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Abstract: With the widely application of electronic transformers in smart grids, transformer faults
have become a pressing problem. However, reliable fault diagnosis of electronic current transformers
(ECT) is still an open problem due to the complexity and diversity of fault types. In order to solve
this problem, this paper proposes an ECT fault diagnosis model based on radial basis function
neural network (RBFNN) and optimizes the model parameters and the network size of RBFNN
simultaneously via an improved whale optimization algorithm (WOA) to improve the classification
accuracy and robustness of RBFNN. Since the classical WOA is easy to fall into a locally optimal
performance, a hybrid multi-strategies WOA algorithm (CASAWOA) is proposed for further im-
provement in optimization performance. Firstly, we introduced the tent chaotic map strategy to
improve the population diversity of WOA. Secondly, we introduced nonlinear convergence factor
and adaptive inertia weight to enhance the exploitation ability of the WOA. Finally, on the premise
of ensuring the convergence speed of the algorithm, we modified the simulated annealing mech-
anism in order to prevent premature convergence. The benchmark function tests show that the
CASAWOA outperforms other state-of-the-art WOA algorithms in terms of convergence speed and
exploration ability. Furthermore, to validate the performance of ECT fault diagnosis model based on
CASAWOA-RBFNN, a comprehensive analysis of eight fault diagnosis methods is conducted based
on the ECT fault samples collected from the detection circuit. The experimental results show that the
CASAWOA-RBFNN achieves an accuracy of 97.77% in ECT fault diagnosis, which is 9.8% better than
WOA-RBF and which shows promising engineering practicality.

Keywords: transformer fault diagnosis; whale optimization algorithm; RBF neural network;
simulated annealing algorithm

1. Introduction

In recent years, electronic current transformers (ECTs) have become an important
part of the smart grid,. These devices provide indispensable measurement information for
intelligent substations and ensure safe, reliable, economically viable, and efficient operation
of the power grid. [1]. Since transformers usually operate in harsh environments (such
as substations) for long periods of time, ECTs have a high potential for failure during
operation. Transformer failures may cause limited implementation of auxiliary functions of
the device, which will threaten the normal operation of the substation system and even
cause power supply interruption and profit loss [2]. Effective fault diagnosis can help
engineers troubleshoot early faults and improve the reliability of the power system [3].
Therefore, accurate and timely ECT fault diagnosis techniques have widely attracted
attention in the past decades.

At present, numerous studies have been carried out for fault diagnosis of ECTs, and
these methods can be mainly divided into three categories: fault diagnosis methods based
on analytical mathematical models, fault diagnosis methods based on signal processing,

Electronics 2023, 12, 1066. https://doi.org/10.3390/electronics12041066 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12041066
https://doi.org/10.3390/electronics12041066
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12041066
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12041066?type=check_update&version=2


Electronics 2023, 12, 1066 2 of 20

and knowledge-based fault diagnosis methods [4–6]. The methods based on analytical
mathematical models compare measurement information by establishing mathematical
models. However, these methods are highly dependent on how high the accuracy of the
established model is and therefore have a low robustness. Signal processing-based fault
diagnosis methods decompose the time-frequency features of the collected signals and
utilize the feature vectors to locate the faults. Chen et al. [7] extracted the descending feature
point by using Hilbert transform and used the cutoff points of the sampled data for detection
and feature estimation. Xiong et al. [8] analyzed the features of electric quantities in the
primary system and used wavelet transform for multi-scale modulus maxima processing.
In this processing, the abrupt change moment of the signal is determined and compared to
the abrupt change moments of multiple transformers to determine ECT faults. However,
in the case of noisy signals in abnormal operating conditions, fault diagnosis with single
logic variable combinations suffers from insufficient adaptability and low fault diagnosis
accuracy. Compared with the above-mentioned methods, knowledge-based fault diagnosis
methods have numerous advantages in terms of diagnostic accuracy and robustness [9].
Some knowledge-based methods (such as expert system, fuzzy theory, and fault tree
analysis) have played an important part in fault diagnosis models for ECTs.

In the era of Industry 4.0, there is widespread interest in diagnosing equipment failure
issues in an intelligent manner. With the increase in computer computing capacity, machine
learning techniques have gradually emerged, and some well-known artificial intelligence
methods (such as the support vector machine (SVM), artificial neural network (ANN) [10],
adaptive encoders [11], extreme learning machines [12], the back propagation neural net-
work (BPNN) [13], and many other algorithms) are broadly employed in transformer fault
diagnosis. Li et al. [14] proposed a genetic algorithm optimized support vector machine to
improve the classification performance of SVM. L. Qu et al. [15] introduced radial basis
function to the SVM (RBF-SVM), which significantly improves the diagnosis accuracy and
generalization ability. However, the SVM algorithm is essentially a binary classification
algorithm, which is hard to effectively use to solve multi-classification problems. Moreover,
the SVM based diagnosis method is still less accurate than the ANN-based model. As
one of the most well-known structures of ANN, BPNNs have the advantages of strong
generalization ability and parallel processing, but the parameters of BPNN are extensive,
such as connection weights, the threshold, and the topology of the network. The process
used to determine the optimal parameters of BPNN is time consuming, and it is easy to
fall into local optima, resulting in an unsatisfied classification performance. In [16], the
improved distributed parallel firefly algorithm is proposed to optimize the parameters
of BPNN, which improves the diagnosis accuracy of BPNN. However, the problems of
low convergence speed in the BPNN training process and low generalization ability have
not been well addressed in the proposed model. Radial basis function neural network
(RBFNN) is a network structure that uses a special transfer function in the hidden layer.
Being different from BPNNs, RBFNNs do not need to train the global connection weights,
but they do adjust only certain important weights that affect the outputs [17]. Compared
with other machine learning methods, RBFNN has the advantages of strong nonlinear
approximation ability, a fast convergence rate, and good generalization performance, which
have potential for application in ECT fault diagnosis.

