with the periodic checkpointing recovery approach.

6.1. Experimental Setup

Fault injection is widely used to simulate single-event effects (SEEs) and the resulting
soft errors in experiments [4,10]. Pin is a binary instrumentation framework for the IA-32
and x86-64 instruction sets, enabling the creation of dynamic program analysis tools [26].
Similar to [4,10,24], Pin was used for fault injection by altering one bit in the register or
memory cell from 0 to 1 or from 1 to 0. Besides, Pin was also used to create the dynamic
instrument tool that was used for generating dynamic instructions and program segments.
The dynamic instrument tool tracks the program execution and divides the program
into multiple segments based on the program execution and checkpointing interval. The
original program execution time was T. Two independent experiments were performed
with different checkpointing intervals of the periodic checkpointing recovery: T/4 and T/3.
BLCR is a representative system-level checkpointing tool for the Linux platform[15]. It
saves the entire state of a process to disk, such as the process ID, CPU registers and virtual
memory, and later restores the state. The BLCR provides instructions to execute checkpoint
and recovery operations. A user is only required to execute the instructions but does not
have to implement them. We employed BLCR to execute the checkpoint and recovery
operations. The platform for the experimental evaluation was Ubuntu 10.04, running on a
Dell Workstation with an i7 processor. The pseudo-code of the procedure of checkpoint
and recovery operations is shown in Figure 12. Cr_run, cr_checkpoint, and cr_restart are
functions provided by the BLCR. First, cr_run is used to run a program. An identification
number of the process related to the program is obtained. Then, cr_checkpoint is executed
to generate a checkpoint file after a checkpoint interval. Next, a fault is injected into the
process. Finally, a while loop is executed. The value of the variable code is obtained from the
loop. It is not equal to zero when the assertion detector in the program detects and reports
an error. In this case, cr_restart is used to launch a recovery opertion, and context.$pid is
the name of the checkpoint file which is generated by cr_checkpoint.

cr_run ./p_name, p_data

get_pid

sleep checkpoint_interval

cr_checkpoint $pid

…..

inject.py $pid $injection_seq

while true

do

code=$?

if [[code!=0]]

then

cr_restart ./context.$pid

break

fi

done

Figure 12. The pseudo-code of the procedure of checkpoint and recovery operations.

Electronics 2023, 12, 805 14 of 18

If a soft error occurs and is detected by the assertion detector, the program is rolled
back to the recent checkpoint and continues running from the checkpoint until it ends.
When a soft error occurs but is not detected by any detector, the program will continue
running in a normal state. We chose four metrics to evaluate the performance of DLCKPT.
(1) The overall program execution time when a soft error is detected. It is denoted as ep
and defined as the percentage decrease in the overall program execution time when a soft
error is detected compared to the periodic checkpointing recovery approach. Thus, it is
the difference in the overall program execution time between the periodic checkpointing
recovery approach and the DLCKPT divided by the overall program execution time of
the periodic checkpointing recovery approach. (2) The overall program execution time
when a soft error occurs. It is denoted as f p and defined as the percentage decrease in
the overall program execution time when a soft error occurs compared to the periodic
checkpointing recovery approach. Its expression is similar to that of ep. Detectors may not
detect all soft errors. When a soft error occurs but is not detected by any detector, there
are no reports, and no additional time is required for recovering from the error, but the
checkpointing time still exists, increasing the overall program execution time. Therefore,
we used this metric. (3) Recovery rate. It is the ratio of the number of errors detected
by detectors and recovered by checkpoints to the number of errors detected by detectors.
(4) Space overhead. It is the ratio of the size of the checkpoint to the size of the program. The
programs used for the evaluation were obtained from the Mibench and Siemens benchmark
suites. They were replace (which computes the input data statistics), bitstrng (which prints
bit pattern of bytes formatted to string), rad2deg (which converts between radians and
degrees), and isqrt (which is a base-two analog of the square root algorithm). The input
data of the replace program are 7,970,000 random characters. The input data of bitstrng are
115,200 random numbers. The input data of rad2deg are 1,150,000 random numbers. The
input data of isqrt are 2,150,000 random numbers.

6.2. Experimental Results and Evaluation
6.2.1. The Overall Program Execution Time When a Soft Error is Detected

Table 2 lists the evaluation results of the overall program execution time when a soft
error is detected. All values of ep were greater than 0 for all programs, indicating that
DLCKPT had a shorter overall program execution time than the periodic checkpointing
recovery approach. When DLCKPT redeployed the checkpoints of the periodic checkpoint-
ing recovery approach with a checkpoint interval of T/4 (T/3), the average percentage
decrease in the overall program execution time was 15% (11.4%). These results show the
excellent performance of DLCKPT regarding the overall program execution time when a
soft error is detected.

