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Abstract: The demand for electric vehicles (EVs) is growing rapidly. This requires an ecosystem
that meets the user’s needs while preserving security. The rich data obtained from electric vehicle
stations are powered by the Internet of Things (IoT) ecosystem. This is achieved through us of electric
vehicle charging station management systems (EVCSMSs). However, the risks associated with cyber-
attacks on IoT systems are also increasing at the same pace. To help in finding malicious traffic,
intrusion detection systems (IDSs) play a vital role in traditional IT systems. This paper proposes a
classifier algorithm for detecting malicious traffic in the IoT environment using machine learning.
The proposed system uses a real IoT dataset derived from real IoT traffic. Multiple classifying
algorithms are evaluated. Results were obtained on both binary and multiclass traffic models. Using
the proposed algorithm in the IoT-based IDS engine that serves electric vehicle charging stations
will bring stability and eliminate a substantial number of cyberattacks that may disturb day-to-day
life activities.

Keywords: anomaly detection; cyber security; feature selection; Internet of Things (IoT); intrusion
detection system (IDS); machine learning; security

1. Introduction

The IoT paradigm has recently become part of the daily activities of our lives. However,
the vulnerabilities and insecurity associated with introducing IoT devices has alerted IoT
network operators and users [1]. Electric vehicle charging station deployment, as a part
of smart cities, has become popular in the last few years. Many countries have ambitious
plans to adopt many EVCSs quickly [2]. These new charging stations benefit from IoT
technology enhancements and provide intelligent features that make life easier and provide
more controls to EVCS operators. The EVCS, as an IoT device, cannot be decoupled from
the Internet. This is to offer comprehensive services to the customers. Unfortunately, this
enables a set of cyber-attacks against the whole EVCS ecosystem. The effect is not limited
to EVCSs alone. It extends to the critical infrastructure of the power grid and end users
equally. The EVCS, the power grid, and the end users are the main components of the EVCS
ecosystem. All these components of the EVCS ecosystem are subject to different kinds of
IoT cyber-attacks [3]. The EVCS industry requires rapid development in the infrastructure
to support sustainable growth. This mandates the construction of a reliable charging station
ecosystem for electric vehicles. The IoT ecosystem powers the rich data from electric vehicle
stations. This allows the developers to offer more capabilities that benefit the end user,
such as remote monitoring and user accounting. One of the valuable capabilities that can
benefit the user is the remote scheduling of EV charging based on the reduced electricity
tariff at night. One of the significant problems in IoT cybersecurity is that the malicious
traffic passing through the IoT system cannot be easily identified and separated from
legitimate traffic. This is because advanced attackers use sophisticated methods to evade
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detection. Contrary to IT security, IoT security is more critical than traditional IT network
security. This is due to its massive attack surface and multiplied weak-spots due to the
amount of data shared between the nodes and constant connectivity to serve users [4].
The main players in detecting malicious traffic, in both IT and IoT systems, are intrusion
detection systems, which undergo continuous enhancements to improve their efficiency
and accuracy. The key to success in evaluating any IDS system is using a relevant dataset [5].
Intrusion detection is a hot topic in academia; the usage of machine learning (ML) and
deep learning (DL) algorithms have given traction to the development of more efficient
and precise detection methods for different types of cyberattacks when using IDSs [6]. In a
recent study [7], the cost of a data breach in the energy sector was shown to have increased
dramatically in the past few years.

To address these challenges, the use of machine learning (ML) techniques has become
increasingly important in detecting and preventing cyberattacks on EVCS. ML algorithms
are well suited for this task due to their ability to learn from large amounts of data and
make predictions based on that learning. With the increasing use of EVs and EVCSs, there
is a growing need for effective and efficient methods to detect and prevent cyberattacks.

In this paper, we propose the use of ML algorithms for detecting cyberattacks on
EVCSs. The methodology involves collecting and preprocessing data from various sources
including the charging station’s network traffic, the charging process, and the charging
station’s environment. These data are then used to train and evaluate various ML models
for detecting and classifying potential cyberattacks. Our study compares the performance of
different ML algorithms and provides insights into the most effective methods for detecting
cyberattacks on EVCSs.