However, similar to BPNN, the network parameters (i.e., the coordinates of centers,
the widths of neurons, and the output weights) of RBFNN largely affect the network
performance. Determining the optimal network parameters according to the training data
can improve the classification performance of RBFNNs, and this task can be expressed as
an optimization problem [18]. Metaheuristic algorithms have shown its strong capacity
when dealing with numerical optimization problems. Naturally inspired metaheuristic
algorithms can be generally divided into two categories: evolutionary algorithms (EAs) and
swarm intelligence (SI) algorithms [19]. EAs imitate the process of individual evolution,
while SI algorithms imitate some behaviors of social animals (such as flying, seeking food,
or collecting resources). One of the most well-known SI algorithms is particle swarm
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optimization (PSO). Han et al. [20] proposed an adaptive PSO to optimize the RBFNN
size and parameters. The experimental results showed that the PSO-optimized RBFNN
outperformed other RBFNNs in terms of solving nonlinear problems. In addition to
PSO optimized neural networks, genetic algorithms (GA) [21], cuckoo searches [22], bat
algorithms [23] and grey wolf algorithms [24] have shown enhanced performance over
traditional methods in optimization searching, but they have also exposed that most of
the algorithms still have the problems of falling into local optima caused by the stochastic
nature of metaheuristic algorithms.

Heuristic-based RBFNN formulate the parameter-seeking problem as an optimiza-
tion task and establish the objective function. Then, metaheuristic algorithms are used
to solve the optimal network parameters. In order to find the most appropriate RBFNN
parameters as well as improve ECT fault diagnosis accuracy, we proposed a ECT fault
diagnosis model based on chaos adaptive simulated annealing based whale optimization al-
gorithm (CASAWOA) optimized RBFNN (CASAWOA-RBF). The following are the primary
contributions of this article:

1. We designed a detection circuit for electronic current transformers. Based on this
design, we collected data through the detection points in the circuit, which can provide
samples for training the RBFNN;

2. We introduced the tent chaotic map strategy to enhance the population diversity of
WOA, which helps accelerate the convergence speed of the algorithm;

3. We introduced nonlinear convergence factor and adaptive inertia weight to enhance
the local exploitation ability and global searching abilities of the WOA;

4. We adjusted the annealing function of the SA algorithm, which makes the annealing
speed vary according to the fitness value of the accepted worse solution. This will
not only help the algorithm to avoid premature convergence but also improve the
convergent speed in the late evolution;

5. We proposed the CASAWOA-RBF as a tool to solve the ECT fault diagnosis problem.

The rest parts of this article are organized as follows: relevant previous studies are
introduced in Section 2. We elaborate the proposed algorithm in Section 3, and we compare
the optimization and fault diagnosis performances of CASAWOA with those of other WOA
algorithms in Section 4. Finally, a conclusion is summarized in Section 5.

2. Materials and Methods
2.1. Introduction of Detection Circuit for Electronic Current Transformers

In order to effectively collect various types of fault samples from ECTs, we designed
a detection circuit for ECT fault diagnosis by combining the fault types and the struc-
tural characteristics of ECTs. Some of the faults in electronic current transformers can
be identified with a single signal, while some faults require the identification of multiple
signals [7]. By installing several key detection points to detect the current and voltage
parameters on the primary and secondary sides of the electronic current transformer, the
system parameters of the ECT can be obtained to determine whether the transformer is
operating under normal operating conditions. Figure 1 shows the principle diagram of the
detection circuit of ECT.

In Figure 1, CT represents the electronic current transformer. IA, IB, IC represent the A,
B, and C three phases current, respectively. Voltage Ua, Uc and current Ia, Ic represent the
measured voltage and current of the metering unit “1”and “2”, respectively. The secondary
side voltage of CT1 and CT2 is ua and uc, respectively. When the ECT is short-circuited, the
impedance change is detected by applying 1 KHz signal to accumulate multiple signals. In
case of the secondary short circuit in CT, the network impedance varies according to the
load and the fault is determined through several detected parameters.
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Figure 1. Electronic current transformer fault detection principle diagram.

For the faults on the primary and secondary sides, the fault diagnosis is conducted by
analyzing the data of seven detection points, including IA, IB, Ua, Uc, Ia, Ic, ua, and uc. The
fault types and corresponding detection point variation ranges proposed in this paper are
shown below:

(1) CT1 Primary side short circuit: fluctuation of ua exceeds 10%;
(2) CT2 Primary side short circuit: fluctuation of uc exceeds 10%;
(3) CT1 Short circuit (in front of the secondary side): fluctuation of Ia exceeds 10%;
(4) CT2 Short circuit (in front of the secondary side): fluctuation of Ib exceeds 10%;
(5) CT1 Short circuit (at the back of the secondary side): fluctuation of Ia and ua exceed

10% at the same time;
(6) CT2 Short circuit (at the back of the secondary side): fluctuation of Ib and uc exceed

10% at the same time;
(7) CT Phase short circuit (secondary side): fluctuation of IA, IB, ua and uc more than 10%

at the same time.