Table 2. The results of ep.

Programs T/4 T/3

replace 22.1% 14.1%
bitstrng 4% 8%
rad2deg 10% 10%

isqrt 22.3% 13.5%
average 15% 11.4%

6.2.2. The Overall Program Execution Time When a Soft Error Occurs

Table 3 lists the evaluation results of the overall program execution time when a soft
error occurs. All values of f p were all greater than 0 for all programs, indicating that
DLCKPT had a shorter overall program execution time than the periodic checkpointing
recovery approach when a soft error occurred. When DLCKPT redeployed the checkpoints
of the periodic checkpointing recovery approach with a checkpoint interval of T/4 (T/3),
the average percentage decrease in the overall program execution time was 16% (11%).

Electronics 2023, 12, 805 15 of 18

These results show the excellent performance of DLCKPT regarding the overall program
execution time when a soft error occurs.

Table 3. The results of f p.

Programs T/4 T/3

replace 25.6% 15.3%
bitstrng 3% 2%
rad2deg 11% 12%

isqrt 23.2% 14.5%
average 16% 11%

The evaluation results indicate that the average percentage decrease in the overall
program execution time was 13.4% (averages of 15%, 11.4%, 16%, and 11%). These results
show the effectiveness of DLCKPT in reducing the time overhead.

6.2.3. Recovery Rate

Figure 13 shows the results of the recovery rate. As shown in Figure 13a, the average
recovery rate was 99.4% for the periodic checkpointing recovery approach with a checkpoint
interval of T/4 and 99.3% for DLCKPT. The difference in the recovery rate between the
two methods was only 0.1%, which was negligible. Figure 13b shows that the average
recovery rate was 99.2% for the periodic checkpointing recovery approach with a checkpoint
interval of T/3 and 99.5% for DLCKPT. The two recovery rates were almost equal. The
average recovery rate of 99.4% and 99.2% was 99.3% for the periodic checkpointing recovery
approach, and that of 99.3% and 99.5% was 99.4% for DLCKPT, indicating a small difference
between the two methods. The reason that the recovery rate is not 100% is that the data
saved by the checkpoints is not always correct. In the following, we use the program
segment in Figure 8 as an example to provide an explanation. We assume a soft error
occurs when the statement in line 1 is executed; thus, the value of the variable biz is −2
(an incorrect value). After the execution of the statement in line 1, the assertion in line 2 is
executed. The assertion represents a detector. It detects whether a soft error has occurred
in the variable byze. In this case, the assertion is not false, indicating no errors have been
detected. The for loop in line 3 and line 4 is executed subsequently. We assume that a
checkpoint called c1 is generated by the checkpointing strategy after executing the for loop.

0

10

20

30

40

50

60

70

80

90

100

R
e
c
o
v
e
ry

 R
a
te

 (
%

)

replace bitstrng rad2deg isqrt average

98.94% 99% 99.88% 99.92%
99.4%98.42% 98.97% 99.95% 99.96% 99.3%

T/4

DPCKPT(T/4)

(a)

0

10

20

30

40

50

60

70

80

90

100

R
e

c
o

v
e

ry
 R

a
te

 (
%

)

replace bitstrng rad2deg isqrt average

99.94% 96.98% 100% 99.95%
99.2%100% 97.86% 100% 99.96% 99.5%

T/3

DPCKPT(T/3)

(b)

Figure 13. (a) The result of the recovery rate of the periodic checkpointing recovery approach with a
checkpoint interval of T/4 and that of DLCKPT that redeploys the checkpoints of checkpoint interval
of T/4. (b) The result of the recovery rate of the periodic checkpointing recovery approach with a
checkpoint interval of T/3 and that of DLCKPT that redeploys the checkpoints of checkpoint interval
of T/3.

Electronics 2023, 12, 805 16 of 18

It should be noted that the value of the variable biz saved by c1 is incorrect. Next,
the assertion in line 5 is executed. The assertion is false because biz is not greater than or
equal to −1, i.e., an error in the variable biz has been detected. In this case, the checkpoint
strategy rolls the program back to c1, and the program continues running from c1. Because
the value of biz saved by c1 is incorrect, the program rolls back to c1 once again when it
executes the statement in line 5 again; thus, the recovery fails.