In this paper, we define the EV charging ecosystem, starting from the EVCS, passing
through the communication and transportation protocol, and ending with the management
system, the EVCSMS. We describe the major attacks in each component, the main attack
vectors, and the different vulnerabilities affecting the ecosystem. This includes attacks on
the charging stations, the user, and the most destructive type of attack that can occur, which
is on the power grid.

Moreover, from the detection side, we explain the use of machine learning methods
in anomaly detection and how we use the IoT dataset to represent the traffic. The used
IoT dataset represents typical traffic in the IoT systems, considering the EVCS as a viable
example of an IoT system. The dataset represents the traffic and attacks the EVCS can
suffer from. That is why we use a native IoT dataset, which is the IoT-23. It is derived from
real IoT devices. In addition, for the sake of the algorithm agility, the irrelevant redundant
features found in the dataset are first eliminated. This increases the accuracy and solves the
overfitting and underfitting problems commonly seen in these models. By exploring the
use of ML in detecting cyberattacks on EVCS, we hope to contribute to the development of
more secure and reliable charging infrastructure for EVs.

The contributions of this paper are as follows:

(1) Apply different machine learning classifying algorithms to identify the malicious
traffic in EVCSs using a native IoT dataset.

(2) Represent major attacks and vulnerabilities in EVCSs and the efforts carried out in
the literature to mitigate them.

(3) Use machine learning algorithms, that were originally used in tackling different
non-IoT security problems, on an IoT security problem.

(4) Identify malicious traffic using a limited amount of trained data through a reduced dataset.

The remainder of the paper is organized as follows: Section 2 describes the context of
the problem. In Section 3, we demonstrate the related work carried out in the literature for
securing IoT systems using ML- and DL-based IDSs. Section 4 presents the methodology
and components used in the simulation to mimic the real problem. The experimental results
in Section 5 demonstrate the results of the different machine learning classifier algorithms.
Finally, Sections 6 and 7 discuss the limitations and conclude the paper, respectively.
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2. Electric Vehicle Charging Station Background

The EVCS system is still fresh and has a wide surface of attacks. Therefore, it is the
ideal target for exploitation by state-sponsored actors and competitors. With the increasing
number of EVCS units connected to the Internet, the adversary can take advantage of the
vulnerabilities in the system and compromise public and private EVCSs. Exploitation can
be executed remotely using the Internet or locally through the local area network (LAN) if
there are weak access controls in the EVCS network.

The EVCS involves three main components: sensing, networking, and communication
layers. The most vulnerable part, which attackers are interested in, is communication
and networking. This layer handles communication with the supervisory control and
data acquisition system (SCADA). In addition, this layer ensures proper communication
between the EVCS and the end user via the Internet. This can be achieved using various
technologies such as Bluetooth, Wi-Fi, cellular, and even wired digital subscriber lines (DSL)
or fiber optics. The other components of the EVCS, such as the sensing and computational
components, are considered internal systems. They are also vulnerable but need local
interaction with the EVCS or can be used in further steps after compromising the EVCS via
the communication and networking component.

Additionally, the attacker can form a silent botnet from a number of compromised
EVCSs to conduct distributed attacks against other systems. A study that estimates the
cyber insurance cost against cyberattacks on EVCSs [8] mentioned that the financial losses
due to cyberattacks on EVCS systems are hefty. Figure 1 depicts the different components
in the EVCS ecosystem.
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The attacks on the EV charging system can be classified into several categories, such
as attacks affecting the EVCS itself, attacks targeting the end user, or attacks on the power
grid that provides electricity to the entire charging stations.

