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Abstract: In computer vision, the homography estimation of infrared and visible multi-source images
based on deep learning is a current research hotspot. Existing homography estimation methods
ignore the feature differences of multi-source images, which leads to poor homography performance
in infrared and visible image scenes. To address this issue, we designed an infrared and visible
image homography estimation method using a Multi-scale Generative Adversarial Network, called
HomoMGAN. First, we designed two shallow feature extraction networks to extract fine features of
infrared and visible images, respectively, which extract important features in source images from two
dimensions: color channel and imaging space. Second, we proposed an unsupervised generative
adversarial network to predict the homography matrix directly. In our adversarial network, the
generator captures meaningful features for homography estimation at different scales by using
an encoder–decoder structure and further predicts the homography matrix. The discriminator
recognizes the feature difference between the warped and target image. Through the adversarial
game between the generator and the discriminator, the fine features of the warped image in the
homography estimation process are closer to the fine features of the target image. Finally, we conduct
extensive experiments in the synthetic benchmark dataset to verify the effectiveness of HomoMGAN
and its components. We conduct extensive experiments and the results show that HomoMGAN
outperforms existing state-of-the-art methods in the synthetic benchmark datasets both qualitatively
and quantitatively.

Keywords: homography estimation; generative adversarial network; infrared image; visible image

1. Introduction

The perception of visible images can be severely impaired under certain environmental
conditions. However, infrared images are less affected by illumination changes and can
avoid such problems [1]. Due to infrared and visible images having good complementary
properties, they have been extensively studied in image fusion tasks [2–6]. Homography
estimation is used to compute the mapping relationship from one image to another and is
a crucial upstream task in image fusion [7]. However, homography estimation between
infrared and visible images is challenging due to their significant imaging differences.
Therefore, this study focuses on the homography estimation between infrared and visible
images to provide technical support for image registration and fusion tasks.

Traditional homography estimation methods usually utilize the feature points ex-
tracted from the image pair to obtain a set of feature correspondences [8–10] and then use
robust estimation algorithms [11–13] to remove the outliers, which leads to obtaining the
homography matrix. However, the shared features between infrared and visible image
pairs are highly unstable, and it is difficult for such methods to obtain high-precision
homography matrices. Due to the excellent feature-extraction ability of neural networks,
they can be used to solve the challenges posed by traditional methods. Recently, unsuper-
vised learning methods [14–17] have gained popularity in homography estimation. These
methods optimize the model by minimizing the distance from the warped image to the
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target image and have good performance in relation to homologous image pairs. Some
methods [15–17] use a three-layer convolution with shared weights to extract the shallow
features of image pairs and use them for loss calculation. However, the shared weights in
the network optimization process did not consider the feature differences in multi-source
images for infrared and visible images, resulting in the introduction of significant noise in
the feature extraction process. In addition, due to the grayscale difference between infrared
and visible images, most deep learning-based methods easily fail to converge.

Most deep learning-based methods are prone to poor performance due to the dif-
ference in the characteristics of infrared and visible images, but the self-optimization ability
of the Generative Adversarial Network (GAN) can effectively solve such problems. The
GAN makes the fine-feature map of the warped image closer and closer to the fine-feature
map of the target image, thereby forcing the homography matrix to be more accurate.
However, most homography estimation methods based on deep learning rarely consider
the use of the GAN for self-optimization, i.e., the accuracy of the homography matrix is
continuously improved by the confrontation game process between the generator and
the discriminator. In particular, Hong et al. [17] utilized the GAN to impose coplanar
constraints on the predicted homography by using a generator to predict the masks of
aligned regions. However, the self-optimization object of this method is the mask, and
a two-stage network training strategy is used, i.e., the mask is introduced to optimize it
when the predicted homography matrix is guaranteed to be relatively accurate. This not
only makes the training process more complicated but also does not directly self-optimize
the homography matrix itself. This naturally raises the question: is it possible to use the
GAN to predict the output homography matrix and self-optimize it directly?

To address the problem of poor homography estimation performance caused by exist-
ing methods ignoring feature differences in multi-source images, this study proposes an
infrared and visible image homography estimation method using multi-scale generative
adversarial network (HomoMGAN). This method describes the homography estimation as
an adversarial game process to achieve high-precision mapping between the fine features
of the warped and target image. HomoMGAN consists of two shallow feature extraction
networks (infrared shallow feature extraction network and visible shallow feature extrac-
tion network) and a GAN (generator and discriminator). First, we employ the infrared
shallow feature extraction network and the visible shallow feature extraction network to
extract fine-feature maps of infrared and visible images to reduce the noise introduced
due to the feature differences, respectively. Second, we use the GAN to self-optimize the
homography matrix to reduce the impact of feature differences on homography estimation.
We predicted the homography matrix by channel-concatenating the fine-feature maps of
infrared and visible images and feeding them into a homography estimation generator.
The homography estimation generator can capture features of different scales, and then
improve the homography estimation performance by fusing shallow low-level features.
We also introduce a discriminator to distinguish the fine features of the warped and target
images to further optimize the homography estimation. The goal of the discriminator is
to force the fine-feature map of the warped image to be aligned with the target image as
much as possible, thereby improving the accuracy of the homography matrix. Extensive
experimental results show that our method significantly outperforms existing methods and
demonstrates the effectiveness of our proposed components.

The main contributions in this paper are summarized as follows:

• We propose a shallow feature extraction network with unshared weights to extract
fine-feature maps of infrared and visible images. In particular, the discriminator takes
a fine-feature map produced using a shallow feature extraction network as its input.

