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Abstract: Sign language recognition has been utilized in human–machine interactions, improving the
lives of people with speech impairments or who rely on nonverbal instructions. Thanks to its higher
temporal resolution, less visual redundancy information and lower energy consumption, the use of an
event camera with a new dynamic vision sensor (DVS) shows promise with regard to sign language
recognition with robot perception and intelligent control. Although previous work has focused
on event camera-based, simple gesture datasets, such as DVS128Gesture, event camera gesture
datasets inspired by sign language are critical, which poses a great impediment to the development
of event camera-based sign language recognition. An effective method to extract spatio-temporal
features from event data is significantly desired. Firstly, the event-based sign language gesture
datasets are proposed and the data have two sources: traditional sign language videos to event
stream (DVS_Sign_v2e) and DAVIS346 (DVS_Sign). In the present dataset, data are divided into
five classification, verbs, quantifiers, position, things and people, adapting to actual scenarios where
robots provide instruction or assistance. Sign language classification is demonstrated in spike neuron
networks with a spatio-temporal back-propagation training method, leading to the best recognition
accuracy of 77%. This work paves the way for the combination of event camera-based sign language
gesture recognition and robotic perception for the future intelligent systems.

Keywords: event camera; spiking neural network; DVS-sign language; sign language recognition;
intelligent system

1. Introduction

Sign language recognition can help people with speech impairments break through
communication barriers in social life, and also it can be used in human–machine interaction
to enrich nonverbal instructions. Sign language recognition has attracted much attention
in the field of computer vision, with the goal to accurately recognize the movement of
gestures and understand the meaning of sign language for communicators or machines.
The recognition of sign language actions has huge application in robot perception [1],
improving the lives of people with speech impairments [2] and enriching nonverbal in-
formation transfer. However, since sign language movements are generally too fast, the
use of traditional frame cameras introduces great challenges, such as blur and overlap and
computational complexity.

Inspired by the biological vision mechanism, a new type of dynamic vision sensor
(DVS) event camera has become popular, in which each pixel independently detects the
brightness changes and generates asynchronous event streams. It has significant technical
and application advantages compared with traditional cameras: a high time resolution
(microsecond level), low delay (µs level), low power consumption (10 mW) and high dy-
namic range (120–143 dB) [3]. It opens up the possibility of developing a promising method
for gesture recognition with robot perception and intelligent control. DVS128Gesture [4],
which combines the event camera and gesture recognition, does not consider the abundant
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meanings of sign language. A few studies [5,6] combined an event camera with sign lan-
guage gesture recognition, but there are few publicly available gesture recognition datasets
and benchmarks.

For the training algorithm suitable for the combination of event cameras and sign
language gesture recognition, we chose the spiking neural network (SNN), which is suitable
for asynchronous and event-driven tasks. It has the ability to analyze and process event
stream data generated by event cameras. Because of the relatively rich traditional video
format sign language dataset, the proposed dataset can be obtained by using the video
to event (v2e) [7] method. On the other hand, we created an event-based sign language
dataset (called DVS_Sign) using the event camera DAVIS346. DVS_Sign contains a total
of 600 training sign language vocabulary videos, with five classifications of sign language
classified by the part of speech.

The contributions of this work are as follows: (1) Event camera-based sign language
gesture datasets are proposed, named DVS_Sign and DVS_Sign_v2e. Considering human–
machine interaction, we chose some common sign language gestures for the proposed
dataset, which were divided into five classifications—verbs, quantifiers, position, things
and people. These were adapted to actual scenarios where robots need instructions and
assistance. (2) Sign language gesture recognition and classification are demonstrated in a
lightweight SNN with spatio-temporal back propagation (STBP) method, taking advantage
of both the event camera and SNN, achieving up to 77% accuracy.