(1) Attacks against the EVCS: One of the main vulnerabilities in the EVCSMS is cross-site
scripting (XSS), where the input sanitization is not maintained properly. This enables
the attacker to compromise the EVCS, obtain its charging schedule, and control the
entire charging process. Similarly, the SQL injection (SQLi) is of the same severity
and can enable the attacker to access the EVCSMS database, which includes the users’
records and the administrator credentials. This allows the attacker to further perform
illegal activities by modifying the charging costs. Depending on the scale of the
compromised EVCS, an attacker can form a botnet to launch other denial of service
attacks (DoS). It is also possible to deny the end user that uses the EVCS from using the
EVCS by continuously restarting the station, which disrupts the charging operation.

(2) Attacks against the users: The most destructive effect on the users is to damage
the EV battery. Despite the safety systems in electric vehicle onboard chargers, the
attacker can severely damage the battery by increasing/decreasing the voltage and
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current significantly above the safety limits. Moreover, depending on the adversary’s
motivation towards the attack, organized espionage can occur, such as obtaining a
user’s personal identifiable information (PII). This can include the full details of their
username, address, and contacts, which can be further used in other attacks on a
specific user. As the EVCS manages the financial accounts for the users, a man-in-
the-middle attack can store the user’s financial information. Lately, attackers use this
financial information for fraud or sell the data of users on the dark web, which is the
marketplace for this type of stolen information.

(3) Attacks targeting the power grid: As the power grid’s operation involves serving
large scale operations of millions of subscribers, it is the most critical infrastructure
component directly affecting the daily life of many users and the industry. This can
cause destructive damage and has significant implications for the economy [9]. The
electric supply-and-demand balance is crucial to the stability of the power grid system;
by tampering with this balance, the system’s stability is torn down. An attacker who
gains control of the EVCSMS can launch a synchronized charging and discharging
of the compromised EVCS. The charging process flows from the power grid to the
EVCS, and the discharge is a feature in the EVs that is also called vehicle-to-grid (V2G).
The attacker can perform charging and discharging quickly to cause a disturbance
by sudden switching. This leads to frequency overshooting, in which the generated
power is more than the load power. Accordingly, the system tries to regain its stability
by reducing the generated power, and hence the frequency increases. The attacker
responds by increasing the load in a short time. This causes imbalance and reduction
in the frequency and so on. The safety systems of the power plants step in at this
stage and isolate the entire power plant to avoid further damage to the generators.
Reconnecting a power plant to the grid may take days, which is considered a severe
interruption to the economy.

3. Related Work

Researchers in both academia and the industry have focused, in the past few years, on
applying artificial intelligence (AI) in the IDSs of IoT systems. This combination has proven
to be effective in the anomaly detection of malicious activities. For instance, machine
learning algorithms such as naïve Bayes (NB), logistic regression (LR), and decision tree
(DT) have been widely used in the detection of different types of network-based attacks.
The mentioned algorithms basically rely on learning from predefined features, which is a
typical characteristic of IoT traffic. Other research has focused on deep learning methods
to achieve better accuracy and bypass feature selection. The algorithm and the dataset
used in the model are both of a key role in obtaining accurate results that can be applied in
real-world scenarios.

A study that was made [10] examined sixteen different EVCSMSs deployed by rep-
utable vendors in the industry, which was deployed mainly in Europe and the United States
and found critical zero-day vulnerabilities in the web, mobile, and firmware. Moreover,
they used the discovered vulnerabilities to compromise the EVCS, causing instability in
the power grid as a practical implication against the EVCS and the users. EVCS firmware
and EVCSMS security has received little attention from academia compared to security
research on the other components of the EV ecosystem. This was the first study on the vul-
nerabilities in practical EVCS, which shows the severe impact that can be felt if successfully
exploited. The results show that the live systems used currently in charging the EVs are
highly vulnerable and can be attacked easily, causing wide damage to the power grid and
the users. The study proposed at the end a set of mitigations that can be applied to the
vulnerable systems to decrease the effect of these attacks.