2.2. Introduction of RBF Neural Network

RBFNN is a three-layer feedforward network, which usually consists of an input
layer, a hidden layer, and an output layer [25,26]. As an example, Figure 2 shows the
structure of a multiple-input and multiple-output RBFNN. The RBFNN employs radial
basis functions as the activation function of the hidden layer neurons, and the output
layer is a linear combination of the hidden layer outputs, which can be expressed as

yn =
j

∑
i=1

ωin ϕi, n ∈ [1, p]. Here, ωin is the output weight between the i-th hidden neuron

and the n-th output neuron. ϕi denotes the output of the i-th hidden neuron, which is
usually defined by a Gaussian radial basis function:

ϕi = e‖X−µk‖/δ2
k , i ∈ [1, j], X = [x1, x2, . . . , xm]

T (1)

where δk is the neuron width of k-th hidden neuron and µk denotes the center vector of the
k-th hidden neuron.
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As shown in Figure 2, in the RBFNN, the hidden layers can map the input vec-
tor X from the low dimensions to the high dimensions. Therefore, it can convert the
low-dimensional linearly inseparable problem to the high-dimensional linearly separable
problem, which can accelerate the learning rate and avoid being trapped into local optima.

2.3. Introduction of Whale Optimization Algorithm (WOA)

The WOA is a SI algorithm for numerical optimization with the advantages of easy
implementation, few adjustment parameters, and excellent stability [27]. WOA stimulates
the special predation mechanism of humpback whales, and it accomplishes the task of
finding the optimal solution through three main stages: searching for prey, encircling prey,
and the bubble-net attacking strategy.

2.3.1. Searching the Prey

In the searching stage, humpback whales perform a random search according to
Equation (2):

X(t + 1) = Xrand − A× D (2)

D = |C× Xrand − X(t)| (3)

where t is the current iteration time, A and C are coefficient vectors, and Xrand is the
random position corresponding to the whale. The coefficient vectors A and C can be
obtained according to Equations (4) and (5).

A = 2 · a · r− a (4)

C = 2 · r (5)

where a is the linearly decreasing momentum from 2 to 0 during the iteration and r is a
random vector between 0 and 1.

2.3.2. Encircling the Prey

In the encircling prey stage, the humpback whales surround the prey by selecting
the optimal prey location according to Equation (6) when |A| ≤ 1. After the algorithm
determines the current optimal solution, other search individuals will keep approaching
the current optimal solution and updating the next generation of candidates.

X(t + 1) = Xbest(t)− A× D (6)

D = |C× Xbest(t)− X(t)| (7)

where Xbest(t) is the current optimal solution.
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2.3.3. Bubble-Net Attacking Strategy

The bubble-net attacking strategy simulates the special movements of whales in
bubble-net foraging and establishes two mechanisms as follows:

(1) Shrinking Encircling Mechanism:

This mechanism is accomplished by the value of the parameter a in Equation (4).
Since the trend of A depends on the change of a, A is a random value between −a and a.
Setting an arbitrary value in [−1, 1], the new position of the whale can be redefined by
the physical space distance between the original selected position and the current optimal
selected position.

(2) Logarithmic Spiral Updating Position:

This technique first needs to calculate the distance between the whale and the prey.
Then, the humpback whale moves with a conical logarithmic spiral motion toward prey.
This movement can be expressed as follows:

X(t + 1) = D′ × ebl × cos(2πl) + Xbest(t) (8)

where D′ = |Xbest(t)− X(t)| is the distance between the whale and the prey. b is a constant
for defining the logarithmic spiral shapes. l is a random value in [−1, 1].

Humpback whales perform shrinking, encircling, and spiral motions in space simulta-
neously. As a result, the possibility of choosing two mechanisms is the same, which can be
mathematically expressed according to Equation (9).

X(t + 1) =

{
Xbest(t)− A× D p < 0.5
D′ × ebl × cos(2πl) + Xbest(t) p ≥ 0.5

(9)

where p is a random number in the range [1].

3. Proposed Methods

In this section, we detail the CASAWOA method, which is used to train RBFNN. Then,
the proposed CASAWOA-RBFNN is introduced with the aim of determining the optimal
parameters of RBFNN to achieve better ECT fault diagnosis performance.

3.1. Chaos Adaptive Simulated Annealing Based Whale Optimization Algorithm (CASAWOA)

The WOA has shown to obtain satisfied accuracy when dealing with low-dimensional
unimodal optimization tasks. However, the problems with the whale optimization al-
gorithm (such as relying on the initial solution, not having purposeful performance in
finding the optimal solution, and being likely to fall into local optima) make the algo-
rithm ineffective in dealing with high-dimensional problems. In this section, we pro-
pose an improved WOA algorithm to improve the performance of the algorithm by
chaotic mapping, nonlinear convergence factor, adaptive inertia weight, and simulated
annealing mechanism.

3.1.1. Tent Chaotic Map Strategy

As demonstrated in Section 2.3, the conventional WOA is completely random when
initializing populations, which will affect the convergence speed and the performance
of the algorithm [28]. However, theoretical studies have shown that convergence can be
greatly accelerated if the diversity of the initial solutions can be guaranteed. Therefore, we
initialize the population using the tent chaotic map strategy. The mathematical expression
is as follows:

xn+1 =

{ xn
β , 0 ≤ xn < threshold

1−xn
1−β , threshold ≤ xn ≤ 1

(10)
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When threshold = 0.5, the tent map achieves the most uniform distribution character-
istics [28]. It should be noted that, as shown in Figure 3, there are cycles of 0.2, 0.4, 0.6, and
0.8 in the tent mapping, and there will also be unstable cycle points of 0.25, 0.5, and 0.75;
all of these points will iterate to 0. Therefore, we added a mechanism to the tent chaotic
mapping to avoid iterating into these unstable periodic points. The main steps of the tent
chaotic map are shown in Table 1.
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Table 1. Main steps of tent chaotic map.

