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Abstract: In this paper, a frequency reconfigurable multiband multiple-input-multiple-output (MIMO)
antenna is developed for 5G communication systems. The presented MIMO antenna element consists
of a 50 Ω microstrip line, a rectangular monopole divided into two patches, and a partial ground
plane. A split-ring resonator (SRR) is introduced into the upper patch to cover multiple 5G appli-
cation bands, and an RF PIN diode is embedded between the upper and lower patches to enable
the frequency diversity feature. In order to design a MIMO antenna with improved inter-element
isolation, four antenna elements are orthogonally located with ground planes connected to each
other. The antenna design covers the n41/n46/n48/n79 5G application bands. The prototype MIMO
antenna is developed on the FR-4 substrate, and the measured results match with the simulated
outcomes. The overall footprint of the prototype antenna is 70 × 70 × 1.6 mm3.

Keywords: 5G; frequency agility; MIMO; monopole; SRR

1. Introduction

Modern communication devices support multiple wireless standards to achieve high
data rate transmission. The multiple-input-multiple-output (MIMO) system exhibiting
frequency diversity is an excellent choice for improved coverage and higher data rates.
Of late, different techniques have been reported for antenna miniaturization, multiband
operation, and frequency diversity [1,2]. However, coupling amongst resonating elements
is a challenge in MIMO antenna designs. The inter-element coupling in densely packed
MIMO antennas can be encountered by using parasitic reflectors, defected ground planes,
neutralization lines, and decoupling elements such as split-ring resonators (SRR) [1–3].
Several MIMO antenna designs have been described in recent years [4–35]. In ref. [3],
different substrate materials were investigated for the sub-6 GHz band. In ref. [4], a
single-band four-port MIMO antenna configuration was reported for the n79 5G band,
where the antenna elements were arranged orthogonally to decrease mutual coupling. A
MIMO antenna with orthogonally arranged antenna elements covering the 3.4–3.6 GHz
band was reported in [5]. However, multiple defects were introduced on the ground
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plane [4,5], which impacts the radiation performance of the antenna. In ref. [6], a double-
layered meta-surface antenna was proposed with improved gain and isolation for the
sub-6 GHz 5G band. However, the reported antenna design complexity was high while
occupying more substrate area. In ref. [7], a coplanar waveguide (CPW)-fed two-element
MIMO antenna with interconnected ground planes was presented. Reconfigurable antenna
designs for sub-6 GHz 5G systems were reported in [8,9]. However, the antenna designs
investigated in [8,9] require a greater number of active elements 2/4 RF PIN diodes to
achieve reconfigurability. In ref. [10], a quad-port log-periodic dipole antenna array was
investigated with epsilon near zero metamaterial for the upper 5G application band. In
refs. [11,12], circularly polarized quad-port MIMO antenna designs were presented for
ultra-wideband and sub-6 GHz bands. The antenna design examined in [12] demonstrated
a single band of operation and a lower isolation level, as well as isolated ground planes,
limiting its practical application. Dual-port wearable MIMO antenna designs with circular
and liner polarization were studied in [13,14].

Various designs of four-port MIMO antennas with and without notched bands were
analyzed for wideband applications in [15–17]. In refs. [18,19], MIMO antennas were re-
ported for Bluetooth/WLAN applications. A frequency agile MIMO antenna for cognitive
systems was investigated in [20], where a stop band filter was used to reduce mutual
coupling. In refs. [21,22], eight-port MIMO antennas were presented for 5G smartphones.
In ref. [21], loop antennas were printed on non-metal frames for the 3.4–3.6 GHz band,
whereas CPW-fed T-ring antenna elements were employed in [22]. However, the reported
eight-port MIMO antenna designs demonstrated a single band of operation. In refs. [23–25],
SRR and parasitic elements were loaded between antenna elements to improve isolation.
However, these antenna configurations demonstrated a lower level of inter-element isola-
tion and fixed-band operation. Dual-port MIMO antennas with frequency diversity were
investigated in [26–32]. In ref. [26], a frequency agile MIMO antenna operating in multiple
modes was investigated for cognitive radio. A tunable antenna with a varactor diode
embedded in the ground plane was reported in [27]. In ref. [28], an RF-MEMS switch was
integrated into an antenna to operate in multiple bands by changing the switch’s operating
mode. The coupling conductors and PIN diodes were used to switch between upper/lower
WLAN and m-WiMAX systems in [29]. Varactor diodes were implanted at the end of the
feed line in [30] to tune its operating band for low-frequency applications. However, the
reported design consumed more substrate area. In ref. [31], a Yagi-Uda antenna integrated
with a varactor diode was investigated. But, the double-layer fabrication adds complexity
and limits the practical applications of the presented antenna. In ref. [32], a dual-band
MIMO antenna was proposed with frequency diversity. In ref. [33], a four-port MIMO
antenna was proposed with fixed band operation for 5G. In refs. [34,35], four-element
MIMO antennas with frequency diversity were designed, where varactor diodes and RF
MEMS were implanted in SRR and rectangular slots for frequency diversity. However, the
above-reported [29–35] antenna configurations required more substrate volume, a greater
number of active elements/switches, which complicates antenna design, and high inter-
element coupling. Poor isolation implies that adjacent resonators are correlated, resulting
in poor antenna performance.