In a previous study [11], authors proposed an intrusion detection system using the
deep belief network (DBN). DBN is an algorithm for augmenting different unsupervised
networks stacked together to serve as an input for the next layer. This is carried out by
using autoencoders, specifically restricted Boltzmann machines (RBMs). After the training,
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the target classification, as per their model, is to have an output of 0, i.e., no intrusion
detected, or 1, which means intrusion detected. The used dataset in this model is the
TON_IOT dataset, which contains 30,000 tuples. This IoT dataset was obtained from a
practical depiction of a medium-scale network at the UNSW Canberra Cyber Range and
IoT labs (Australia). This dataset contains various IoT attacks in a nonuniform way, which
is considered a reliable source. They implemented the model using TensorFlow. The results
showed that the accuracy of this model reached 86% and an F1 score of 84%. The interesting
part of this study is that it compares the results of the DBN with other algorithms, which
shows a low accuracy for the DBN (86%) compared to the DNN (96% accuracy) and
LSTM + CNN (97% accuracy) algorithms. In comparison, the DBN performed better than
NB (54% accuracy) and SVM (60% accuracy).

A comprehensive survey on the machine learning and deep learning methods used in
the intrusion detection systems for the IoT was made by Thakkar et al. [12]. They listed
the security issues and challenges facing IoT systems. To tackle the risks of the open
communication layer in the IoT system, the authors in [13] proposed a deep learning-based
IDS to detect DoS attacks within the EVCS. Deep neural network (DNN) and long short-
term memory (LSTM) algorithms were implemented. While both methods achieved 99%
accuracy, the LSTM was superior according to their study in terms of accuracy, precision,
and recall. While the results were promising, they focused on the DDoS attack. In our
opinion, using the deep learning method in a real-time problem is a resource-intensive
method that is not practical and may detect malicious activity after passing the traffic to
the network. Lastly, the dataset used (CICIDS 2018) is not derived from IoT-native data,
which makes it irrelevant for application to the IoT problem.

In another study [14], authors used the IoT-23 dataset effectively and applied different
machine learning algorithms. Random forest (RF), naïve Bayes (NB), multi-layer perception
(MLP), support vector machine (SVM), and AdaBoost (ADA) were evaluated. The random
forest algorithm achieved the best accuracy of 99.5% among the others. While the method-
ology and the data samples were different from our study, as we used highly randomized
data, the results for the above study, along with the other study of Thamataiselvi et al. [15],
was in line with our results too.

The authors in [16] studied the different types of attacks targeting IoT systems, includ-
ing authentication, access control, secure offloading, and malware detection. In addition,
they made a detailed study on the different types of machine learning algorithms, including
supervised, unsupervised, and reinforcement learning (RL), but they focused on imple-
menting these algorithms on the limited resources of IoT devices. They used the KDD CUP
99 dataset, which we see was not suitable for representing modern IoT devices.

The survey conducted in [17] focused on IoT–ML in healthcare and focused mainly
on the sensing layer, which they see as the most vulnerable layer in the IoT ecosystem.
However, the authors did not touch the issue of the dataset used by the ML algorithms in
the survey.

A benchmark study on anomaly detection in ML based IDS [18] evaluated different
supervised and unsupervised ML algorithms (ANN, DT, k-NN, NB, RF, SVM, CNN, EM, K-
means, and SOM) using the CICIDS 2017 dataset; the models show limitations in detecting
novel types of attacks with multiclassification.

A recent review on the IDS based on ML and DL algorithms [19] used different datasets.
The combination of the ML and DL with the different datasets generated promising results
to achieve the highest accuracy. However, the F1 and recall was not the focus of the study,
which is not a fair evaluation, in our opinion. The comprehensive study on the IoT IDS
conducted in [20] showed clearly that the computational power of the DL is impractical for
use in a restrained environment such as the IoT. However, pushing this capability to the
edge or cloud can partially solve this problem. Similar to our study, the classifiers play an
essential role in achieving two important goals, which are performance and accuracy. In
Table 1, we compare the state-of-the-art research in the same field during the past years.
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Table 1. Comparison between the ML–IoT studies carried out in the literature.