2. Related Work

We investigated some sign language datasets, including the United States (ASL-LEX),
Boston (ASLLVD), American Sign Language (ASL), Argentinian (LSA64 [8]), and China.
Some countries have their own specific languages. We considered the issues of different
countries and human–machine interactions to design our dataset. Even though a few
studies proposed an event camera-based American sign language dataset, they cannot have
not been open-sourced to estimate the performance [5]. For SL-Animals-DVS, which uses
gestures to imitate animals, there is no specific sign language vocabulary [6]. ASL-DVS [9]
contains 24 classes corresponding to 24 letters from ASL. DVS128Gesture is a public event
camera-based gesture dataset, which only contains 11 common simple gestures, such as
left hand wave, right hand clockwise, arm drums. In this work, our own collection of event
sign language datasets using the event camera DAVIS346, as shown in Figure 1. Figure 1a
shows the asynchronous event flow data collected when posing in front of the event camera.
Figure 1b shows two consecutive grayscale images of the event sign language visualization
from an event camera. The experiment benefits from the asynchronous nature and ease of
processing of event camera data.

(a) (b)

x

y

t

Figure 1. The visualization of DAVIS346 [10] collecting event sign language dataset. (a): DVS sensor
generates asynchronous event stream when a sign language is posing in front of it; (b): continuous
raw events between two consecutive grayscale images from an event camera.
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Refs. [11,12] developed efficient feature representation methods for event streams, and
some studies have developed event-based gesture recognition systems. Lee et al. [13] first
developed an event-based gesture recognition system with DVS and proposed a primitive
event called the leaky integrate-and-fire (LIF) neuron approach. A recent work [9] proposed
dynamic vision sensors with graph-based spatio-temporal features, which contributed
greatly to action recognition using event-based cameras. Although gesture recognition has
seen great progress and achieved great success in various applications, there are still some
important factors that reduce the robustness of recognition systems.

In order to better extract the features of sign language actions and perceive fine-grained
temporal and spatial features from event stream data, there are many event-based action
recognition and classification methods [4,14–17]. Point cloud-based [18] and graph-based
methods [14,17] treat event data as point clouds or graph nodes. However, converting
raw event data into this format leads to the fine-grained temporal and spatial information
contained in the event data being discarded. SNN-based methods [19–21] use spike neural
networks [22] to process input event streams asynchronously; however, they are difficult to
train because of the lack of efficient back-propagation [23] algorithms. Existing CNN-based
methods [24,25] transform asynchronous event data into fixed-rate frame-like representa-
tions and feed them into standard deep neural networks [26]. The time resolution according
to the event frame leads to a loss of information in other spatial or temporal dimensions.
In summary, traditional event-based motion detection methods [27,28] are not suitable for
our sign language gesture recognition, which requires fine-grained spatio-temporal [29]
feature detection from event data.

Although traditional sign language gesture recognition based on an RGB camera has
achieved high accuracy in an ideal environment, the cost of consumption includes a large
number of training samples and complex calculations. Due to the data from the RGB camera,
high-accuracy sign language recognition cannot be realized in a fast or dark environment.
This is also the reason that we investigate this method based on the event camera and
reduce the cost through SNN to overcome the issues in sign language recognition. SNN
is known as a third-generation neural network that attempts to more closely match the
function of biological brains; specifically, the membrane potential accumulates input over
time and sends out a spike when a set threshold is crossed. Furthermore, in the event
camera, each pixel independently detects brightness changes and generates asynchronous
event streams, matching the event-based nature of SNNs. Therefore, sign language gesture
recognition with event cameras is considered to be combined with SNN.

3. Method
3.1. Introduction of Event Data

The event stream consists of pixel array, the trigger time and polarity (signal of
brightness change). Triggered events are expressed as:

e = (x, y, t, ρ)T (1)

Event e represents the image of the event camera at (x, y)T . The event triggered by the
brightness change in the pixel at time t, ρ(p, c) is a truncation function.

ρ(p, c) =

{
+1, (p ≥ c)

−1, (p ≤ −c)
(2)

c is the excitation threshold of the event point, p is the brightness change value when
the brightness increment is more than c, the positive polarity event point is excited when
the brightness increment is less than −c, and the negative polarity event point is excited
when the absolute value of the brightness increment is c. When it is less than c and more
than −c, the event camera has no output.
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3.2. Sign Language Dataset

Due to the lack of sign language datasets based on event cameras, we chose the
v2e method to convert traditional RGB video sign language videos into event stream
data.We used the LSA64 dataset, which contains 64 commonly used words in daily life.
Verbs and nouns are included. We chose some common sign language gestures for the
proposed dataset considering human–machine interaction. Additionally, to better validate
our training method, we created the DVS_Sign dataset, the event-based sign language
dataset, using event cameras. We used the event camera DAVIS346, which can output event
stream and intensity information at the same time using the event camera to collect the
same sign language video as the LSA64 dataset, and package each sign language video in
the same folder. Since the collected sign language dataset is in aedat format, we converted
aedat into the csv data format required by the network. This ensured a more accurate
comparison of the impact of datasets on training accuracy. We provided a video-to-event
method to obtain data from different existing sign language datasets from RGB video, as a
technical solution to sign language dataset conversion.