In this work, a quad-element frequency agile MIMO antenna is developed for n41/n46/
n48/n79 5G bands. The radiator of the MIMO antenna consists of a rectangular monopole
divided into two patches and a partial ground plane. Also, an SRR is introduced into the
upper patch and an RF PIN diode is embedded between the upper and lower patches to en-
able the frequency diversity feature. The four radiating elements are arranged orthogonally
with an inter-element distance of 0.17λ0 to improve isolation, where λ0 is calculated at the
lowest operating band. The presented frequency agile antenna is simple to design and
can be easily integrated with other RF devices due to the connected ground planes of the
resonators. The antenna has a reasonable gain, excellent inter-element isolation, and covers
a wide range of 5G application bands. The introduction is presented in Section 1, Section 2
presents the antenna element and MIMO antenna arrangement, Section 3 shows the results
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of the proposed MIMO antenna, Section 4 presents the MIMO/diversity parameters, and
Section 5 states the conclusion of the proposed work.

2. Antenna Configuration

Figure 1a shows a schematic of the proposed antenna element. The antenna element
consists of a feed line, two radiators connected through a PIN diode, and a partial ground
plane. The lower rectangular-shaped patch is truncated with a pair of ellipses on its edges
to lengthen the current path. The upper patch is composed of a rectangular ring and an SRR.
The four-unit cells are organized orthogonally to develop a MIMO antenna, as shown in
Figure 1b. The ground surfaces of the antenna elements are connected to an equal voltage
level in the MIMO arrangement. The antenna is developed on the FR-4 substrate with a
relative permittivity of 4.4, and the simulations are performed in the ANSYS HFSS software.
The overall volume of the proposed MIMO antenna structure is 70 × 70 × 1.60 mm3, and
its physical dimensions are shown in Table 1. Figure 1c,d shows photographs of the top
and back sides of the MIMO antenna prototype, respectively.

Electronics 2023, 12, 796 3 of 18 
 

 

is presented in Section 1, Section 2 presents the antenna element and MIMO antenna ar-
rangement, Section 3 shows the results of the proposed MIMO antenna, Section 4 presents 
the MIMO/diversity parameters, and Section 5 states the conclusion of the proposed work. 

2. Antenna Configuration 
Figure 1a shows a schematic of the proposed antenna element. The antenna element 

consists of a feed line, two radiators connected through a PIN diode, and a partial ground 
plane. The lower rectangular-shaped patch is truncated with a pair of ellipses on its edges 
to lengthen the current path. The upper patch is composed of a rectangular ring and an 
SRR. The four-unit cells are organized orthogonally to develop a MIMO antenna, as 
shown in Figure 1b. The ground surfaces of the antenna elements are connected to an 
equal voltage level in the MIMO arrangement. The antenna is developed on the FR-4 sub-
strate with a relative permittivity of 4.4, and the simulations are performed in the ANSYS 
HFSS software. The overall volume of the proposed MIMO antenna structure is 70 × 70 × 
1.60 mm3, and its physical dimensions are shown in Table 1. Figure 1c,d shows photo-
graphs of the top and back sides of the MIMO antenna prototype, respectively. 

Table 1. Geometrical attributes of the presented antenna. 