Ref Description Advantages Disadvantages Dataset Used Conclusion

[10]

Comprehensive study
on 16 vendors

of EVCSs, showing
the vulnerabilities on

each vendor

Examined 16
EVCSMS vendors

No proposed solution
provided to detect these
attacks and focused only

on the remediation of
the vulnerabilities

-
Most of the

EVCSMS are
highly vulnerable

[11]
Deep learning algorithms

evaluation using
TON_IOT dataset

Deep learning was used Focusing on DL only TON_IOT High accuracy for the
DNN algo—96%

[12]
ML and DL algorithm
evaluation to mitigate

IoT attacks

Survey on both ML and
DL methods in IoT-IDS No specific dataset -

Detection methods for
IoT do not address

wide range of attacks

[13]

Deep learning method for
detecting DDoS

attacks using the CICIDS
2018 dataset

Deep learning-based IDS
was proposed

Focused only on
DDoS attacks CICIDS 2018

LSTM was superior,
according to their study

in terms of accuracy,
precision, and recall

[14,15] ML-based IoT IDS using
IoT-23 dataset

Examined different
ML methods Data not randomized IoT-23

Random forest (RF)
algorithm achieved

99.5% accuracy

[16]

Benchmarking different
supervised, unsupervised,
and reinforcement learning
(RL) algorithms on different
types of attacks using KDD

CUP 99 dataset

Studied different types of
attacks versus different

detection ML algorithms

Dataset is not suitable
for the application KDD CUP 99

The intrusion detection
schemes based on

unsupervised learning
algorithms sometimes

have misdetection rates
that are nonnegligible

for IoT systems

[17] A survey on the IoT ML
Based Healthcare system

Studied IoT ML
in healthcare

Focus on the
sensing layer -

Identified a
number of research

challenges, including
exploration of deep

learning-based models

[18]

Benchmarking of machine
learning for anomaly-based
intrusion detection systems
in the CICIDS2017 dataset

Studied different
supervised and

unsupervised ML
algorithms

Focus on web
attacks only CICIDS 2017

Experiment results
show the absence of

any single ML
algorithm that are able

to detect all types of
web attacks

[19]

A review on intrusion
detection systems based

on machine
learning algorithms

Different ML and
DL algorithms

Focus mainly
on the accuracy Different datasets

The application and
type of dataset have
a great influence on

the accuracy

[20]
A comprehensive

deep learning benchmark
for IoT IDS

Comprehensive study
on different ML and

DL algorithms

DL algorithms needs
substantial amount

of computation power,
which is impractical

to IoT

Different datasets

Selecting the classifier
is important to get a
good performance

and accuracy

4. Experimental Methodology

In this section, we discuss the methods used in building the model by examining
different classifiers and the chosen dataset representing a typical IoT traffic.

The data are divided into two samples: a training sample that represents 90% of the
data, and testing sample, which represents 10% of the data. The training sample undergoes
pattern analysis and then label-learning using the machine learning process. While in the
testing phase, the labels are hidden from the model, and the classification engine classifies
the unlabeled data based on the machine learning process that was carried out in the
training phase. The outcome of the classification process in the testing phase is the labels
being predicted by the learned model.
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Next, we describe the dataset used in the problem simulation and how we selected
some features to have reduced lightweight training data to be used in the training model
without affecting the accuracy.

4.1. Dataset Description

The IDS validation depends mainly on the datasets used in the evaluation. Simulating
intrusive behavior allows us to evaluate the IDS’s capability. However, due to privacy
reasons, it is not easy to obtain real traffic for commercial products. The available datasets
that were developed, by time, include KDD, DRPA, NDS–KDD and ADFA–LD. They are
used by different researchers for benchmarking. We used the most recent IoT dataset,
which is IoT-23.

IoT-23 [15] is the newest dataset, derived from network traffic generated by real
commercial IoT devices. The dataset consists of twenty malware traffic captures collected
from the IoT devices and three traffic captures for normal (benign) traffic. The dataset was
first published at the beginning of 2020 by Stratosphere Lab in the Czech Republic, funded
by Avast Software, Prague.