• To the best of our knowledge, HomoMGAN is the first work to use GANs to predict
the output homography matrix and self-optimize the homography matrix by an
adversarial game process directly.
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• This study designed a homography estimation generator that extracts multi-scale
features and captures meaningful features for homography estimation at different
scales by using an encoder–decoder structure.

For infrared and visible scenes, the feature maps obtained in the proposed method
fully consider the differences in multi-source images and can effectively reduce the noise
of feature maps, as shown in Figure 1. Additionally, the rest of the paper is organized
as follows. Section 2 describes the current developments related to feature-based and
deep-learning-based homography estimation methods, respectively. At the same time, the
homography estimation method using GANs is introduced, and the differences from the
proposed method are explained. The components and loss function of HomoMGAN are
described in detail in Section 3. In Section 4, the experimental details are introduced and
analyzed in detail from both qualitative and quantitative perspectives. Meanwhile, we also
conduct ablation experiments to demonstrate the effectiveness of the components. Section 5
presents some conclusions and proposes future work.
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channel mixing visualization method of CADHN [15] and the proposed method, respectively. The 
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method. 
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Figure 1. Homography estimation with the proposed method and a deep learning-based method
(CADHN [15]). (a,b) represent the visible and infrared image patches, respectively. (c,d) represent
the visible and infrared image feature maps obtained by the feature extractor and mask predictor in
CADHN [15], respectively. (e,f) represent the visible and infrared image feature maps obtained by the
shallow feature extraction network in the proposed method, respectively. (g,h) represents the channel
mixing visualization method of CADHN [15] and the proposed method, respectively. The channel
mixing approach is to mix the blue and green channels of the infrared warped image with the red
channel of the infrared ground-truth image. The channel mixing results are mixed using uncropped
image pairs of size 150 × 150, so the channel mixing images have more detailed information than
visible and infrared image patches. Specifically, misaligned pixels appear as yellow, blue, red, or
green ghosts, and the channel mixing visualization in the rest of this paper adopts this method.

2. Related Work

Feature-based homography estimation. These methods usually estimate local fea-
ture points using feature extraction algorithms, such as Scale Invariant Feature Transform
(SIFT) [8], Speeded Up Robust Features (SURF) [9], Oriented FAST and Rotated BRIEF
(ORB) [10], Binary Robust Invariant Scalable Keypoints (BRISK) [18], Accelerated-KAZE
(AKAZE) [19], KAZE [20], Locality Preserving Matching (LPM) [21], Grid-Based Mo-
tion Statistics (GMS) [22], Boosted Efficient Binary Local Image Descriptor (BEBLID) [23],
Learned Invariant Feature Transform (LIFT) [24], SuperPoint [25], Second-Order Similarity
Network (SOSNet) [26], and Order-Aware Networks (OAN) [27], etc. Then, they match the
feature points between the two images and use robust estimation algorithms to remove
outliers, such as Random Sample Consensus (RANSAC) [11], Marginalizing Sample Con-
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sensus (MAGSAC) [12], MAGSAC++ [13], Antileakage LSSA (ALLSSA) [28], etc. Finally,
the homography matrix is solved using Direct Linear Transformation (DLT) [29]. However,
the performance of such algorithms depends on the quality of feature points, and they
often fail in infrared and visible scenarios.

Deep homography estimation. Recently, there have been many pioneering works
regarding deep homography estimation, which can be divided into supervised and unsu-
pervised methods. Supervised homography estimation methods mainly employ synthetic
examples with ground-truth labels to train the network. DeTone et al. [30] used a Visual
Geometry Group (VGG) network as the backbone to estimate the homography matrix
between a pair of images, which is more robust than traditional feature-based methods. Le
et al. [31] designed a dynamic-aware homography network by integrating a dynamic mask
network into a multi-scale network for simultaneous homography and dynamic estimation.
Shao et al. [32] proposed a local transformer network embedded in a multi-scale structure
to learn the correspondence between input images of different resolutions. Unsupervised
homography estimation methods mainly work by minimizing the loss between two images
and warping the source image to the target image using a Spatial Transformation Network
(STN) [33]. Nguyen et al. [14] proposed an unsupervised learning method to estimate the
homography matrix, but this method is difficult to fit in infrared and visible scenarios.
Zhang et al. [15] utilized a weight-shared feature extractor to extract the features of image
pairs and learn an outlier mask to select only reliable regions for homography estimation.
Ye et al. [16] proposed a homography flow representation and a low-rank representation
to learn more stable features while reducing the feature rank. However, for multi-source
images with large pixel differences, such as infrared and visible images, the change in ho-
mography flow is not stable enough, and the network is difficult to converge. Luo et al. [34]
proposed a detail-aware deep homography estimation network to preserve more detailed
information in infrared and visible images. However, the shallow feature extraction net-
work of this method uses shared weights, ignoring the differences between multi-source
images. Debaque et al. [35] proposed a supervised and unsupervised homography model
for the registration of infrared and visible images.

GAN-based homography estimation. At present, there are few homography estima-
tion methods based on GANs, and they are still in their infancy. Hong et al. [17] exploited
an unsupervised GAN to impose co-planar constraints on the predicted homography. They
solve the problem of plane-induced errors and focus the homography matrix estimation
on the principal plane. However, this method does not use a GAN to directly predict the
output homography matrix but only as a mask component to guide the homography matrix.

Discussions. Compared with Luo et al. [34], the shallow feature extraction network
in our method is simpler, only consisting of a Convolutional Block Attention Module
(CBAM) [36] and convolutional layers. At the same time, our shallow feature extraction
network no longer shares weights. This allows our method to be less computationally
accounted and consider the feature differences in multi-source images to reduce noise.
Compared with Hong et al. [17], our method uses a GAN to self-optimize the homography
matrix directly instead of self-optimizing the mask; this makes the training strategy of our
method simpler.