There are three volunteers that participate in the recording of the indoor scene sign
language dataset. In order to avoid each action of the volunteers being too similar, we
shuffled the recording order to ensure the accuracy of recording each sign language action.
Volunteers were asked to sit in front of a DAVIS346 and posed for each sign language
word. In addition, in order to ensure the accuracy of the sign language movements, we
asked the volunteers to wear simple clothes without too much decoration and try to ensure
that they worn short tops during the recording process. We required volunteers to have
no additional clothing decorations during the recording process, so as to avoid excessive
event data noise from interfering with the experimental results. Considering the practical
applicability of our work, in the process of selecting sign language datasets, we chose some
commonly used imperative words, such as some positions, the prescriptive word, such as
“right, shut down, accept” and so on.Taking into account the actual application scenarios
of this experiment and the actual needs of the people with speech impairment, we chose
these vocabularies such as “call, away, help” in our datasets. The sign language meanings
represented by the specific serial numbers are shown in Table 1.

Table 1. The division of the part of our sign language datasets and the corresponding display of
categories and serial numbers.

Word Category Name ID

verb

help 00
accept 05
away 01
take 11
shut down 08
thanks 03
call 10

quantifier 1 02
5 06

things water 13
music 04

position right 07
left 09

people mom 12
dad 14
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Figure 2 shows the visual display of some words in DVS_Sign language gesture
dataset, which could be applied to scenarios of practical application of human–machine or
robotic instructions. For examples, “one water, thanks” and “call mom” will be recognized
by machine or robot, so that they can carry out some simple instructions, which is also in
line with the original intention of our work. In addition, we will consider adding more
gestures and optimizing the network structure to better perform sign language gesture
recognition in more complex scenes.

help music

thanks woman

water

shut down

Figure 2. Part of the visual display of DVS_Sign language gesture dataset, each vocabulary example
selects 2 grayscaled event video frames.

3.3. Network Structure of SNN

Only considering the spatial domain (as supervised via back-propagation) or the tem-
poral domain (as unsupervised with temporal plasticity) leads to a performance bottleneck
due to the existing action classification training algorithms [30,31]. Therefore, building a
learning framework that fully utilizes the spatio-temporal domain (STD) is the fundamen-
tal requirement for high-performance SNNs. In our method, capturing spatio-temporal
features in the event stream is very important to improve recognition accuracy. LIF is
the most widely used model to describe neuron dynamics in SNNs, which can be simply
given by

τ
du(t)

dt
= −u(t) + I(t) (3)

u(t) = u(ti−1e
ti−1−t

τ ) + I(t) (4)

τ is a time constant, u(t) represents the neuron membrane potential at time t, and
I(t) denotes the pre-synaptic input, determined by pre-neuronal activity or external in-
jection and synaptic weight. When the membrane potential u exceeds a given threshold
Vth, the neuron triggers a spike and resets its potential to ureset. As shown in Figure 3,
the incoming event frame which are collected from DAVIS346 and event converted by v2e,
are forward-propagated through the SNN network, and a pooling operation is performed
before each layer of convolution. For the gradient descent of iterative representation,
in SNN we pass the chain rule of layer-by-layer reverse error propagation—in others words,
iterative SNN based on LIF. At the same time, self-feedback injection at each neuron node
generates a non-volatile integral in TD as shown in Equation (4). It used u(t) to approxi-
mate the neuronal potential based on the last spiking moment ti−1 and the pre-synaptic
input I(t); the membrane potential decays exponentially until the neuron receives a pre-
synaptic input, and once the neuron spikes, a new round of updates begins. In other words,
the spatial accumulation I(t) and the leaked event memory u(ti−1) determine the state of
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the neuron. After our encoding layer, there are two flattened layers at the end to predict
the output of the classification results of sign language.