Attribute Values (mm) Attribute Values (mm) Attribute Values (mm) Attribute Values (mm) 
Xa1 35 Xa2 18 Xa3 1.75 Xa4 7.5 
Xa5 8.5 Xa6 6.0 Xa7 0.5 Xa8 20.5 
Xa9 1 Ya1 35 Ya2 6.5 Ya3 1 
Ya4 2.5 Ya5 1.5 Ya6 2.4 Ya7 8.5 
Ya8 1.5 Ya9 5.5 Ya10 20.5 Xma 70 
Yma 70 Ya11 1.4 Ya12 1.3 Yslit 1 
Xcut 14.5 Ycut 4.5     

 
 

(a) 

Electronics 2023, 12, 796 4 of 18 
 

 

 
(b) 

  
(c) (d) 

Figure 1. Schematic: (a) Antenna element; (b) MIMO antenna; (c) Top side of the antenna prototype; 
(d) Back side of the antenna prototype. 

Evolution Steps of the Antenna 
Figure 2 depicts the design steps of the antenna element. The resonating frequency 

of the antenna element is evaluated as [11] 𝑓௖ = ௖ଶ√ఌೝ ටቀ௠௅ ቁଶ ൅ ቀ ௡ௐቁଶ
  (1)

where c is the speed of light in vacuum, fc is the center frequency, and L and W are the 
length and width of the patch antenna, respectively. Initially, a rectangular radiator with 
dimensions of 18 mm × 16 mm (antenna-1), is developed for a center frequency of 4.80 
GHz, as shown in Figure 2a. The scattering parameters of the design stages are displayed 
in Figure 2g. In the second step, antenna-1 is divided into two patches, resulting in an-
tenna-2, as shown in Figure 2b. The resonating band of antenna-2 shifts to the higher fre-
quency side. The lower patch of antenna-2 is modified by etching a pair of ellipses (an-
tenna-3), as shown in Figure 2c. Then, a rectangular slot (size of 4.5 mm × 14.5 mm) is 
etched out from the upper patch (shown in Figure 2d), resulting in antenna-4, which res-
onates at 4.30 GHz. 

In the next step, an SRR is loaded into the upper patch of antenna-4, shown in Figure 
2e, resulting in dual-band operation (antenna-5) at 3.30 GHz and 4.60 GHz. Then, a 1 mm 
× 1 mm metal strip is embedded between the lower and upper patches, resulting in the 

Figure 1. Cont.



Electronics 2023, 12, 796 4 of 17

Electronics 2023, 12, 796 4 of 18 
 

 

 
(b) 

  
(c) (d) 

Figure 1. Schematic: (a) Antenna element; (b) MIMO antenna; (c) Top side of the antenna prototype; 
(d) Back side of the antenna prototype. 

Evolution Steps of the Antenna 
Figure 2 depicts the design steps of the antenna element. The resonating frequency 

of the antenna element is evaluated as [11] 𝑓௖ = ௖ଶ√ఌೝ ටቀ௠௅ ቁଶ ൅ ቀ ௡ௐቁଶ
  (1)

where c is the speed of light in vacuum, fc is the center frequency, and L and W are the 
length and width of the patch antenna, respectively. Initially, a rectangular radiator with 
dimensions of 18 mm × 16 mm (antenna-1), is developed for a center frequency of 4.80 
GHz, as shown in Figure 2a. The scattering parameters of the design stages are displayed 
in Figure 2g. In the second step, antenna-1 is divided into two patches, resulting in an-
tenna-2, as shown in Figure 2b. The resonating band of antenna-2 shifts to the higher fre-
quency side. The lower patch of antenna-2 is modified by etching a pair of ellipses (an-
tenna-3), as shown in Figure 2c. Then, a rectangular slot (size of 4.5 mm × 14.5 mm) is 
etched out from the upper patch (shown in Figure 2d), resulting in antenna-4, which res-
onates at 4.30 GHz. 

In the next step, an SRR is loaded into the upper patch of antenna-4, shown in Figure 
2e, resulting in dual-band operation (antenna-5) at 3.30 GHz and 4.60 GHz. Then, a 1 mm 
× 1 mm metal strip is embedded between the lower and upper patches, resulting in the 

Figure 1. Schematic: (a) Antenna element; (b) MIMO antenna; (c) Top side of the antenna prototype;
(d) Back side of the antenna prototype.

Table 1. Geometrical attributes of the presented antenna.