3. Method

In this section, we first introduce the framework of HomoMGAN and then discuss the
structure of the shallow feature extraction network, generator, and discriminator. Finally,
this section details the generator and discriminator loss functions, respectively.

3.1. Overview

This section introduces a HomoMGAN used for the homography estimation of infrared
and visible images. The network architecture of HomoMGAN is shown in Figure 2. It
consists of four modules: two shallow feature extraction networks (infrared shallow feature
extraction network fr(·) and visible shallow feature extraction network fv(·)), a generator,
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and a discriminator. Specifically, a pair of infrared and visible grayscale image patches, Ir
and Iv, with a size of H×W× 1, are provided as the input of the network. First, the infrared
shallow feature extraction network fr(·) and the visible shallow feature extraction network
fv(·) were used to extract the fine-feature maps of Fr and Fv of the infrared image Ir and the
visible image Iv, respectively. Second, we concatenate two fine-feature maps in the channel
dimension and feed them into the generator to generate the homography matrix. Then, we
obtain the corresponding warped images of I′v and I′r through the homography matrices of
Hvr and Hrv, respectively, and use the corresponding shallow feature extraction network
to generate fine-feature maps F′v and F′r . Finally, we feed F′v and Fr and F′r and Fv into the
discriminator to distinguish the warped images from the target images, respectively. The
proposed HomoMGAN establishes an adversarial game between the generator and the
discriminator, such that the fine-feature maps of the warped image grow closer and closer
to the fine-feature maps in the target image. Once the generator produces warped images
that the discriminator cannot distinguish during the training phase, we have achieved the
expected homography matrix. Algorithm 1 shows some training details of HomoMGAN.
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Figure 2. The architecture of the proposed HomoMGAN for homography estimation of infrared
and visible images. Our network architecture consists of four modules: a shallow feature extraction
network (infrared shallow feature extraction network fr(·) and visible shallow feature extraction
network fv(·)), a generator, and a discriminator.
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3.2. Network Architecture
3.2.1. Shallow Feature Extraction Network fv(·) and fr(·)

The study designed a shallow feature extraction network to obtain fine-feature maps
of images, which are used as inputs for the generator and discriminator. The shallow
feature extraction network mainly consists of convolutional layers and CBAM [36]. It
extracts meaningful features for homography estimation from two dimensions: channel
and space. The details of its network structure are shown in Table 1. Each Conv is followed
by batch normalization [37] and Rectified Linear Unit (ReLu). The infrared and visible
images are captured using different sensors and have different modalities. If the network
with shared weights is used for infrared and visible images to extract shallow features,
their characteristics are lost, achieving a compromised result and reducing the accuracy
of the homography estimation to a certain extent. Therefore, unlike the shared weights of
the feature extractor and mask predictor in [15], this study designed two shallow feature
extraction networks of unshared weights (infrared shallow feature extraction network fr(·)
and visible shallow feature extraction network fv(·)). In particular, the two shallow feature
extraction networks have the same network structure. We use fv(·) and fr(·) to denote the
whole process as follows:

Fβ = fβ

(
Iβ

)
, β ∈ {v, r} (1)

where Iβ represents the network input grayscale image.

Table 1. Details of shallow feature extraction network.

Layer Type Kernel Stride Channel

L1 Conv 3 1 8
L2 Conv 3 1 16
L3 Conv 3 1 32
L4 CBAM
L5 Conv 3 1 16
L6 Conv 3 1 1

3.2.2. Generator

For the problem that most existing homography estimation networks ignore the fusion
of shallow low-level features in deep networks, this study proposes a homography esti-
mation generator to extract multi-scale features. According to our practice, these shallow
low-level features can effectively improve the performance of homography estimation; a
detailed description is provided in Section 4.4. Given a pair of fine-feature maps, Fv and
Fr, for channel concatenation, this study designed a generator to predict the homography
matrix of the image pair. Similar to the framework of Unet [38], the generator is designed
using an encoder–decoder structure to predict homography by fusing features of different
scales. The network framework is shown in Figure 3. At the same time, the U-shaped
structure in the generator can effectively fuse shallow low-level features in the deep net-
work, and these shallow low-level features be beneficial to the homography estimation of
image pairs.
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Figure 3. The network architecture of the generator. The network architecture of the generator is
similar to the Unet [38] network, which is an encoder-decoder structure. The number in the lower left
corner of the feature map in the figure represents the size of the feature map. The number above the
feature map represents the number of channels on the feature map. It is worth noting that each Conv
in the figure is followed by a batch normalization [37] and ReLu.

Encoder. This study adopted a 34-layer deep Residual Network (ResNet-34) [39] as
the backbone of the encoder to obtain deeper semantic information in fine-feature maps and
effectively avoid gradient vanishing and network degradation problems. It is worth noting
that the average pooling and fully connected layers were removed from ResNet-34 [39]
in the encoder, and the removed part was added to the end of the decoder to predict four
2D offset vectors (8 values) and use DLT [29] to obtain the homography matrix. The role
of the encoder is to obtain shallow and deep semantic information of different sizes and
channel numbers. Specifically, we first channel-concatenated the fine-feature maps of Fv
and Fr as the input of the encoder. Then, the feature maps of 64 channels were obtained
by the 7 × 7 convolution in ResNet-34 [39], and the feature maps of different scales were
obtained by the four layers of ResNet-34 [39] in turn so that the encoder gets shallow and
deep semantic information at different scales and channel numbers. Finally, in order to
better connect the encoder with the decoder based on Unet [38], we obtained a feature map
with 1024 channels by two 3 × 3 convolutions and max pooling.