Vt
n = Hn

t−1 +
1
τ (In

t−1 − (Ht
t−1 −Vreset))

Sn
t = Θ(Vn

t −Vthreshold)
Hn

t = Vn
t · (1− Sn

t )
(5)

In Equation (5), n and t represent the number of layers and time steps of the network,
S represents the peak tensor with a binary value, and I represents the input of the previous
layer. The membrane potential continues to decay until the next new pulse is fired until
a new input is received. So, the neuron state is jointly determined by the pre-synaptic
potential I′(t) and the leaked membrane potential u(ti−1) at the previous moment. Θ

denotes the Heaviside step function [32], H is the reset process after spiking.

DAVIS346

APS

Events

RGB video

v2e

Events

0:help

1:away

…

…

…

7:right

8:shut down

…

…

…

14:dad

pooling32

conv32

conv32
pooling16

conv16
pooling8

34

34

64 64
128

128

fc1

fc2

Iuput Datasets Network Architecture Predict Labels

256

15

LIF

LIF

Figure 3. The process of sign language gesture recognition and classification. The two datasets in the
figure do not enter the network at the same time, so the drawing is for a more intuitive display.

The back-propagation efficiency of the traditional neural network greatly benefits from
the iterative representation of gradient descent, so the LIF-based iterative SNN is used in
our training. Algorithm 1 describes the iterative update of a single LIF neuron at time steps
t + 1 and with n + 1 layers, where the f function represents SpikeAct, which will output
a spike and perform back-propagation. If the input membrane potential ut+1,n+1 exceeds
Threshold Vth, a spike is generated, and then the newly generated membrane potential and
spike output are returned to the next neuron, and so on.

Algorithm 1 State update for an explicitly iterative LIF neuron at time step t + 1 in the
n + 1 layer

Require: previous potential ut,n+1 and spike output ot,n+1, current spike input ot+1,n, and
weight vector W

Ensure: next potential ut+1,n+1 and spike output ot+1,n+1

1: function STATE_UPDATE(W,ut,n+1,ot,n+1,ot+1,n)
2: ut+1,n+1 = kτ1ut,n+1(1-ot,n+1)+W ot+1,n

3: ot+1,n+1 = f(ut+1,n+1-Vth)
4: return ut+1,n+1,ot+1,n+1

5: end function

4. Experiments

In this section, we introduce our experimental method in details, including the data
collection and data prepossessing, the selection of the loss function in our training process,
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and the impact of the adjustment of each parameter in the STBP training method on the
experimental results.

4.1. Dataset Prepossessing

Due to the lack of event camera-based sign language datasets, our experiments were
initially based on traditional RGB sign language videos converted into event stream data
through the v2e method. The following is the detailed process of the conversion data pre-
possessing:

Steps A–B in Figure 4a represent the color-to-brightness conversion. A color RGB
video is transformed into M luminance frames, where each frame is associated with a
timestamp. Then, synthetic slow motion is introduced: the luma frames are optionally
interpolated using the Super-SloMo video inter-polation network [33] to increase the
temporal resolution of the input video. Super-SloMo predicts the bi-directional optical flow
vectors from successive luminance frames. This is used to linearly interpolate new frames
at arbitrary positions between the two input frames. The next step is a linear to logarithmic
mapping [34]: a standard digital video usually represents intensity linearly, but DVS pixels
detect changes in logarithmic intensity. Step C represents the event generation model; we
assume that the pixel has a memorized brightness value and the new low-pass filtered
brightness value. The model was used to generate a signed integer quantity to represent
positive ON or negative OFF events from the change of memorized brightness value minus
filtered brightness value, and the luminance value stored in multiple DVS events is updated
to a signed integer multiple of the threshold. (b) means that we use DAVIS346 to collect sign
language datasets, and the size of the collected video is 346 × 260. Secondly, we denoised
the event stream data, cleaned up unnecessary event coordinates, and then cropped the
video size to 128 × 128, so as to enter the network training, and finally the event frame
dataset of our sign language dataset was obtained.