Attribute Values (mm) Attribute Values (mm) Attribute Values (mm) Attribute Values (mm)

Xa1 35 Xa2 18 Xa3 1.75 Xa4 7.5
Xa5 8.5 Xa6 6.0 Xa7 0.5 Xa8 20.5
Xa9 1 Ya1 35 Ya2 6.5 Ya3 1
Ya4 2.5 Ya5 1.5 Ya6 2.4 Ya7 8.5
Ya8 1.5 Ya9 5.5 Ya10 20.5 Xma 70
Yma 70 Ya11 1.4 Ya12 1.3 Yslit 1
Xcut 14.5 Ycut 4.5

Evolution Steps of the Antenna

Figure 2 depicts the design steps of the antenna element. The resonating frequency of
the antenna element is evaluated as [11]

fc =
c

2
√

εr

√(m
L

)2
+
( n

W

)2
(1)

where c is the speed of light in vacuum, fc is the center frequency, and L and W are the
length and width of the patch antenna, respectively. Initially, a rectangular radiator with
dimensions of 18 mm× 16 mm (antenna-1), is developed for a center frequency of 4.80 GHz,
as shown in Figure 2a. The scattering parameters of the design stages are displayed in
Figure 2g. In the second step, antenna-1 is divided into two patches, resulting in antenna-2,
as shown in Figure 2b. The resonating band of antenna-2 shifts to the higher frequency
side. The lower patch of antenna-2 is modified by etching a pair of ellipses (antenna-3), as
shown in Figure 2c. Then, a rectangular slot (size of 4.5 mm × 14.5 mm) is etched out from
the upper patch (shown in Figure 2d), resulting in antenna-4, which resonates at 4.30 GHz.

In the next step, an SRR is loaded into the upper patch of antenna-4, shown in Fig-
ure 2e, resulting in dual-band operation (antenna-5) at 3.30 GHz and 4.60 GHz. Then, a
1 mm × 1 mm metal strip is embedded between the lower and upper patches, resulting in
the development of antenna-6, shown in Figure 2f. The antenna-6 resonates at 2.50 GHz,
3.50 GHz, and 5.20 GHz. The metal strip is used as an RF PIN diode to switch the operating
states of the antenna elements. When diodes are in the OFF state, the antenna element
function as antenna-5 with two operating bands, while in the ON state, it functions as
antenna-6 with three operating bands.

The parametric analysis of the antenna element is shown in Figure 3. When performing
parametric analysis, when Xcut is changed from 14 to 15 mm in 0.5 mm steps, the frequency
of 3.5 GHz changes, as shown in Figure 3a, whereas when Xa6 changes from 5.5 to 6.5 mm
in 0.5 mm steps, the upper band changes, as illustrated in Figure 3b. Similarly, when
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Xa5 changes from 8.0 to 9.0 mm, the center band changes, as illustrated in Figure 3c.
Consequently, the optimum values of Xcut, Xa6, and Xa5 are considered 14.5 mm, 6.0 mm,
and 8.5 mm, respectively.
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Figure 3. Parametric analysis of the antenna element: (a) Xcut; (b) Xa6; (c) Xa5.

Figure 4 depicts the design steps of the MIMO antenna. In the proposed design, four
identical antenna elements are placed orthogonally, as shown in Figure 4a. Also, in order
to make practical use of the developed antenna, the ground planes of all four elements
are connected by a metal strip of a width of 1 mm, as shown in Figure 4b. The ground
planes of the MIMO antenna elements are connected to form a common reference plane for
practical systems, where voltage should have a common signal level, that is, zero or ground
level. In split ground MIMO antenna designs, it cannot be promised that the MIMO system
will work efficiently, as the assumption that all ground planes have the same voltage level
becomes invalid [36]. The inter-element distance is kept as 0.17λ0, where λ0 is calculated at
the lowest operating band (2.50 GHz), and the isolation level is satisfactory without the use
of any special/complex decoupling or isolation network. Figure 5 depicts the scattering
(reflection and transmission) parameters of the presented MIMO antenna.

In the presented MIMO antenna, the inter-element isolation is greater than 28 dB,
whereas the 5G MIMO antennas studied in [4–6,12,21–25,28,33] had a lower isolation level.
Since the antenna elements are orthogonal to each other, the direction of the coupling
current vectors differs from each other. Due to the metal strip and orthogonal arrange-
ment of the resonating elements, which supports polarization diversity, the proposed
MIMO/diversity antenna could achieve high isolation. The higher level of isolation implies
that adjacent elements are uncorrelated, resulting in maximum channel capacity.
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3. Results and Discussion

The prospective frequency agile quad-port MIMO antenna physical size is 70 × 70
× 1.60 mm3. Modifications to the lower patch result in antenna element miniaturization,
whereas etching a slot and loading an SRR to the upper patch results in multiband operation.
The frequency diversity feature is enabled by inserting RF PIN diodes between the lower
and upper patches by changing the operating state of the diodes. When the diode is in the
ON state, antenna operation is referred to as state-1, and when the diode is turned OFF,
antenna operation is referred to as state-2. In state-1, both patches (lower and upper) are
physically connected, and the antenna operates in tri-band mode with center frequencies of
2.50 GHz, 3.50 GHz, and 5.20 GHz, covering the n41, n46, and n48 bands, respectively.