Decoder. Utilizing the design idea of Unet [38], this study used the decoder in
Unet [38] as the decoder in the proposed method to restore the resolution of the image by
upsampling and feature copy stitching. Specifically, in each of the first four decodings, the
upsampled feature maps were fused with the channel features passed from the upper-level
encoder, which makes the feature maps absorb shallow low-level semantic information
and obtain semantic features at different scales. Second, this study utilized a decoding
module that does not fuse encoder channel features for decoding to obtain higher-resolution
feature maps. Finally, the feature maps were passed through the average pooling and
fully connected layers in ResNet-34 [39] to obtain four 2D offset vectors to achieve the
homography matrix of the image pair.

3.2.3. Discriminator

Inspired by the discriminator in [40], it was utilized as the discriminator in our network,
and the network architecture is shown in Figure 4. Our discriminator architecture is mainly
divided into five parts. The first four parts are composed of two 3 × 3 convolution layers, a
batch normalization layer [37], and a leaky ReLU activation function. The fifth part consists
of a pooling layer and a 1 × 1 convolutional layer composition. Different from [40], the
image pair was no longer used as the input of the discriminator, but the fine-feature map of
the image pair was used as the input, which can make the discriminator take the important
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feature as the main condition for the judgment, thereby reducing the unimportant influence
of the characteristics. A discriminator is essentially a classifier that aims to distinguish
warped images from target images. By imposing constraints on the fine-feature map
through an adversarial game between the generator and the discriminator, the fine-feature
map of the warped image is forced to be closer and closer to the fine-feature map of
the target image, thereby improving the homography estimation performance. Once the
generator generates samples that the discriminator cannot distinguish during the training
phase, we achieve a relatively accurate homography matrix.
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3.3. Loss Function of Generator

The loss function of the generator consists of three parts: feature loss, homography
loss, and adversarial loss.

LG = L f
(

I′r, Iv
)
+ L f

(
I′v, Ir

)
+ λLhom + µ

(
Ladv

(
F′r
))

+ Ladv
(

F′v
)
)) (2)

where LG represents the generator total loss. The first term L f (I′r, Iv) and the second term
L f (I′v, Ir) on the right depict the feature loss between the warped image and the target
image. The third term Lhom represents the homography loss. The fourth term Ladv(G, F′r)
and the fifth term Ladv(G, F′v) represent the adversarial loss. λ and µ denote the factors that
control the balance among the three terms. Through the analysis in Appendix A, we set
λ = 0.01 and µ = 0.005 in the experiment.

3.3.1. Feature Loss

Since the attention mechanism is included in our shallow feature extraction network,
the fine-feature maps of image pairs were used to participate in the operation directly
similar to the triplet loss in [15]. The feature loss encourages the warped image fine-feature
map to have a similar data distribution to the target image fine-feature map. The feature
loss between the warped infrared fine-feature maps and visible fine-feature maps can be
defined as follows:

L f
(

I′r, Iv
)
= ‖F′r − Fv‖1 − ‖Fr − Fv‖1 (3)

where Ir and Iv represent an infrared and visible image, respectively. I′r denotes the warped
image after transforming Ir using the homography matrix Hrv. Fr represents the fine-feature
map obtained by Ir after passing through the infrared shallow feature extraction network.
Fv depicts the fine feature-map obtained after Iv passes through the visible shallow feature
extraction network. F′r represents the fine-feature map obtained after I′r passes through the
infrared shallow feature extraction network. According to Equation (3), we also involved
another feature loss L f (I′v, Ir) between I′v and Ir.
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3.3.2. Homography Loss

A constraint to force Hrv and Hvr was added to ensure they were inverse of each
other, i.e.,

Lhom = ‖Hvr Hrv − E‖2
2 (4)

where Hvr represents the homography matrix solved by the channel concatenation of the
fine-feature maps of Ir and Iv and sent to the generator. Hrv represents the homography
matrix solved by exchanging the fine-feature maps of Ir and Iv and sending them into the
generator. E represents a third-order identity matrix.

3.3.3. Adversarial Loss

The adversarial loss is defined based on the probabilities of the discriminator in all
training samples, and its purpose is to force the fine-feature map of the warped image to be
closer to the fine-feature map of the target image. Similarly, this study followed the idea
of [40] that the adversarial loss for warped infrared fine-feature maps could be defined
as follows:

Ladv
(

F′r
)
=

N

∑
n=1

(
1− logDθD (F′r

)
) (5)

where logDθD (F′r) indicates the probability that the warped infrared fine-feature map is
similar to the visible fine-feature map, and N indicates the size of the batch. Similarly,
another adversarial loss Ladv(G′v) indicates that a warped visible fine-feature map can
be obtained.

3.4. Loss Function of Discriminator

The discriminator aims to distinguish fine-feature maps between the warped and
target images. The loss function of the discriminator can be defined as follows:

LD = LD
(

Fr, F′v
)
+ LD

(
Fv, F′r

)
(6)

where LD denotes the discriminator’s total loss. Both the first term LD(Fr, F′v) and the
second term LD(Fv, F′r) on the right represent the loss between the fine-feature map of the
warped image and the target image.