Main Steps Description

Step 1 Randomly generate the initial values x0, and record them in the array
y(1) = x0, i = j = 1

Step 2 Generating the sequences of x iteratively according to Equation (10).

Step 3
Check if the termination condition is reached. If yes, go to Step 5;
otherwise: if xi = {0, 0.25, 0.5, 0.75} or xi = xi−k, k = {0, 1, 2, 3, 4}, go to
Step 4, otherwise go back to Step 2.

Step 4 Change the initial value x(i) = y(j + 1) = y(j) + m, j = j + 1, where m is
the random value.

Step 5 Stop.

3.1.2. Nonlinear Convergence Factor

According to Equations (1) and (2), it is clear that the convergence factor depends
mainly on the parameter r. These parameters determine whether the algorithm performs
the global search or the spiral search. As a result, the convergence factor has a direct impact
on the performance of the algorithm. The convergence factor of the basic WOA algorithm
linearly decreases and cannot be accurately adjusted and traded off in the case of complex
and nonlinear optimization problems. Thus, we propose a nonlinear convergence factor
with the following updated equation:

a = 1− cos[(1− t/MIter)m × π] (11)

where t is the current iteration, MIter is the maximum number of cycles, and m is the
nonlinear adjustment factor that controls the decreasing degree of the convergence factor a.

3.1.3. Adaptive Inertia Weight

In order to improve the global searching ability, the idea of inertia weights in the
PSO algorithm is introduced in this paper. It was found in the literature [29] that the
reasonable setting of inertia weights can maximize the performance of the algorithm in the
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optimization search. In this paper, we improve the global and local exploration performance
of WOA by introducing a new nonlinear inertia weight, which is formulated as follows:

w = 2×
[

sin
(

π × t
2×Max_iter

+ π

)
+ 1
]
· n (12)

where n is a random number between 0 and 1.
Certain perturbations in the late iteration of the algorithm can make it easier for the

algorithm to jump out of the local optima [29]. Equation (12) shows that at the beginning of
the iteration, a large w can make it easier for global exploration, while at the later stage of
the iteration of the algorithm, a smaller w can make the algorithm have better convergence
and find the optimal solution. Therefore, Equation (9) is substituted with Equation (13):

→
X(t + 1) =


→
X(t + 1) = w ·

→
Xbest (t)−

→
A×

→
D in case of p < 0.5

→
X(t + 1) =

→
D
′
× ebl × cos(2πl) + w ·

→
Xbest(t) in case of p ≥ 0.5

(13)

3.1.4. The Improved Simulated Annealing Mechanism

The simulated annealing (SA) algorithm [30] is used to solve combinatorial optimiza-
tion problems. The SA algorithm provides an effective approximate solution algorithm
for NP-hard problems and overcomes the defects of trapping in local optima and the
dependence on initial value in other optimization processes. In this paper, the main reason
for employing the SA algorithm is to reduce the risk by offsetting the selection pressure.

One of the drawbacks of the original SA algorithms, which use fixed values of the
annealing parameter and initial temperature, is that it may decrease the convergence speed.
To overcome these drawbacks, we propose a modified probability of accepting worse
solution which is shown in Equation (14):

Pa = exp
(
− f (vi)− f (xi)

f (vi)Tm

)
(14)

where f (vi), f (xi) are the objective function and Tm is the value of current temperature.
When the Tm is high, Pa provides the worst solution with a high probability of acceptance;
this ensures that the algorithm will not be trapped in the local optima. In the later stage
of the algorithm, the probability of accepting worse solutions decreases, which means the
algorithm becomes greedier for finding the potentially optimal solution.

Enlighted by the Cauchy annealing schedule [31], CASAWOA decreases the tempera-
ture after accepting a worse solution as Equation (15) shows.

Tm =
Ts

1+λ
(15)

where Ts is the initial temperature and Tm is the following temperature in the next iteration.
The definition of the annealing factor λ is shown in Equation (16):

λ = η
f itnew

f itnew + f itcurrent
(16)

where η is a positive factor between 0 and 1 and f itnew and f itcurrent are the fitness val-
ues of new and current solutions. Because the SA mechanism is based on the premise
that the fitness of the new solution is lower than that of the current solution, we have
f itnew < f itcurrent. Therefore, this annealing parameter λ is always between 0 and 0.5.
Equation (16) makes the annealing rate vary with the quality of the solutions: when
the algorithm accepts a worse solution with high fitness, its temperature attenuation is
tiny, ensuring that the algorithm can accept subsequent worse solutions; if the fitness of
the accepted worse solution is much lower than that of the current solution, Equation
(15) will help CASAWOA to decrease the temperature sharper to achieve an accelerating
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convergence speed. The pseudocode for the SA process in the CASAWOA is shown in
Algorithm 1.