Figure 6 depicts the simulated and measured scattering attributes of the MIMO an-
tenna design for the working states. During simulation, the PIN diode (BAP64-02 NXP) is
modeled with metal strips by assigning different RLC boundary conditions for modes-1
and -2. A 20 pF DC blocking capacitor and a 22 nH inductor are used to separate biasing
and excitation supply (DC/RF). Also, the biasing lines are printed in such a way that their
influence on resonator performance is minimized. The small metal pads of 1 mm × 1 mm
are used for the biasing circuit. The PNA-L series vector network analyzer is used for
the measurement of reflection coefficients, which are plotted in Figure 6. A very small
difference between experimental and simulated outcomes is seen, which is due to fabrica-
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tion tolerance and SMD device pasting. Table 2 presents a summary of the simulated and
measured results.
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Table 2. Summary of the measured and simulated results.

Working
Modes

Working
Bands (GHz)

Impedance Bandwidth (MHz) Isolation (dB)

Measured Simulated Measured Simulated

1 (ON State)
2.50 550 740 24 34
3.50 330 480 26 31
5.20 1010 1320 24 28

2 (OFF State)
3.30 170 180 31 28
4.70 940 880 26 28

3.1. Surface Current Distribution

The surface current and mutual coupling of the MIMO antenna are analyzed and
plotted in Figures 7 and 8, respectively. The density of coupling current from element-1 to
elements-2, -3, and -4 is too weak, as shown in Figure 7, which results in improved isolation.

3.2. Radiation Attributes and Gain

To characterize the far-field performance of the developed quad-element MIMO an-
tenna, its 2-D radiation attributes (for modes-1 and -2) are plotted in Figure 9. The radiation
graphs illustrate that the antenna exhibits a high level of cross-polarization (>20 dB) for
both planes across all operating bands. This is validated by comparing simulated and
experimental data. Figure 10a–d present 3-D polar plots of the developed MIMO antenna
when individual ports (1, 2, 3, and 4) are in the ON state, and Figure 10e shows when all
antenna elements (1–4) are excited (ON state) at the same time. The gain and efficiency
curves of the antenna are shown in Figure 11a,b, respectively. The antenna exhibits stable
gain performance for both working modes.
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is in the ON state; (c) port-3 is in the ON state; (d) port-4 is in the ON state; (e) ports-1 to -4 are in the
ON state.
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4. MIMO/Diversity Parameters

The various diversity parameters (envelope correlation coefficient (ECC), diversity
gain (DG), and total active reflection coefficient (TARC)) are computed to validate the
MIMO antenna design and are plotted in Figure 12 for modes-1 and -2.

4.1. Envelope Correlation Coefficient (ECC)

The ECC is a measure of the coupling current between MIMO antenna elements. ECC
varies with the physical orientation/arrangement of the antenna elements, and for practical
implementation, its numerical value should be <0.5. A low ECC indicates that the antenna
elements are uncorrelated to one another and that less power is coupled to other elements
in the vicinity of the excited element. The following expressions are used to calculate the
ECC [37,38].

ECCp×q =

∣∣∣∣∣s4π

[F1(θ, φ) × F2(θ, φ) × [F3(θ, φ) × F4(θ, φ)]] dΩ

∣∣∣∣∣
4

s

4π

|F1(θ, φ)|4dΩ|F2(θ, φ)|4dΩ|F3(θ, φ)|4dΩ|F4(θ, φ)|4dΩ
(2)

where
→
Fi(θ, φ) is the radiation pattern of the antenna when the ith port is excited. For a

quad-port (N = 4) system, the ECC between elements i = 1 and j = 2 is expressed as

ECC(1, 2, 4) =

∣∣S∗11S12 + S∗21S22 + S∗13S32 + S∗14S42
∣∣2(

1− |S11|2 − |S21|2 − |S31|2 − |S41|2
)(

1− |S12|2 − |S22|2 − |S32|2 − |S42|2
) (3)

The ECC between other ports can be calculated by changing the values of i and j. The
ECC is calculated using S-parameters for the presented MIMO antenna, and it is found to
be less than 0.3 between various antenna ports.