We similarly followed the idea of [40] in that the loss between the infrared fine-feature
map and the warped visible fine-feature map can be defined as follows:

LD
(

Fr, F′v
)
=

N

∑
n=1

(
a− logDθD (Fr

)
) +

N

∑
n=1

(
b− logDθD (F′v

)
) (7)

where a and b denote the labels of the fine-feature maps Fr and F′v, respectively. Similarly,
the loss LD(Fv, F′r) between another visible fine-feature map and the warped infrared fine-
feature map can be obtained. Through the analysis in Appendix A, label a is set as a
random number from 0.95 to 1, and label b is set as a random number from 0 to 0.05 in
the experiment. The labels a and b are not specific numerical values but so-called soft
labels [42].

4. Experimental Results

In this section, the dataset and implementation details are introduced, and then
some experimental procedures of our method are introduced. Second, quantitative and
qualitative comparisons were conducted using traditional feature-based and deep learning-
based methods on a synthetic benchmark dataset to demonstrate the performance of
our method. Traditional feature-based methods include nine methods consisting of five
feature descriptors (SIFT [8]/ORB [10]/BRISK [18]/AKAZE [19]/KAZE [20]) and two
outlier rejection algorithms (RANSAC [11]/MAGSAC++ [13]) combined. In particular, the
KAZE [20] + MAGSAC++ [13] algorithm has difficulty in obtaining homography matri-
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ces in infrared and visible scenes, so it was not used as a comparison method. Deep-
learning-based methods include UDHN [14], CADHN [15], MBL-UDHEN [16], and Ho-
moGAN [17]. In particular, UDHN [14] is difficult to fit in infrared and visible scenarios.
MBL-UDHEN [16] and HomoGAN [17] both use the idea of homography flow, but the
large grayscale and contrast differences in the infrared and visible images themselves cause
the homography flow to become unstable, making it difficult for the network to converge.
Therefore, we only make a comparison with CADHN [15] in the subsequent qualitative
comparison and quantitative comparisons. Finally, analytical results from some ablation
experiments are provided to demonstrate the effectiveness of shallow feature extraction
networks and generator backbones with unshared weights.

4.1. Dataset and Implementation Details
4.1.1. Dataset

Considering the lack of dedicated datasets for this task, we constructed a synthetic
benchmark dataset for the evaluation of homography estimation. Given the small amount
of data in the registered infrared and visible datasets in the current image fusion field, we
selected three classic datasets to construct an unregistered synthetic benchmark dataset:
OSU Color-Thermal Database [43], INO [44], and TNO [45]. We selected 115 pairs of images
for training set production and 42 pairs of images for test set production.

4.1.2. Implementation Details

Our network was implemented in PyTorch and trained on an NVIDIA GeForce RTX
3090. The network was trained using the Adam optimizer [46] with an initial learning
rate of 1× 10−3 and a decay factor of 0.8 per epoch. Meanwhile, the batch size of the
experiments was set to 48, and the epoch was set to 50. It is worth noting that the “number
of training iterations” in Algorithm 1 corresponds to the epoch, and “k steps” means the
quotient of the total number of training sets divided by the batch size. In addition, we
chose the evaluation metrics used in typical homography estimation tasks for evaluation to
objectively evaluate the performance of the homography estimation. In particular, since
the corner coordinates transformed by the ground-truth homography can be obtained
during the production of the synthetic benchmark dataset, we used corner error [31,32]
as the evaluation index for the synthetic benchmark dataset. The corner error [31] was
obtained by the average l2 distance between the corner points transformed by the estimated
homography and the ground-truth homography.

4.2. Experiment Procedure

In this section, the data preprocessing process is introduced in detail to clearly illustrate
the method of constructing the synthetic benchmark dataset. Second, the feature maps and
channel mixing results of image pairs during the experiment are shown to illustrate the
effectiveness of our method.

4.2.1. Data Preprocessing

Data Augmentation. Data augmentation techniques can increase the diversity of
datasets without generating new spectral or topological information [47]. Since the training
set is too small to train a good model, data augmentation methods were used to expand
the amount of data, such as rotation, offset, and shear. In the end, 49,738 pairs of infrared
and visible images were obtained. In addition, the infrared and visible image pairs in the
augmented dataset are registered, so we used the dataset production method in [30] to
generate unregistered visible image Ia, infrared image Ib, and infrared ground-truth image
IGT , the production process is shown in Figure 5. Specifically, the infrared ground-truth
image IGT is only used for the display of channel mixing results in qualitative comparison.
The channel mixture of the infrared ground-truth image IGT and the warped image were
visualized, making it easier to observe the misregistered regions and fully evaluate the
performance of our method. In addition, we maintained the corner coordinates before and
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after the ground-truth homography transformation in the test set production process for
the calculation of corner error [31] to evaluate the homography estimation performance. It
is worth noting that the size of the original infrared and visible images was inconsistent,
so we uniformly upsampled or downsampled it to 150× 150 in the process of making the
dataset, making the image blurry. Figure 6 shows some examples from the final synthetic
benchmark dataset.
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Figure 6. Some samples in our synthetic benchmark dataset. Row 1 represents the visible images
in the synthetic benchmark dataset. Row 2 represents the infrared images in the synthetic bench-
mark dataset.

Data normalization. To allow the network to converge faster, the visible image Ia and
infrared image Ib were normalized and grayscaled. In addition, patches with a size of
128× 128 were randomly cropped from the image pair with a size of 150× 150 to generate
the input grayscale image pair Iv and Ir of the network to increase the training data.