Although the recovery rate was not 100%, it was higher than 99%, satisfying the needs
of most users. The recovery rate is related to the data stored in a checkpoint. The more
accurate the data stored in the checkpoint, the higher the recovery rate is. The reason for
our accuracy values is that most of the data stored in a checkpoint by BLCR was correct.
In this study, we focused on optimizing the time overhead, not the recovery rate. We will
focus on the latter in a future study by storing more accurate data in a checkpoint.

6.2.4. Space Overhead

The results of the space overhead are presented in Figure 14. As shown in Figure 14a,
the average space overhead was 44.5% for the periodic checkpointing recovery approach
with a checkpoint interval of T/4 and 33.2% for DLCKPT. Figure 14b shows that the
average space overhead was 44.2% for the periodic checkpointing recovery approach with
a checkpoint interval of T/3 and 36% for DLCKPT. The average space overhead was 44.4%
(44.5% and 44.2%) for the periodic checkpointing recovery approach and 34.6% (33.2% and
36%) for DLCKPT. Figure 14a,b also show that the space overhead of bitstrng was lower
for the periodic checkpointing recovery approach than for DLCKPT. The reason is that
DLCKPT did not consider the space overhead when redeploying checkpoints. Thus, the
space overhead differed for the different programs. Regardless, the experimental results
show that the averaged space overhead across the four programs was slightly lower for
DLCKPT than for the periodic checkpointing recovery approach. Figure 14a,b indicate that
the space overheads of the two approaches were not very low. The lowest space overhead
was 39.3% for the periodic checkpointing recovery approach and 23.7% for DLCKPT. The
reason is that the space overhead is related to the data stored in a checkpoint. The lower the
data volume of the checkpoint, the lower the space overhead is. Many intermediate data
points were generated during the execution of the programs and stored in a checkpoint by
the BLCR, resulting in a large checkpointing data volume. The optimization of the space
overhead will be considered in a future study.

0

10

20

30

40

50

60

70

80

90

S
p

a
c
e

 O
v
e

rh
e

a
d

 (
%

)

replace bitstrng rad2deg isqrt average

39.5%

48.2%

40.3%

50.3%

44.5%

23.7%

53%

30.5%

25.6%

33.2%

T/4

DPCKPT(T/4)

(a)

0

10

20

30

40

50

60

70

80

90

S
p
a
c
e
 O

v
e
rh

e
a
d
 (

%
)

replace bitstrng rad2deg isqrt average

39.3%

47%

40.6%

50.1%

44.2%

28.5%

54%

27.6%

33.7%
36%

T/3

DPCKPT(T/3)

(b)

Figure 14. (a) The result of the space overhead of the periodic checkpointing recovery approach
with a checkpoint interval of T/4 and that of DLCKPT that redeploys the checkpoints of checkpoint
interval of T/4. (b) The result of the space overhead of the periodic checkpointing recovery approach
with a checkpoint interval of T/3 and that of DLCKPT that redeploys the checkpoints of checkpoint
interval of T/3.

Electronics 2023, 12, 805 17 of 18

7. Conclusions and Future Work

In this paper, we propose the DLCKPT approach, which deploys checkpoints by
considering detector locations to reduce the time overhead. This method first deploys
initial checkpoints and generates program segments based on the periodic checkpointing
recovery approach. It handles each program segment sequentially and determines whether
the checkpoints of the program segment are adequate or redundant by evaluating the
change in the time overhead when additional checkpoints are inserted or deleted. In
particular, the detector locations are considered in the evaluation of the time overhead.

An experiment was conducted to evaluate the DLCKPT. The result demonstrated that
the DLCKPT had a lower time overhead than the periodic checkpointing recovery approach.
The recovery rates were similar for the two methods, and the average space overhead was
slightly lower for DLCKPT than for the periodic checkpointing recovery approach.

In a future study, we will optimize the space overhead and recovery rate of the DLCKPT by
determining which data should be stored in the checkpoints. In this study, the checkpoints were
only inserted into the middle of the program segments to determine the checkpoints’ adequacy.
Other locations of the program segments will be considered to reduce the time overhead. In
addition, multiple program segments rather than only two program segments will be merged
into one program segment to determine the checkpoints’ redundancies.