4.2. IoT-23 Dataset

The use of machine learning and deep learning in anomaly detection has been common
in research papers [21] over the past decade. These efforts sometimes lack the correct
adequacy of the chosen dataset to the problem. The IoT-23 dataset is composed of twenty
scenarios, which represent the malicious traffic of different types of attacks on the IoT
network. Each scenario has the malware name that was executed on the IoT device.
Moreover, it is composed of three scenarios with normal IoT traffic (not infected), which
are used as a reference to the normal traffic. The number of total scenarios is twenty-three,
which is why it is named IoT-23. The 23 scenarios were running in a controlled environment
and connected to the Internet, like any typical IoT device. Hence, the IoT dataset contains
two types of traffic, the normal and malicious traffic scenarios available to the community.
This secures the evaluation of the binary classification. However, the malicious traffic flows
are further labeled with extra labels to be able to have a multiclass classification. Below is a
brief explanation on the multiclass labels found in the malicious flows.

(1) Benign: The benign tag shows that the traffic is normal, i.e., no suspicious or malicious
activities were introduced in the traffic flow. It is considered “normal” traffic and can
pass without blocking.

(2) C&C: This tag denotes that the IoT device under test was communicating to a
command-and-control server. This is detected in several ways; either there was
periodic communication with the suspicious server, or the IoT device downloaded
malicious binaries from this suspicious server.

(3) DDoS: This tag indicates that the IoT device was part of a distributed denial of service
(DDoS) attack. This is detected by the number of flows targeting the same IP, which
always come in a volumetric order.

(4) Okiru: This tag points to the behavior of the Okiru Botnet. This is detected when it
matches the same pattern of the infamous Okiru traffic pattern.

(5) Part of a horizontal port scan: This tag shows that the traffic flow was used in the
reconnaissance phase to gather more information about the target. This information
is used in further attack steps by knowing the open ports, for example. This was
detected by comparing the pattern of a similar port, in bytes, but having different
destination IPs.

In order to obtain random sample data, we shuffled the rows 10 times so that the
sample represented a complete random input for the model. This is close to the real traffic.

4.3. Selected Features

The dataset has a different type of information for each row (flow). Table 2 shows
the different features that were captured for each data flow between the source and the
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destination, regardless of it is normal or malicious traffic. This information is labeled
in a separate column to be used later in the classification stages. We used two types
of classification, binary classification and multiclass classification. Binary classification
provides an output, whether the flow is malicious or normal traffic. This is important
for the IDS in making a fast and prompt decision, as the traffic flows continuously in a
real network between the EVCS and the EVCSMS. The second classification examined,
the multiclass classification, measures the IDS system’s effectiveness to detect the attack
type. Both are important in the IDS’s operation, but the first one is faster, as we see in the
experiment results.

Table 2. Captured features in the IoT-23 dataset per flow.

Feature Description Type

ts The capture time, expressed in Unix Time Integer

uid Unique capture identification String

id_orig.h Source IP address String

id_orig.p Source port number Integer

id_resp.h Destination IP address IoT device String

id_resp.p Destination port number IoT device Integer

proto The type of network protocol (TCP/UDP) String

service Protocol used in the application String

duration The amount of time data traded between the IoT device and the attacker Float

orig_bytes The amount of data sent by the source to the destination device Integer

resp_bytes The amount of data sent by the destination IoT device back to the source Integer

conn_state The state of the connection String

local_orig Locally originated connection locally Boolean

local_resp Locally originated response Boolean

Missed bytes Number of missed bytes in the flow Integer

history The history of the connection state String

Tunnel parents The ID of the tunneled connection String

Label Capture type (malicious or normal) used in the binary classification String

Detailed label The type of malicious traffic used in the multiclass classification String

In this paper, we used a typical IoT dataset (IoT-23) with a typical IoT system, which is
the EVCS system. We examined the different types of attacks, mainly the port scan, which is
the first phase of the attack, and the DDoS, which is a typical destructive type of attack that
can deem a system to be unavailable. In addition, the Okiru malware attack is examined as
a clear showcase of the malware in IoT networks. Finally, the command and control (C&C)
is the goal of the attacker to control the system remotely and give commands to execute
everything the attacker wants to do on the target system. We used the summarized flows
obtained from the original pcap files using the Zeek network analyzer.