4.2.2. Feature Maps and Channel Mixture Results

To demonstrate the effectiveness of our method, Figure 7 shows some fine-feature
maps and channel mixing results of our method. Columns 1 and 2 show the visible
image Iv and its fine-feature map Fv (extracted by the visible shallow feature extraction
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network), respectively. Columns 3 and 4 show the infrared image Ir and its fine-feature
map Fr (extracted by the infrared shallow feature extraction network), respectively. Column
5 shows the channel mixing results between the infrared warped image and the ground-
truth image as predicted by HomoMGAN. We used two shallow feature extraction networks
for infrared and visible images, enabling the network to extract feature points according
to image characteristics, as shown in columns 2 and 3 in Figure 7. We can see that the
features extracted by the shallow feature extraction network are relatively sparse and
contain common features. Compared with dense features, sparse features reduce the
impact of noise. As can be seen from the channel mixing visualization results, most regions
of the image pairs are registered, which also demonstrates the effectiveness of our method.
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Figure 7. Fine-feature maps and channel mixing visualization results of our HomoMGAN. From left
to right: (a) visible image patch Iv, (b) visible fine-feature map Fv, (c) infrared image Ir, (d) infrared
fine-feature map Fr, and (e) channel mixing result between the warped infrared and the ground-truth
image. It is worth noting that the warped image is obtained by transforming the infrared image
according to the homography matrix predicted by our method.

4.3. Comparison on Synthetic Benchmark Dataset

Qualitative comparison. Qualitative comparisons were performed with ten contrast-
ing methods in the synthetic benchmark dataset, including feature-based methods and deep
learning-based methods. Figure 8 shows the comparison of the warped images obtained
by using different methods based on the homography matrix, where “-” indicates that the
algorithm failed. It can be seen that the feature-based methods have serious distortion and
algorithm failure compared to the deep learning-based methods. In particular, SIFT [8] and
AKAZE [19] appear to experience algorithm failures under these two examples. The deep
learning-based methods have no distortion, and it is difficult to see the obvious difference
between CADHN [15] and the proposed method.
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Figure 8. Comparison of warped images obtained by different methods in the two examples, as
shown in (a–d). Except for CADHN [15], the other methods are feature-based methods.

To distinguish the unregistered region between the warped and the ground-truth
image clearly, channel mixing was performed on them to more intuitively reflect the
homography estimation performance, as shown in Figure 9. It can be seen that our method
significantly outperforms the rest of the comparison methods. Specifically, in Figure 9a,c,
SIFT [8] + RANSAC [11] is the best-performing method among the feature-based methods
but slightly worse than our method. In particular, there are more unaligned regions in the
deep learning-based method CADHN [15] than SIFT [8] + RANSAC [11], but CADHN [15]
does not appear to exhibit algorithm failure, so feature-based methods are difficult to
apply to actual scenarios. The failure of the algorithm can be observed in the quantitative
comparison. For example, the curve of the method SIFT [8] + RANSAC [11] is not smooth
enough and has an obvious ladder shape, as seen in Figure 10. For Figure 9b,d, the
deep learning-based methods are better than the feature-based methods. All feature-
based methods suffer from significant ghosting, i.e., most of the regions are misaligned.
Although it is difficult to distinguish the proposed method from CADHN [15] in the channel
mixing results, the superiority of the proposed method can be observed in subsequent
quantitative comparisons.
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Specifically, if algorithm failure occurs in multiple test images, the fraction of the number 
of images in a larger range remains unchanged at a certain value of corner error [31] in 
Figure 10, i.e., a ladder shape appears. Although SIFT [8] + RANSAC [11] fails in most test 
images in Figure 10, its corner error is the lowest among all of the traditional feature-based 
methods, confirming the conclusion in the qualitative comparison. In addition, the evalu-
ation values of the remaining eight feature-based methods are close, so we locally zoom 
in on them, as shown on the right side in Figure 10. We can see that the performance of 
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of ORB [10] + RANSAC [11] is the worst. At the same time, it is not difficult to see that the 
feature-based methods have ladders to varying degrees, i.e., the homography matrix can-
not be predicted in some test images, but the proposed HomoMGAN method does not 
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based methods in the synthetic benchmark dataset. As shown in Figure 11, the proposed 
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Quantitative comparison. Figure 10 shows the quantitative comparison of our method
with the feature-based methods in the synthetic benchmark dataset. As shown in Figure 10,
the corner error [31] of the proposed HomoMGAN method is much lower than that in the
feature-based method, showing superior performance in infrared and visible scenes. In par-
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ticular, SIFT [8] + RANSAC [11] and SIFT [8] + MAGSAC++ [13] both show three ladders,
which is because they only predict homography matrices on three images. Specifically, if
algorithm failure occurs in multiple test images, the fraction of the number of images in
a larger range remains unchanged at a certain value of corner error [31] in Figure 10, i.e.,
a ladder shape appears. Although SIFT [8] + RANSAC [11] fails in most test images in
Figure 10, its corner error is the lowest among all of the traditional feature-based meth-
ods, confirming the conclusion in the qualitative comparison. In addition, the evaluation
values of the remaining eight feature-based methods are close, so we locally zoom in
on them, as shown on the right side in Figure 10. We can see that the performance of
ORB [10] + MAGSAC++ [13] is the best among these eight methods, but the performance
of ORB [10] + RANSAC [11] is the worst. At the same time, it is not difficult to see that
the feature-based methods have ladders to varying degrees, i.e., the homography matrix
cannot be predicted in some test images, but the proposed HomoMGAN method does not
experience algorithm failure.

Figure 11 shows the quantitative comparison of our method with the deep learning-
based methods in the synthetic benchmark dataset. As shown in Figure 11, the proposed
HomoMGAN method achieves the best performance among deep learning-based methods
and significantly outperforms CADHN [15]. According to the trend in the figure, Ho-
moMGAN has a lower corner error [31] than CADHN [15] for most of the test images.
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Figure 11. Quantitative comparison of HomoMGAN with deep learning-based methods on synthetic
benchmark dataset.