A: RGB video B: luma video D: v2e DVS framesC: DVS event generation at each pixel

R
G

B
 t

o
 Y

A:DAVIS346

346×260 128×128

R
es

iz
e

B:After denoising C:collected event frames

(a)

(b)

N
o

is
e 

R
ed

u
ct

io
n

Figure 4. Two datasets processing methods. (a): use the v2e method to convert RGB video to event
stream data; (b): use DAVIS346 to collect sign language event video streams for processing.

In addition, we also used the DAVIS346 to collect the dataset for comparison with
our v2e dataset. Considering the practical applicability of the experimental results, we
conducted a lot of work in selecting the dataset not only included some commonly used
sign language gestures. In addition to the robot imperative vocabulary, we also chose some
vocabularies of machine instructions, because they are very important for the daily needs
of people with speech impairments and robots, which are lack of hearing function and
nonverbal commands. We also included a large vocabulary in the scope of experimental
data collection. In the future, as the experiment progresses, we will consider adding more
sign language vocabulary.
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4.2. Implementation Details

We tested the STBP training method of our SNN model on two datasets, including
the selection of the loss function in Equation (6) and the adjustment of the Vth parameter,
and we also describe the back-propagation training process and setting of initialization of
each parameter in detail.

(1) Loss function

During the experiment, we tried to replace the loss function with the commonly
used cross-entropy loss [35] and the softmax function [36] for multi-classification [37].
After applying the above-mentioned cross-entropy loss function and softmax loss function
to our experiments, the experimental accuracy of the mean square error is the highest,
which is due to the fact that in STBP under the training framework, the loss function of the
mean square error ensures that the error of the output and label of each sample during the
gradient return process is the smallest.

L =
1

2S

S

∑
s=1
||ys −

1
T

T

∑
t=1

ot,N
s ||22 (6)

In Equation (6), we show our loss function L and minimize the mean squared error
(MSE) of all samples over a given time window T , where ys and os represent the label vector
of the sth training sample and the neuron output vector of the last layer N, respectively.

(2) Back-propagation Training

Figure 5 shows the error transmission in the SD (spatial domain) and TD (timing-
dependent temporal domain) on a single neuron, vertical and horizontal paths, respectively.

At the single neuron level, Figure 5, the propagation is decomposed into a vertical
path for SD and a horizontal path for TD, each neuron accumulates a weighted error
signal from the upper layer and iteratively updates parameters in different layers. In TD,
the neuron state is iteratively expanded in the temporal direction that enables chain rule
propagation. At this point, we clearly understand that the complete gradient descent
process is obtained during the training process. On one hand, each neuron accumulates
weighted error signals from the upper layers in SD, on the other hand, each neuron also
expands the state space iteratively based on the chain rule from the received propagated
errors in self-feedback dynamics.

ui
t,n+1

oi
t,n

ui
t−1,n ui

t,n

oi
t,n−1

ui
t+1,n

SpikeSD

Time t−1 Time t+1

Feedforward path

Backprop path

TD

Figure 5. At the single-neuron level, the vertical path and horizontal path represent the error
propagation in the SD and TD, respectively.
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(3) Rate coding [38,39]

We use frequency coding in our network.Within the simulation time T, each cycle
determines whether to send a spiking with the probability of the spiking firing rate · dt (dt
is in seconds) and finally forms a frequency code.

Assuming that spiking-counting frequency serves as the basis for encoding in the
nervous system, the frequency with neurons fire contains all the information. The spiking
counting frequency can be measured only by calculating the number of spikings in the time
interval; in other words, calculating the time average. The frequency v of neuron spiking
firing can be understood as the ratio of the average number of spikings nsp(T) observed in
a specific time interval T divided by time T:

v =
nsp(T)

T
(7)

The encoding time window T is experimentally based on actual data and depends
on the type of neuron and the form of stimulation. In our experiments, this is 40 ms or
60 ms. According to the results of our experiments, T is determined by the number of the
event in the time interval. If the time interval T is too large or too small, it is not conducive
to the accumulation of spikes and an appropriate time window T is selected according
to different experimental data and event data. The frequency encoding process based on
spiking counting is shown in the figure below. Figure 6a describes that the frequency v of a
neuron is the average of the number of spikings released at a given time T. Figure 6b shows
the output frequency v as a function of the total input current Io in the gain function. As the
stimulus intensity increases, the neuron spiking firing frequency v gradually increases,
and for a larger input current Io, the firing frequency gradually approaches the maximum
value vmax.