Algorithm 1 The Simulated Annealing Search Process in the CASAWOA

1: xj
i = current solution; f itcurrent = current solution fitness value

2: vj
i = new solution generated; f itnew = new solution fitness value

3: Initialize the temperature Ts.
4: Calculate the fitness value of two solutions
5: if f itnew > fitness of f itcurrent then
6: Accept vj

i
7: else
8: Calculate the probability Pa by Equation (14)
9: end if
10: if rand (0, 1) > Pa then
11: Accept vj

i
12: Upgrade the temperature by Equation (15)
13: else
14: Accept xj

i
15: end if

3.1.5. Specific Steps of the CASAWOA

In a nutshell, the main improvement of WOA focuses on population diversity, local
exploitation ability, and global optimization ability. The pseudocode of the CASAWOA is
given as Algorithm 2 shows:

Algorithm 2 The Pseudocode of the CASAWOA

1: Initialize CASAWOA parameters
2: Initialize population Xi(i = 1, 2, . . . , n) according to Equation (10)
3: Calculate the fitness value of Xi marked as f itcurrent
4: Xbest = the best search agent
5: for Iteration = 1 to MIter do
6: for Xi, i = 1, 2, 3, . . . , n
7: Update a, A, C, w, l and p
8: if p < 0.5 then
9: if |A| < 1 then
10: Update the current solution by Equation (13) in the case of p < 0.5
11: else (|A| ≥ 1)
12: Select a random search agent
13: Update the current solution by Equation (2)
14: end if
15: if p ≥ 0.5 then
16: Update the current solution by Equation (13) in the case of p ≥ 0.5
17: end if
18: end for
19: Check if there are solutions that exceed the search space and revise them.
20: Calculate the fitness of the new solution marked as f itnew
21: Update the solution according to the SA process in Algorithm 1
22: end for
23: Output Xbest

3.2. CASAWOA Optimized RBF Neural Network (CASAWOA-RBF)

In this section, we demonstrate the training process for optimizing the parameters
and the network size in CASAWOA-RBFNN. In the initialization, CASAWOA generates
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the initial solution according to Equation (10). As shown in Equation (17), let xi denote the
initial position of the i-th whale.

xi = [µT
i,1, δi,1, ωi,1, µT

i,2, δi,2, ωi,2, . . . , µT
i,Hi

, δi,Hi , ωi,Hi ] (17)

where µT
i,1, δi,1, ωi,1 are the center weights, the hidden layer neuron width, and the output

weights, respectively. Hi is the number of the hidden layer neuron (RBF neural network
size) and dimi is the dimension of the i-th whale satisfying dimi = (2 + inputn)Hi, where
inputn is the number of the input variables.

In RBFNN, the fitness function of the whale represents the accuracy of the training
network. Based on the comprehensive consideration of network accuracy and network size,
the fitness function based on root mean square error is defined as Equation (18) shows.

f iti(xi) =

√√√√ 1
L(|xi|)

L(|xi |)

∑
i=1

(yi −Oi)
2 + γHi (18)

where L(|xi|) represents the number of data pairs in xi. yi and Oi denote the actual and
desired output values of RBFNN, respectively. γ is the adjustment factor, which is generally
taken as 0.03 according to experience [32].

CASAWOA approaches the position of the optimal whale according to Equation (13).
The dimensions of the other whales are updated by changing the number of hidden layer
neurons, as shown in Equation (19)

Hi =

{
Hi + 1 if Hbest ≥ Hi
Hi − 1 if Hbest < Hi

(19)

where Hbest is the network size (number of the hidden layer neuron) corresponding to
the optimal whale individuals. Considering the problem of uniform dimensionality of
whale populations, we adopt the maximum dimension criterion in Ref. [33], i.e., all whale
individuals share a common virtual space marked as dimv, and if the virtual space dimv is
larger than the actual space, the remaining positions of the virtual space will be initialized
randomly. After the update process, the virtual space will be emptied.

From the discussion above, the main steps of the CASAWOA-RBF neural network
(CASAWOA-RBF) are summarized as follows:

Step 1: Initialize the CASAWOA parameters, the maximum iteration number MIter, di-
mensionality, population size N, initial temperature Ts, and nonlinear adjustment
factor m.

Step 2: Generate the RBFNN as required by the ECT fault diagnosis and initialize
the position of whales according to Equation (10) marked as X = [x1, x2, . . . , xN ], where
xi, i ∈ [1, N] consists of the center weights µi, the hidden layer neuron width δi and output
weights ωi.

Step 3: Calculate the fitness value of each whale. The fitness function is given in
Equation (17).

Step 4: Iterate through all the whale individuals in the initial solution X and update
the solutions via the bubble-net attacking strategy according to Equation (13).

Step 5: Calculate the fitness of the new solution and mark them as f itnew.
Step 6: Update the solutions according to the SA process in Algorithm 1.
Step 7: If the number of iterations has reached the MIter, continue to the next step;

otherwise, return to Step 3.
Step 8: Input the optimized number of hidden layer neuron H into the RBF neural

network and determine the network structure.
Step 9: Feed the optimized center weights µi, the hidden layer neuron width δi and

output weights ωi into the RBF neural network.
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Step 10: Feed the test samples into the trained RBF network to classify the fault types
of ECT.

4. Simulation and Results

In order to evaluate the proposed CASAWOA and the performance of the CASAWOA
optimized RBF neural network for CT fault diagnosis, the simulations are conducted with
MATLAB 2020b. Section “Results for benchmark functions” compares the optimization
performance of the proposed CASAWOA with other WOA in five test functions and
section “Performance of CT fault diagnosis based on CASAWOA optimized RBF network”
compares the performance of CT fault diagnosis based on CASAWOA-RBF network with
eight other improved RBF networks.