Discussions. The synthetic benchmark dataset comes from several real-world out-
door scenes, including parking lots, schools, parks, etc. After experimental verification,
our method can obtain a more accurate homography matrix in these scenarios, and the
registration effect is more reasonable. Since the essence of our synthetic benchmark dataset
comes from registered real-world datasets, which to some extent reflect the unregistered
situation of real-world data, our method also effectively performs when using unregistered
real-world datasets.

4.4. Ablation Experiment

Shallow feature extraction network. The effectiveness of the shallow feature ex-
traction networks was mainly verified from two perspectives relating to the synthetic
benchmark dataset. First, the shallow feature extraction network was replaced with the
feature extractor and mask predictor [15], whose feature map comparison is shown in
Figure 12. The main reason that this replacement was undertaken is that they function
similarly; they both obtain weighted feature maps, highlighting features that are mean-
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ingful for homography estimation. As shown in Figure 12, it can be seen that the feature
maps produced by our shallow feature extraction network are sparser, which is beneficial
in reducing the noise in the feature maps. To prove the effectiveness of our shallow feature
extraction network more clearly, we show the corner error [31] of two sample image pairs
in Figure 12, as shown in Table 2. It can be seen in Table 2 that the corner error [31] of the
shallow feature extraction network on both sets of sample image pairs is much lower than
that of the feature extractor and mask predictor [15], proving that the sparse features in
our method can effectively reduce the noise in the feature map, improving the accuracy
of the homography matrix. In order not to lose generality, we also compare the average
corner error [31] on the test set of the feature extractor and mask predictor [15] and shal-
low feature extraction network; the result is shown in Figure 13. It can be seen that the
homography estimation performance of our method is significantly better than that of the
feature extractor and mask predictor [15], fully confirming the effectiveness of our shallow
feature extraction network. In addition, Table 3 shows the comparison of the number of
parameters and computations before and after replacing the shallow feature extraction
network, and the results are shown in rows 2 and 3 in Table 3, respectively. Although the
number of parameters and computation of the proposed method is slightly higher than the
results in row 3, the corner error of the proposed method is significantly lower than that in
row 3 (from 5.3 to 5.06).
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Figure 12. Comparison of feature map of feature extractor and mask predictor [15] and shallow
feature extraction network. From left to right: (a) visible image patch, (b) infrared image patch,
(c) visible fine-feature map in feature extractor and mask predictor [15], (d) infrared fine-feature map
in feature extractor and mask predictor [15], (e) visible fine-feature map in shallow feature extraction
network (proposed method), and (f) infrared fine-feature map in shallow feature extraction network
(proposed method).

Table 2. Comparison of corner error [31] of feature extractor and mask predictor [15] and shallow
feature extraction network. Rows 2 and 3 represent the corner error [31] corresponding to the two
sets of sample images in Figure 12, respectively. Column 2 represents the corner error [31] obtained
by replacing the shallow feature extraction network with a feature extractor and mask predictor [15].
Column 3 represents the corner error [31] obtained using a shallow feature extraction network.

Sample Feature Extractor and Mask Predictor [15] Shallow Feature Extraction Network

(1) 2.96 2.69
(2) 4.43 4.11
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Figure 13. Ablation experiments. Feature extractor and mask predictor [15] and w/o. Shared weight
are ablation experiments for shallow feature extraction networks. Unet [38] and ResNet-34 [39] are
ablation experiments on generator backbones.

Table 3. Comparison of the number of parameters and computations under different ablation settings.

Settings Parameters (G) Computations (MB)

Proposed method 12.71 70.58
Feature extractor and Mask predictor 12.47 70.57

Shared weight 12.85 70.56
Unet 27.71 34.09

ResNet-34 4.45 24.79

Second, the two conditions of the shallow feature extraction network were
compared—”shared weight” and “w/o. shared weight” (the proposed method)—and
the fine-feature map results are shown in Figure 14. We show the output of the shallow
feature extraction network to analyze the impact of “shared weight” and “w/o. shared
weight” on the shallow feature extraction network. As shown in Figure 14c,d, under the
condition of shared weight, the fine-feature map output by the shallow feature extraction
network retains a large number of dense features. However, this introduces significant
noise into the homography estimation process, degrading homography estimation perfor-
mance. Interestingly, after we no longer share the weight for the shallow feature extraction
network, the network can extract features according to the imaging characteristics of each
type of image, thereby reducing the impact of noise in homography estimation, as shown
in Figure 14e,f. In the case of “w/o. shared weight”, both the infrared image and the visible
image not only retain meaningful features for homography estimation, but the number of
features is significantly less than that under the “shared weight” conditions. The corner
error [31] in Table 4 also demonstrates the advantage of “w/o. shared weight”; the corner
error [31] of “w/o. shared weight” is significantly lower than that of “shared weight”
in these two sets of images. Similarly, as seen in Figure 13, “w/o. shared weight” can
significantly reduce the error from 5.1 to 5.06 compared with “shared weight”, which also
proves the effectiveness of the shallow feature extraction network in our method without
shared weight. In addition, Table 3 compares the number of parameters and computations
of “w/o. shared weight” and “shared weight”, as shown in rows 2 and 4 in Table 3. The
parameter amount in row 2 is slightly lower than in row 4, but its computation amount is
slightly higher than in row 4.
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Figure 14. Comparison of fine-feature maps for shallow feature extraction network with and without
shared weight. From left to right: (a) visible image patch, (b) infrared image patch, (c) visible fine-
feature map in shared weight, (d) infrared fine-feature map in shared weight, (e) visible fine-feature
map in w/o. shared weight (proposed method), and (f) infrared fine-feature map w/o. shared weight
(proposed method).