Author Contributions: Conceptualization, N.Y. and Y.W.; investigation, N.Y. and Y.W.; methodology,
N.Y. and Y.W.; software, N.Y.; supervision, Y.W.; validation, N.Y.; writing—original draft preparation,
N.Y.; writing—review and editing, Y.W.; funding acquisition, Y.W. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the National Pre-research Project, China with grant
No. WDZC20215250117.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gupta, N.; Shah, A.P.; Kumar, R.S.; Gupta, T.; Khan, S.; Vishvakarma, S.K. On-Chip Adaptive VDD Scaled Architecture of Reliable

SRAM Cell with Improved Soft Error Tolerance. IEEE Trans. Device Mater. Reliab. 2020, 20, 694–705. [CrossRef]
2. Hashimoto, M.;Liao, W. Soft Error and Its Countermeasures in Terrestrial Environment. In Proceedings of the 25th Asia and

South Pacific Design Automation Conference (ASP-DAC), Beijing, China, 13–16 January 2020; pp. 617–622. [CrossRef]
3. Binder, D.; Smith, E.C.; Holman, A.B. Satellite Anomalies from Galactic Cosmic Rays. IEEE Trans. Nucl. Sci. 1975, 22, 2675–2680.
4. Ma, J.C.; Yu, D.Y.; Wang, Y.; Cai, Z.B.; Zhang, Q.X.; Hu, C. Detecting Silent Data Corruptions in Aerospace-Based Computing

Using Program Invariants. Int. J. Aerosp. Eng. 2016, 2016, 1–10. [CrossRef]
5. Tan, C.Y.; Li, Y.; Cheng, X.; Han, J.; Zeng, X.Y. General Efficient TMR for Combinational Circuit Hardening Against Soft Errors

and Improved Multi-Objective Optimization Framework. IEEE Trans. Circuits Syst. 2021, 68, 3044–3057. [CrossRef]
6. Kiani, V.; Reviriego, P. Improving Instruction TLB Reliability with Efficient Multi-bit Soft Error Protection. Microelectron. Reliab.

2019, 93, 29–38. [CrossRef]
7. Keller, A.M.; Wirthlin, M.J. Partial TMR for Improving the Soft Error Reliability of SRAM-Based FPGA Designs. IEEE Trans. Nucl.

Sci. 2021, 68, 1023–1031. [CrossRef]
8. Didehban, M.; Lokam, S.R.D.; Shrivastave, A. InCheck: An In-application Recovery Scheme for Soft Errors. In Proceedings of the

54th ACM/EDAC/IEEE Design Automation Conference, Austin, TX, USA, 18–22 June 2017; pp. 1–6. [CrossRef]
9. Ma, J.C.; Duan, Z.T.; Tang, L. GATPS: An Attention-based Graph Neural Network for Predicting SDC-causing Instructions.

In Proceedings of the 39th VLSI Test Symposium, San Diego, CA, USA, 25–28 April 2021; pp. 1–6.
10. Yang, N.; Wang, Y.F. Radish: Enhancing Silent Data Corruption Detection for Aerospace-Based Computing. Electronics 2021, 10, 61.
11. Benacchio, T.; Bonaventura, L.; Altenbernd, M.; Cantwell, C.D.; Düben, P.D.; Gillard, M.; Giraud, L.; Göddeke, D.; Raffin,

E.; Teranishi, K.; et al. Resilience and Fault Tolerance in High-Performance Computing for Numerical Weather and Climate
Prediction. Int. J. High Perform. Comput. Appl. 2021, 35, 285–311.

12. Didehban, M.; Shrivastava, A. A Compiler Technique for Processor-Wide Protection From Soft Errors in Multithreaded Environ-
ments. IEEE Trans. Reliab. 2018, 67, 249–263. [CrossRef]

13. Reis, G.A.; Chang, J.; August, D.I. Automatic Instruction-Level Software-Only Recovery. IEEE Micro 2007, 67, 36–47. [CrossRef]
14. Guo, Y.M.; Wu, H.; Chai, W.X.; Ma, J.Z.; Zhou, G.C. Integrity Checking based Soft Error Recovery Method for DSP. In Proceedings

of the Prognostics and System Health Management Conference, Chengdu, China, 19–21 October 2016; pp. 1–4. [CrossRef]

http://doi.org/10.1109/TDMR.2020.3019135
http://dx.doi.org/10.1109/TDMR.2020.3019135
http://dx.doi.org/10.1109/TNS.1975.4328188
http://dx.doi.org/10.1155/2016/8213638
http://dx.doi.org/10.1109/TCSI.2021.3076185
http://dx.doi.org/10.1016/j.microrel.2018.12.011
http://dx.doi.org/10.1109/TNS.2021.3070856
http://dx.doi.org/10.3390/electronics10010061
http://dx.doi.org/10.1177/1094342021990433
http://dx.doi.org/10.1109/TR.2018.2793098