4.1. Results for Benchmark Functions

As illustrated in Section 3.1, we took several measures to improve the WOA, so we
intend to test our CASAWOA with the existing WOA [27] and SAWOA [32] through
numerical benchmark functions. According to the best parameters of SAWOA elaborated
in [32], the parameters of WOA, SAWOA, and CASAWOA are set as shown in Table 2. All
the WOA-based algorithms were tested on five well-known benchmark functions as shown
in Table 3. Further, 30 independent runs are carried out in each case in our simulations.

Table 2. Main parameters of WOA-based algorithms.

Algorithms Population
Size

Maximum
Iteration
Number

Initial
Temperature η

Nonlinear
Adjustment

Factor

Annealing
Factor

WOA 30 2000 - - -
SAWOA 30 2000 100 - - 0.93

CASAWOA 30 2000 100 0.1 1.6

WOA: Whale optimization algorithm; SAWOA: Hybrid whale optimization algorithm with simulated annealing;
CASAWOA: Chaos adaptive whale optimization algorithm with simulated annealing.

Table 3. Benchmark functions.

ID ID Dimension Range Optimum

F1 f1(x) =
n
∑

i=1
x2

i
30 [−100, 100] 0

F2 f3(x) =
D−1
∑

i=1
100
(

xi+1 − x2
i
)2

+ (xi − 1)2 30 [−15, 15] 0

F3 f4(x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] 30 [−5.1, 5.1] 0

F4 f5(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e 30 [−32, 32] 0

F5 f6(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600, 600] 0

F1: Sphere; F2: Rosenbrock; F3: Rastrigin; F4: Ackley; F5: Griewank.

The comparative results between WOA, SAWOA, and CASAWOA are given in Table 4,
and the best results of all the algorithms are bolded. The ‘Mean’ column shows the average
best values, and the ‘SD’ column contains the standard deviation of the best values. It can
be seen that in all experiments, CASAWOA achieved better results than the other WOA
algorithms, and the standard deviation of the results obtained by CASAWOA is also the
best. This indicates that the optimization performance of CASAWOA is more stable than
that of the other methods.
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Table 4. The results of WOA, SAWOA, and CASAWOA in the benchmark functions.

ID
WOA SAWOA CASAWOA

Mean SD Mean SD Mean SD

F1 1.62 × 10−17 9.66 × 10−18 9.29 × 10−18 5.27 × 10−18 00 × 10+00 00 × 10+00

F2 0.0355878 0.0381329 0.0257802 0.0288629 5.21 × 10−6 1.30 × 10−5

F3 00 × 10+00 00 × 10+00 00 × 10+00 00 × 10+00 00 × 10+00 00 × 10+00

F4 3.84 × 10−15 1.34 × 10−15 1.24 × 10−15 1.09 × 10−15 8.88 × 10−16 00 × 10+00

F5 1.1 × 10−13 6.7 × 10−13 8.88 × 10−17 1.72 × 10−16 00 × 10+00 00 × 10+00

In order to show the convergence speed performance, we make comparisons with
SAWOA and WOA in the case of D = 30. Figure 4 shows the details of convergence speed
in different functions through three WOA algorithms.
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From the figures presented, the CASAWOA not only achieves better results in all the
test functions, it also outperforms SAWOA and WOA in terms of convergence speed in
the Griewank, Rastrigin, and Rosenbrock functions. For the Ackley function, CASAWOA
has a better best-mean-value than WOA and SAWOA but has a lower convergent speed
than WOA.

From the simulation results, for the five test benchmark functions, CASAWOA has a
better ability to optimize functions than WOA and SAWOA, especially in the case of the
Rosenbrock and Griewank functions. Since the network training problem is considered
an optimization task, having a high similarity with the presented benchmark functions is
important. We hope that the CASAWOA will also perform better when tackling the neural
network training problem.

4.2. Performance of ECT Fault Diagnosis Based on CASAWOA Optimized RBF Network
4.2.1. Data Acquisition and Preprocessing

Faults in the primary side can be identified with a single signal, while some faults
in the secondary side require identification with multiple signals. For the faults on the
primary and secondary sides of the ECT, the test environment platform was established to
collect seven crucial parameters as the sample data. We collected 140 groups of data under
normal operation state and 140 groups of data in each of the seven fault states. Then, we
randomly selected 80% of the samples in each category to train the RBF neural network
and the remaining 20% of the dataset functioned as the test set. Table 5 shows some of the
collected sample data.

Table 5. Selected sample data from the test platform.

Index IA/A Ia/mA Ic/mA Ua/V Uc/V ua/v uc/V Fault Type

1 1.064 98.23 99.98 173.1 173.1 1.414 1.413 CT1 Primary side short circuit
2 1.031 121.71 100.03 173.1 173.1 0.426 1.414 CT2 Primary side short circuit

3 1.054 98.35 124.34 173.1 173.1 1.413 0.332 CT1 Short circuit (in front of the
secondary side)

4 1.092 62.32 100.0 173.2 173.2 1.411 1.411 CT2 Short circuit (in front of the
secondary side)

5 1.002 99.31 51.01 173.1 173.1 1.413 1.413 CT1 Short circuit (at the back of
the secondary side)

6 1.032 12.16 99.86 173.2 173.1 0.018 1.414 CT2 Short circuit (at the back of
the secondary side)

7 1.066 100.13 4.316 173.2 173.1 1.413 0.054 CT Phase short circuit
(Secondary side)

8 1.126 50.06 50.4 173.1 173.2 0.707 0.708 Normal

The segmented datasets are imported into the input layer of the RBFNN for training.
It should be noted that, since the proposed ECT fault diagnosis model is a neural network-
based classifier, the fault types of ECT need to be recoded and imported into the network,
the fault types and corresponding code are shown in Table 6.