Table 4. Comparison of corner error [31] for shallow feature extraction network with and without
weight sharing. Row 2 and 3 represent the corner error [31] corresponding to the two sets of sample
images in Figure 14, respectively. Column 2 represents the corner error [31] resulting from shallow
feature extraction network in shared weight. Column 3 represents the corner error [31] resulting from
shallow feature extraction network w/o. shared weight.

Sample Shared Weight w/o. Shared Weight

(1) 6.10 5.99
(2) 3.23 3.12

Generator backbone. Several common backbones were investigated, including Unet [38]
and ResNet-34 [39], to verify the effectiveness of the generator backbone in the proposed
method. As shown in Figure 12, our method achieves the best performance among these
several backbones and slightly outperforms Unet [38]. The homography estimation gen-
erator of the proposed method and Unet [38] use the encoder–decoder structure to fuse
shallow low-level features in the deep network, and the corner error of both is better than
ResNet-34 [39]. This fully illustrates that shallow low-level features can effectively improve
homography estimation performance. Interestingly, Unet [38] can be used to directly pre-
dict the homography matrix, and the performance is significantly better than the common
backbone (ResNet-34 [39]) in typical homography estimation methods [15,16]; the corner
error [31] dropped significantly from 5.15 to 5.08. To the best of our knowledge, Unet [38]
has not been used to directly predict homography matrices before. In addition, Table 3
shows the comparison of the parameter amount and computation amount before and after
generator backbone replacement, as shown in rows 2, row 5, and row 6 in Table 3. Although
ResNet-34 [39] has the smallest number of parameters and computations, it has the highest
corner error compared to the backbones.

5. Conclusions

For infrared and visible scenarios, we proposed an end-to-end unsupervised homog-
raphy estimation method (HomoMGAN). In HomoMGAN, we designed a shallow feature
extraction network with unshared weights to extract fine meaningful features for homogra-
phy estimation from infrared and visible images so that the network focuses on important
features of the source image to improve homography estimation performance. In addition,
we also designed an unsupervised GAN to predict the homography matrix directly and
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forced the fine features in the warped image to be closer to the fine features of the target im-
age by an adversarial game between the generator and the discriminator. We demonstrated
the superiority and effectiveness of HomoMGAN through qualitative and quantitative
comparisons with ten other methods on a synthetic benchmark dataset. Notwithstanding,
our method has its limitations, such as limited homography estimation performance in
low-light scenes. Therefore, we will further optimize HomoMGAN in future work so that
it can be better applied to homography estimation tasks in low-light scenes.
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The following abbreviations are used in this manuscript:
HomoMGAN Homography estimation method using Multi-scale Generative Adversarial Network
GAN Generative Adversarial Network
SIFT Scale Invariant Feature Transform
SURF Speeded Up Robust Features
ORB Oriented FAST and Rotated BRIEF
BRISK Binary Robust Invariant Scalable Keypoints
AKAZE Accelerated-KAZE
LPM Locality Preserving Matching
GMS Grid-Based Motion Statistics
BEBLID Boosted Efficient Binary Local Image Descriptor
LIFT Learned Invariant Feature Transform
SOSNet Second-Order Similarity Network
OAN Order-Aware Networks
RANSAC Random Sample Consensus
MAGSAC Marginalizing Sample Consensus
ALLSSA Antileakage LSSA
DLT Direct Linear Transformation
VGG Visual Geometry Group
STN Spatial Transformation Network
CBAM Convolutional Block Attention Module
ReLu Rectified Linear Unit
ResNet-34 34-layer deep Residual Network

Appendix A. Dependency on λ, µ, and a and b

In Table A1, the parameters in the loss function on the synthetic benchmark dataset are
analyzed, showing the corner error they obtained for different values to demonstrate our
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fine-tuning process. For parameter λ, the homography loss (corresponding to the weight
λ) accounts for an increase, which significantly affects the homography estimation perfor-
mance. For parameter µ, reducing the proportion of the adversarial loss (corresponding
to the weight µ) reduces the adversarial effect of the GAN, thereby reducing homography
estimation performance. It is worth noting that parameter a represents the label value of
the fine-feature map of the target image, and parameter b represents the label value of
the fine-feature map of the warped image. a and b are not specific values, but so-called
soft labels. At the same time, the discriminator in the proposed method uses the Sigmoid
function to predict the probability value, so the discriminator’s prediction probability for
the fine-feature map of the target image does not exceed one, and the prediction probability
for the fine-feature map of the warped image is not lower than zero. For parameters a and
b, when a is set to a random number from 0.95 to 1 and b is set to a random number from
0 to 0.05, the corner error is the lowest.

Table A1. Dependency on λ, µ, and a and b. We demonstrate the corner error for different values of
parameters using a synthetic benchmark dataset.

λ Corner Error µ Corner Error a and b Corner Error

0.05 5.21 0.01 5.09 a ∈ [0.98, 1],
b ∈ [0, 0.02] 5.08

0.01 5.06 0.005 5.06 a ∈ [0.95, 1],
b ∈ [0, 0.05] 5.06

0.005 5.09 0.001 5.40 a ∈ [0.8, 1],
b ∈ [0, 0.2] 5.23

(a) dependency on λ with µ = 0.005,
a ∈ [0.95, 1], and b ∈ [0, 0.05]

(b) dependency on µ with λ = 0.01,
a ∈ [0.95, 1], and b ∈ [0, 0.05]

(c) dependency on a and b with λ = 0.01
and µ = 0.005
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