4.2. Diversity Gain (DG)

Another diversity parameter for validating MIMO configuration is DG. DG demon-
strates the superiority of the MIMO over the SISO system. It must ideally be close to 10 dB.
The DG is related to ECC and is calculated using the following expression [39].

DGp×q = 10
√

1− ECCp×q2 (4)
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4.3. Total Active Reflection Coefficient (TARC)

TARC is also an important attribute to validate diversity performance in terms of
incident and reflected powers. In a lossless system, TARC can be computed using scattering
parameters, but practically, it must also consider frequency and scan angle. TARC values
can be calculated using the following relation [13].

TARC =

√
∑

q
i=1

∣∣∣Si1 + ∑
q
p=2 Sipeiθp−1

∣∣∣2
√

q
(5)

It is clear from Figure 12 that the measured and simulated values of the MIMO/diversity
parameters, ECC (<0.5), DG (~10 dB), and TARC (<−10 dB), are within acceptable limits.

Table 3 shows a comparative analysis of the developed frequency agile quad-port
MIMO antenna and existing MIMO antennas. The MIMO antenna designs investigated
in [6,12] were quad-port with isolated ground planes, but demonstrated single-band opera-
tion. The four-port MIMO antenna designs investigated in [6,33] occupied more substrate
area and were not frequency agile. The four-element MIMO antenna designs proposed
in [4,24] were compact, but had fixed single- or dual-band operation. The MIMO antennas
reported in [20,23,25,27,28] were only two-port antenna configurations, with only a few
designs displaying frequency diversity.

Table 3. Comparison of the developed frequency agile MIMO antenna and existing MIMO antennas.

Ref. Operating Frequency
(GHz) Size (λ0 × λ0) Peak Gain

(dB)
Common
Ground No. of Ports Frequency

Agility
Isolation

(dB)

[4] 4.7–5.1 0.626 × 0.626 2.8 Yes 4 No >25
[5] 3.4–3.6 0.85 × 1.70 2.87 Yes 8 No >12
[6] 3.08–7.75 0.821 × 0.821 8.3 No 4 No >15.5

[12] 3.4–3.8 0.68 × 0.68 4.5 No 4 Yes >19
[20] 1.77, 4.75 0.283 × 0.141 6.63 Yes 2 Yes >26.52
[21] 3.5 1.75 × 0.875 1.57 Yes 8 No >20
[22] 3.4–4.4 1.70 × 0.850 — Yes 8 No >16
[23] 3.4–3.6, 4–8 0.238 × 0.521 3.40 Yes 2 No >15
[24] 2.40, 5.7 0.32 × 0.32 4 Yes 4 No >14
[25] 2.6, 3.6 — 6.5 — 2 No —
[27] 2.12–2.32 0.353 × 0.706 2.67 Yes 2 Yes >12
[28] 0.60, 1.8, 2.4, 3.5, 5.5 0.64 × 0.196 5.14 Yes 2 Yes >15
[33] 3.3–5 1.32 × 0.715 4.71 Yes 4 No >18.8

[34] 1.7–2.28, 2.5–2.85,
2.9–3.1 0.34 × 0.68 2.95 Yes 4 Yes >11.5

Prop. 2.5, 3.3, 3.5, 4.7, 5.2 0.583 × 0.583 1.74 Yes 4 Yes >28

5. Conclusions

In this paper, a frequency agile quad-port MIMO antenna is designed and tested for
multiple 5G application bands. The MIMO elements are made up of two patches, where
the lower patch edges are modified by etching a pair of ellipses to increase the current path
to achieve miniaturization. The upper patch is slotted and loaded with an SRR to achieve
multiband operation. An RF PIN diode is embedded between both patches (lower and
upper) to enable the frequency diversity feature, enabling the presented antenna structure
to achieve multi-functionality. The antenna is developed on the FR-4 substrate, which is a
low-cost substrate, and occupies a relatively small area. The antenna has a reasonable gain,
which can be further increased by employing a reflector or meta-surface placed at the back
side of the radiator at an appropriate distance. Furthermore, the orthogonal placement
of the radiating elements on the edges of the antenna’s substrate (with an inter-element
distance of 0.17λ0, where λ0 is calculated at the lowest operating band) for high isolation,
and a connected ground plane makes it a suitable candidate for the 5G application bands
n41/n46/n48/n79.
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