Table 6. The types and corresponding code format of the electronic current transformer status.

Index Fault Type Fault Code

F1 Normal 0000
F2 CT1 Primary side short circuit 0001
F3 CT2 Primary side short circuit 0010
F4 CT1 Short circuit (in front of secondary side) 0011
F5 CT2 Short circuit (in front of secondary side) 0100
F6 CT1 Short circuit (at the back of the secondary side) 0101
F7 CT2 Short circuit (at the back of the secondary side) 0110
F8 CT Phase short circuit (Secondary side) 0111
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4.2.2. Compared Methods

To verify the performance of CASAWOA optimized RBF neural network, we first com-
pared CASAWOA-RBF with SAWOA-RBF, WOA-RBF, and RBF neural network vertically;
second, a cross-sectional comparison was conducted by choosing several metaheuristics
combined with RBFNN to constitute different ECT fault diagnosis models. Finally, we
compared the accuracy of ECT fault diagnosis by CASAWOA-RBF with existing neural
network structures.

Firstly, we conducted a longitudinal comparison of CASAWOA-RBF, SAWOA-RBF,
WOA-RBF and RBF-NN. Secondly, we selected four state-of-the-art metaheuristic algo-
rithms combined with RBFNN: the gray wolf optimization (GWO)-RBF [34], the artificial
bee colony (ABC)-RBF [35], the salp swarm algorithm (SSA)-RBF [36], and the seagull
optimization (SOA)-RBF [37]. We then compared these combined neural networks with
our algorithm. Finally, we selected BP neural networks [13], extreme learning machines
(ELM) [12], and probabilistic neural networks (PNN) [10] for further comparison with
CASAWOA-RBF.

4.2.3. Results of Model Comparison

The calculation platform for the simulation is Ryzen R5 2600CPU@3.4GHz with
16 G memory. We took the segmented dataset as the training set for RBFNN training.
Since the sample data collected from the test platform are seven-dimensional, the number
of input layers is 7 and the number of output layers is four. The specific parameters of
each metaheuristic in the simulations are shown in Table 7, where MIter is the maximum
iteration, N is the population size N, T0 is the initial temperature, and Limit is a special
threshold used to abandon the solution in ABC algorithm.

Table 7. Detailed parameters of each model.

Methods Parameters Settings

WOA-RBF N = 10, MIter = 100
SAWOA-RBF N = 10, MIter = 100, T0 = 100, annealing factor = 0.93

CASAWOA-RBF N = 10, MIter = 100, T0 = 100, factor η = 0.1
nonlinear adjustment factor = 1.6

GWO-RBF N = 10, MIter = 100
ABC-RBF N = 10, MIter = 100, Limit = 5
SSA-RBF N = 10, MIter = 100
SOA-RBF N = 10, MIter = 100

ELM Number of hidden neuron = 20
PNN Smoothing factor = 0.06

Figure 5 shows the diagnosis results of the first set of comparison experiments (the
WOA-RBF, the SAWOA-RBF, and the CASAWOA-RBF). The overall accuracy of the four
models is presented in Table 8. It is clear that the RBF-NN achieves the lowest classification
accuracy. Compared with other WOA models based on RBF networks, CASAWOA-RBF
achieves the highest accuracy of classification with 97.78%. which is higher than WOA-
RBF and CASAWOA-RBF. From Figure 5 and Table 8, it can be demonstrated that the
optimization of the model parameters and the network size of RBFNN by CASAWOA can
substantially improve the accuracy of RBF network as a classifier.

For further validation of the effectiveness of CASAWOA-RBF on various aspects of
the training set and test set, mean square error (MSE) is adopted to quantitatively evaluate
three models in the training and the test process. Figure 6 shows the MSE of four models
in comparison experiments. It is obvious that the dispersion of CASAWOA-RBF is the
smallest compared to SAWOA-RBF, WOA-RBF, and RBF-NN. This also implies that the
improved SA mechanism can improve the accuracy of finding global optimal values.
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Due to the rapid development of the metaheuristic methods in the past decades, we
intend to test our CASAWOA with other well-known latecomers. Based on the same
datasets, we compared the CASAWOA-RBF with other RBF-NN fault diagnosis models
based on intelligent algorithms in several aspects.

The visualization results of the metaheuristic-based diagnosis models and the accuracy
of each diagnostic model are given in Figure 7 and Table 9, respectively. Compared with
the results of the first simulation, these network models based on the novel metaheuristic
algorithms perform better than the WOA-RBF fault diagnosis model in general. However,
as shown in Table 10, it can still be found that, although the accuracy of WOA-RBF is
only 91.52% (which is lower than ABC-RBF, GWO-RBF, SSA-RBF, and ABC-RBF), the
improved CASAWOA-RBF achieves 97.78% in terms of accuracy, which is better than all
of the above algorithms. This indicates that the proposed CASAWOA still outperforms
the state-of-the-art SIs such as SSA, GWO, SOA, and so forth. In addition, as shown in
Figure 8, the MSEs of the other four metaheuristic-based RBF networks are all larger than
the CASAWOA-RBF model, which indicates that CASAWOA-RBF achieves better ECT
fault diagnosis performance.
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Table 9. The accuracy of each metaheuristic-based model.

Methods Accuracy (%)

WOA-RBF 91.52%
SAWOA-RBF 95.09%

GWO-RBF 95.54%
ABC-RBF 92.86%
SSA-RBF 95.09%
SOA-RBF 93.30%

CASAWOA-RBF 97.78%

Table 10. The accuracy of each ANN-Based model.