T

t

frequency=average over time(single neuron, 

single run)

Vmax

Io

(a) (b)

Figure 6. (a): Spiking firing frequency defined by event averaging. (b): Schematic diagram of the
gain function.

4.3. Experimental Details

All experiments in this work are performed on our own collection of 15 commonly
used sign language datasets and on the same 15 v2e-transformed event stream sign lan-
guage datasets based on LSA64. The input space dimension of our proposed network
model is 128 × 128, which does not need to be cropped on the v2e datasets, because it has
been adjusted when converting the original video into an event stream during the data
prepossessing. However, in the dataset collected by ourselves above, we used DAVIS346,
the size of the captured video frames are all 346 × 260, so when the data are fed into our
network model, they are cropped so that it can adapt to the training dimension of our
network model. In addition, because the event data collected by DAVIS346 are too large and
has too much noise, we denoised the collected event stream video to reduce unnecessary
event coordinate data and prevent interference in the process of network feature extraction.

We use the PyTorch framework [40] to implement all the methods used in this work.
Our model is optimized by SGD [41] using standard settings. We adjusted the learning rate



Electronics 2023, 12, 786 10 of 14

during training according to Equation (8), where the initial learning rate is set to 1× 10−4.
We set the batch size to 20 and trained the model for 200 epochs. We divided the test set
because during the training process we found that too many training samples entered the
network and the test accuracy of the training model was not very good, so the dataset was
divided into two parts—training and testing.

lrnew = lr · (0.1(epoch÷60)) (8)

5. Experimental Results

The spatio-temporal back-propagation method is trained and tested on two datasets,
and the experimental results are shown in Table 2. The sign language types of both datasets
are identical, except for the data prepossessing method. We split the training set and the
testing set 4:1.There are a total of 15 kinds of sign language videos, each with 40 videos in
the training set and 10 videos in the validation set. So, the total training set has 600 and
the test set has 150 and the validation set has 100. We trained it on the TITAN server by
adjusting batch_size and the epochs.

Table 2. Comparison of the v2e dataset with the DAVIS346 acquisition dataset and other event-based
and traditional video dataset-based action classification models. DVS_Sign_v2e is a dataset that
converts traditional LSA sign language videos into event streams through the v2e method. DVS_Sign
is the dataset collected by DAVIS346. Acc1 represents the accuracy of the first part of the test set;
Acc2 represents the accuracy of the second part of the test set; Acc represents the accuracy of the
entire test set.

Method Dataset Input Backbone Acc1 (%) Acc2 (%) Acc (%)

Ye et al. [42] ASL RGB CNN - - 69.20

Zhang et al. [43] EgoGesture RGB VGG16+LSTM - - 68.90

Xu et al. [24] ASL-DVS event GIN - - 51.4

Monti et al. [44] ASL-DVS event MoNet - - 86.7

Martinez et al. [18] DVS-Lip event ResNet-18 55.60 75.46 65.51

Liu et al. [45] DVS-Lip event ResNet-101 58.36 79.17 68.74

Ours DVS_Sign_v2e event SNN+STBP 79.00 76.00 77.00

Ours DVS_Sign event SNN+STBP 71.00 70.00 68.00

We compare our data results with several related actions classify methods as compara-
tive experiments, including (1) event-based gesture action classification methods [18,24,44];
(2) traditional image-video-based action classification methods [42,43].

Compared with a traditional RGB camera, an event camera can accurately capture the
motion information of sign language gesture and get rid of the weak light conditions and
high speed [9,39]. DVS-Lip is applied in traditional neural networks, but it maybe fails to
take advantage of the data characteristics of the event camera without utilizing SNN [24].
It can also be seen that there are some gaps compared to the ASL-DVS [8,13]. Since the
simple gesture is for one letter in the ASL-DVS dataset, it has a higher accuracy for the
recognition of each letter gesture, but it may result in a lower accuracy because it needs
to “spell” the word to express the instructions. Compared with our sign language gesture
recognition, it is easier for the network to extract feature information. From the tabular data
above, we found that our training method significantly outperforms some existing event-
based video-based action recognition classification methods on DVS_Sign_v2e datasets.
This shows that our network model and dataset are effective, and feature information
can be extracted from sign language event data. In addition to comparing it with other
event-based action classifications, we can also see that there is also a gap in the test results
before the two datasets. The test results of the dataset collected by DAVIS346 are worse
than the test results converted from v2e. It may be because the light is related to clockwise
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and counterclockwise gestures, changes in the environment, and changes in the distance
during the process of data collection. There is another reason the DAVIS346 output event
dimension size is 346× 260, and the input size received by our network model is 128 × 128,
before we crop the video frame size. In the process, some event point coordinates and
timestamps that are used for feature extraction are lost.