Electronics 2023, 12, 805 18 of 18

15. Yang, N.; Wang, X.; Wang, Y.; Zhai, Q. Dependent and Heterogeneous Process Migration Based on Checkpoints. In Proceedings
of the IEEE International Conference on Parallel and Distributed Processing with Applications, Big Data and Cloud Computing,
Exeter, UK, 17–19 December 2020; pp. 84–92. [CrossRef]

16. Restrepo-Calle, F.; Martĺnez-Álvarez, A.; Cuenca-Asensi, S.; Jimeno-Morenilla, A. Selective SWIFT-R: A Flexible Software-Based
Technique for Soft Error Mitigation in Low-Cost Embedded Systems. J. Electron. Test. 2013, 29, 825–838.

17. Didehban, M.; Shrivastava, A.; Lokam, S.R.D. NEMESIS: A Software Approach for Computing in Present of Soft Errors.
In Proceedings of the IEEE International Conference on Computer-Aided Design, Irvine, CA, USA, 13–16 November 2017;
pp. 297–304.

18. Amrizal, M.A.; Uno, A.; Sato, N.Y.;Takizawa, H.; Kobayashi, H. Energy-Performance Modeling of Speculative Checkpointing for
Exascale Systems. IEICE Trans. Inf. Syst. 2017, 12, 2749–2760. [CrossRef]

19. Quezada-Sarmiento, P.A.; Elorriaga, J.A.; Arruarte, A.; Jumbo-Flores, L.A. Used of Web Scraping on Knowledge Representation
Model for Bodies of Knowledge as a Tool to Development Curriculum. In Trends and Applications in Information Systems and
Techinologies; Springer: Berlin, Germany, 2021; Volume 2, pp. 611–620. [CrossRef]

20. Ma, J.C.; Duan, Z.T.; Tang, L. Deep Soft Error Propagation Modeling Using Graph Attention Network. J. Electron. Test. 2022, 38,
303–319. [CrossRef]

21. Sharanyan, S.; Kumar, A. An optimized Checkpointing Based Learning Algorithm for Single Event Upsets. In Proceedings of
the IEEE International Conference on Annual Computer Software and Applications, Seoul, Republic of Korea, 19–23 July 2013;
pp. 395–400.

22. Subasi, O.; Krishnamoorthy, S. On the Theory of Speculative Checkpointing: Time and Energy Considerations. In Proceedings of
the ACM International Conference on Computing Frontiers, Ischia, Italy, 8–10 May 2018; pp. 165–172. [CrossRef]

23. Sangchoolie, B.; Pattabiraman, K.; Karlsson, J. An Empirical Study of the Impact of Single and Multiple Bit-Flip Errors in Programs.
IEEE Trans. Dependable Secur. Comput. 2020, 2020, 1–18.

24. Yang, N.; Wang, Y. Predicting the Silent Data Corruption Vulnerability of Instructions in Programs. In Proceedings of the IEEE
International Conference on Parallel and Distributed Systems, Tianjin, China, 4–6 December 2019; pp. 862–869. [CrossRef]

25. Li, G.P.; Pattabiraman, K.; Hari, S.K.S.; Sullivan, M.; Tsai, T. Modeling Soft-Error Propagation in Programs. In Proceedings of the
IEEE International Conference on Dependable Systems and Networks, Luxembourg, 25–28 June 2018; pp. 27–38.

26. Ma, J.C.; Wang, Y. Characterization of Stack Behavior under Soft Errors. In Proceedings of the Design, Automation & Test in
Europe Conference & Exhibition, Lausanne, Switzerland, 27–31 March 2017; pp. 1534–1539.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MM.2007.4
http://dx.doi.org/10.1007/s10836-013-5416-6
http://dx.doi.org/10.1007/s10836-013-5416-6
http://dx.doi.org/10.1007/s10836-013-5416-6
http://dx.doi.org/10.1587/transinf.2017PAP0002
http://dx.doi.org/10.1007/s10836-022-06005-y

	Introduction
	Related Work
	Preliminaries
	Overview of the DLCKPT Approach
	The DLCKPT Approach
	Deploy Initial Checkpoints and Generate Program Segments
	The Time Overhead of a Program Segment
	Determine the Adequacy of Checkpoints
	Determine the Redundancy of Checkpoints
	The Process of DLCKPT

	Experiment and Results
	Experimental Setup
	Experimental Results and Evaluation
	The Overall Program Execution Time When a Soft Error is Detected
	The Overall Program Execution Time When a Soft Error Occurs
	Recovery Rate
	Space Overhead

	Conclusions and Future Work
	References