Methods Accuracy (%)

BP-NN 86.61%
ELM 91.07%
PNN 93.30%

CASAWOA-RBF 97.78%
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In the third set of experiments, we used existing neural network models and classical
neural network models (BP, ELM, and PNN) to compare with the CASAWOA-RBF model.
The average accuracy for each model and the corresponding diagnosis results are given in
Table 10 and Figure 9, respectively.

From the comparison with existing neural networks for ECT fault diagnosis, BP-
NN shows the lowest overall accuracy of 86.61%; PNN has a significant advantage over
traditional BP-NN and ELM in the accuracy of fault diagnosis, reaching 93.3% (even higher
than WOA-RBF and SOA-RBF in the first two sets of experiments). Compared with PNN,
BP-NN, and ELM, the CASAWOA-RBF model still has the highest diagnosis accuracy.

In addition to the accuracy, the recall and precision of all the neural network models are
shown in Table 12 and ??, respectively. It is clear that the CASAWOA-RBF neural network
has the highest recall for six fault types and achieves 100% recall rate in the fault “CT1 Short
circuit” and “CT Phase short circuit”. From Table ??, the CASAWOA-RBF model still has
the highest precision in most of the fault type classifications. This indicates that the fault
diagnosis model based on CASAWOA-RBF can provide more accurate classification results
compared with other models, which is crucial in practical applications in substations.
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Table 11. Comparison of the recall for each model.

ECT
Faults RBF-NN WOA-

RBF
SAWOA-

RBF
GWO-
RBF ABC-RBF SSA-RBF SOA-RBF BPNN ELM PNN CASAWOA-

RBF

F1 89.29% 92.86% 92.86% 96.43% 89.29% 96.43% 92.86% 89.29% 92.86% 92.86% 100%
F2 89.29% 89.29% 96.43% 96.43% 92.86% 92.86% 89.29% 89.29% 92.86% 92.86% 96.43%
F3 89.29% 89.29% 96.43% 92.86% 96.43% 96.43% 92.86% 85.71% 85.71% 92.86% 96.43%
F4 92.86% 92.86% 96.43% 89.29% 92.86% 96.43% 96.43% 85.71% 89.29% 92.86% 100%
F5 89.29% 92.86% 96.43% 92.86% 96.43% 96.43% 92.86% 78.57% 89.29% 92.86% 96.43%
F6 89.29% 89.29% 96.43% 100% 89.29% 92.86% 89.29% 89.29% 92.86% 92.86% 96.43%
F7 85.71% 92.86% 89.29% 100% 92.86% 92.86% 92.43% 85.71% 92.86% 96.43% 96.43%
F8 89.29% 92.86% 96.43% 96.43% 92.86% 92.86% 92.86% 89.29% 92.86% 92.86% 100%

Table 12. Comparison of the recall for each model.

ECT
Faults RBF-NN WOA-

RBF
SAWOA-

RBF
GWO-
RBF ABC-RBF SSA-RBF SOA-RBF BPNN ELM PNN CASAWOA-

RBF

F1 100.00% 89.66% 96.30% 96.43% 96.15% 93.10% 96.30% 80.65% 89.66% 92.86% 96.55%
F2 83.33% 83.33% 84.38% 90.00% 83.87% 96.30% 89.29% 83.33% 83.87% 86.67% 96.43%
F3 92.59% 89.29% 96.43% 92.86% 90.00% 93.10% 92.86% 82.76% 92.31% 96.30% 100%
F4 81.25% 89.66% 93.10% 96.15% 92.86% 96.43% 93.10% 88.89% 92.59% 89.66% 96.55%
F5 92.59% 100.00% 96.43% 100.00% 96.43% 96.43% 96.30% 88.00% 92.59% 92.86% 100%
F6 86.21% 92.59% 100.00% 93.33% 100.00% 89.66% 89.29% 92.59% 100.00% 100.00% 93.10%
F7 88.89% 92.86% 96.15% 96.55% 92.86% 96.43% 93.10% 85.71% 86.67% 93.10% 100%
F8 92.59% 96.30% 100.00% 100.00% 92.86% 100.00% 96.43% 92.59% 92.86% 96.30% 100%
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5. Conclusions

In this article, we proposed an improved hybrid optimization algorithm based on the
SA algorithm and WOA algorithm (CASAWOA) to obtain further improvement in solving
the problem of ECT fault diagnosis. The chaos tent map is used to enhance the convergence
speed at the early stage of iteration. In order to further improve the convergence speed of
the algorithm in the medium term of iteration, nonlinear convergence factor and adaptive
inertia weight are introduced in the bubble-net attacking stage. Furthermore, we introduced
the modified SA mechanism in order to prevent premature convergence.

Compared with WOA and SAWOA, CASAWOA achieves higher accuracy and con-
vergence speed. Further simulations were conducted for evaluating the performance of
ECT fault diagnosis by the CASAWOA optimized RBF neural network. The results showed
an enhanced accuracy and promising engineering practicability.

However, CASAWOA has a slow convergence rate when dealing with unimodal
optimization problems, which needs further improvement in the further study. In addition,
our test samples are collected based on detection circuits. In practical application scenarios,
we still need to consider the effect of noise on data collection. As a part of future research
in this area, we will investigate the characteristics of photoelectric current transformers
and improve CASAWOA to combine with probabilistic neural networks for photoelectric
current transformers fault diagnosis.
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