From the above, we considered the EVCS as a practical example of an IoT system and
applied the different machine learning algorithms using the IoT-23 dataset, which is more
relevant to the problem under study.

As a preparation step for the data, we eliminated some of the features that are irrelevant
to an actual attack. Some features were eliminated due to the weak correlation with the
label, and other features were eliminated due to insufficient data, and hence do not take
part in the decision. The following features have a very weak correlation with the label,
as they are dependent on the conditions of the capture only. Therefore, to ensure that
the decision was independent of weak features, we eliminated those features, i.e., ts, uid,
id.orig_h, and local_orig.h to eradicate any dependency on the capturing environment.
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Moreover, we eliminated the following features, as there were not many data; they
contain a dash “-“, which denotes that there is no information available. These features are
local_resp, missed_bytes, and tunnelparents.

Table 3 presents the eliminated features that do not affect the output decision. We
repeated the same experiment taking into consideration the full features, and we received
the same results; this confirms that these features are not important in the decision.

Table 3. Eliminated features from the IoT-23 dataset.

Feature Elimination Reason

ts
uid
id.orig.h
local_orig

Weak correlation with the “label”

local_resp
missed_bytes
tunnel parents

No information, mostly dash “-”

Finally, 14 out of 21 features were used in the experiment. Those features are id.orig_p,
id.resp_p, proto, service, duration, orig_bytes, resp_bytes, conn_state, history, orig_pkts,
orig_ip_bytes, resp_pkts, resp_ip_bytes, and label.

4.4. Machine Learning Classifiers

Using machine learning in securing the IoT [22] is a hot topic in academia. The
selection of the best algorithm that matches the problem is a challenge. The target is to
obtain an accurate result with the least processing power and, hence, a faster response
time. This helps spot the attack in real time and make the decision to block the malicious
traffic at once. Moreover, a principal factor here is that machine learning classifiers must be
able to make the right decision when faced with limited data, i.e., trained with a limited
amount of data and still have acceptable accuracy in the case of unknown attacks. We
totally agree that unsupervised learning algorithms be widely used to deal with unknown
attacks (zero-day attacks). However, one of the limitations of applying the unsupervised
learning algorithms is that they suffer from high false alarms and low detection rates.
To the best of our knowledge, the highest performance obtained by the unsupervised
learning techniques does not exceed 90 percent, which is not acceptable in defending from
unknown attacks. On the other side, implementing supervised learning algorithms can
achieve high performance that can reach 99% or above. The achieved performance is
similar to that of signature-based intrusion detection systems (such as snort). Now, back to
the main question—what is the system response in case of a zero day attack? Supervised
learning still can benefit from regularization techniques to simplify the system in order to
overcome the overfitting problem [23] and, hence, supervised learning algorithms can have
superior results over unsupervised learning of the same problem. Different regularization
techniques, i.e., L1 and L2, have been used to address the problem of overfitting and to
improve the capability of network-based IDSs in the detection of unseen intrusion events.
For the sake of consistency, we have selected several classification algorithms and applied
them to the same data sample. These algorithms are described in the next subsections.

(1) Naïve Bayes classifier: Naïve Bayes (NB) may be a basic strategy for developing
classifiers, represented as vectors of featured values, where the class labels are drawn
from a few limited sets. There is no single calculation for preparing such classifiers,
but rather a family of calculations based on a common rule: all naïve Bayes classifiers
accept that the value of a specific feature is free of the value of any other feature, given
the class variable. A naïve Bayes classifier considers each of these highlights to con-
tribute freely to the likelihood of the feature, in case of any conceivable relationships
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between the other features. An advantage of naïve Bayes is that it as it requires a
small amount of training data to assess the parameters relevant for the classification.