Comparing the experimental results of the DVS_Sign_v2e dataset with event-based
action recognition, we have made some progress in terms of accuracy, and because our
network is relatively lightweight, the training time is also advantageous. Two hundred
epochs only takes 15 hours. Our network has fewer layers than other networks. However,
from the dataset, we collected DVS_Sign language, and found that the results were not so
good. The first reason may be that there is a loss of event stream data when the collected
event camera data are converted from aedat format to csv format; the second is that there
is a loss when the captured event stream video of 346 × 260 size is cropped to 128 × 128.
The third reason is that there are differences between our data due to the external environ-
ment when we collect data, such as the brightness of the light, the distance between the sign
language movement and the event camera, the clockwise and counterclockwise direction
of the sign language movement may affect the experimental results. This also shows that
our training method STBP, the robustness of it is not strong enough. In the face of some
situations where the data are not so clean, there has been a certain degree of loss, which is
what we need to improve.

During the experiments, we found that the initialization of various parameters was
very important to the experimental results, such as the threshold and weight and other
parameters, which were crucial to the firing spike activity of the entire network. As shown
in Table 3, we need to ensure the timely response of presynaptic stimulation. At the same
time, avoiding excessive spike firing reduces the selectivity of neurons. Among them,
dt, lr, step and threshold parameters have a great influence on the experimental results.
After many experiments, we continued to adjust the method to find the best value suitable
for different datasets. Among them, dt represents the time interval of taking an event
frame for the dt time interval of the entire sign language dataset video, and step represents
the number of internal loops during the training process. Among them, the learning rate
and Vth parameters are the optimal solutions obtained from continuous adjustment after
multiple training sessions and can be adjusted according to your own data set and data size.
Among them, Vth represents the threshold value set in the process of generating spikes,
and this value will determine the number of spikes generated.

Table 3. Comparison of parameters corresponding to the training results.

Dataset Step dt Vth lr Acc (%)

DVS_Sign 50 40 0.4 4× 10−4 65.00

DVS_Sign 60 30 0.2 1× 10−4 68.00

DVS_v2e 70 50 0.2 4× 10−3 72.00

DVS_v2e 80 40 0.3 1× 10−3 77.00

6. Discussion

In this work, we consider the characteristics of low power consumption and high
temporal resolution of event camera, which makes it suitable for sign language gesture
recognition with robot perception and human machine interaction. The present DVS_Sign
language gesture dataset is proposed and the recognition is demonstrated in SNN with
STBP. Firstly, to better help people with speech impairments or nonverbal robot instructions,
the dataset can be expanded and enriched in the future. Secondly, the data formats that our
network model can accept are limited. If multiple data formats including the event data
and traditional RGB video can both be received directly, the networks could be added data
pre-processing module and improved in the efficiency for practical applications.
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7. Conclusions

This paper introduces a method for sign language gesture recognition and classification
based on an event camera, through the use of an event-based sign language gesture dataset
(DVS_Sign and DVS_Sign_v2e), which is demonstrated in the SNN with the STBP method.
The present dataset is divided into five classifications: verbs, quantifiers, position, things
and people. These adapt to actual scenarios where robots provide instructions or assistances.
Additionally, we trained on both datasets and the best result was 77% accuracy on the
DVS_Sign_v2e dataset, which verified the feasibility and validity of this method. However,
this work did not achieve highest accuracy, which can be further studied by modified the
network structure and expanding the datasets to enrich the accuracy and robustness of
the algorithm. In the future, we will consider taking more scenes of this sign language
gesture recognition method into the field of robot perception. In addition to its low power
consumption, the high-speed feature of the event camera is also significant for sign language
gesture recognition and robotic perception in future intelligent systems.
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