(2) J48 classifier: This algorithm is also called C4.5; it is categorized as a classification al-
gorithm in which the output is a decision tree that is based on information theory [24].
It is not a new algorithm, as it is an extension of the ID3 algorithm by Ross Quinlan. It
is named in WEKA tool (used in the simulation of this study) as J48, where J is for
Java as it is an opensource implementation of C4.5. This algorithm is also known
by statistical classifier, as its output is a decision tree based on the C4.5 algorithm.
The difference between C4.5 and J48 is that J48 has more features than C4.5, such as
decision tree pruning, accounting of missing values, etc.

(3) The attribute-select classifier: The attribute-select classifier is a combination of two
steps. The first step is dimensionality reduction (DR) through attribute selection; in
this step, the dimensionality of the training and test data is reduced using attribute
selection before being passed into the classifier, and the second step is classification.
There is a variety of dimensionality reduction methods, but this is not the scope of
this study. It chooses attributes based on the training data on the off chance that we
are inside cross-validation. At that point, it trains the classifier, once more on the
training data as it were, and after that, it assesses the entire classifier on the test data.
This makes handling attribute selection totally straightforward, and the base classifier
receives the diminished dataset.

(4) Filtered classifier: This classifier is based on a basic idea of filtering out the irrele-
vant attributes and including only the relevant ones in the process [25]. This has a
significant impact on both the processing time and efficiency of the algorithm. This
is why the attribute selection algorithm is usually applied before the other tasks of
classification, clustering, etc. Attribute selection is divided into two sequential parts.
The first is subset generation, in which the searching process is used to compare
between the determined subset and the candidate subset. If the candidate subset has
better values, then it is labelled as the best one. This process is repeated several times
until termination is reached. The second part is ranking, which is used to know the
importance of the attributes. The ranking method can use statistics or can be based on
the information theory [26,27].

4.5. Experimental Setup

The experiment was conducted using a machine with the operating system Windows
11 Pro 64-bit version 21H2, build 22000.739. The processor was an Intel® Core™ i7-1165G7,
CPU @ 2.8 GHz (8 Cores). The memory of the machine was 16 GB. The machine was
equipped with a graphics card, Intel® IRIS® Xe graphics with 4 GB RAM. The tool used for
the simulation was Waikato Environment for Knowledge Analysis (WEKA) version 3.8.5
64-bit. This is illustrated in Table 4.

Table 4. Hardware and software specifications used in the simulation.

Operating System Windows 11 Pro 64-bit Version 21H2, 22000.739 Build

Processor Intel® Core™ i7-1165G7, CPU @ 2.8 GHz (8 Cores)

Memory 16 GB DDR3

Graphics card Intel® IRIS® Xe graphics with 4GB RAM

Software WEKA version 3.8.5 64-bit

As mentioned earlier in the previous section, the 21 features were reduced into
14 features after eliminating seven unnecessary features, in which the new reduced dataset,
containing the 14 unique features, was the model’s input. Two sets of experiments were
conducted, the first was for binary classification, and the second was for multiclass classifi-
cation. The next section demonstrates the results for each classification.
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5. Simulation

In this section, we present the experimental results. The evaluation metrics are pro-
posed in Section 5.1, while experimental results are presented in Section 5.2.

5.1. Evaluation Metrics

The metrics described below were used to fairly evaluate the algorithms. These results
are discussed and concluded in the discussion and limitations section. The arguments used
in these metrics were first presented in a previous study [25]. Other algorithms proposed
in the literature [14,15] used the same evaluation metrics.

TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives.

• TP: amount of perfectly identified malicious traffic.
• TN: amount of perfectly detected non-malicious traffic.
• FP: amount of wrongly detected malicious traffic as positive that is non-malicious.
• FN: amount of wrongly detected non-malicious traffic that is malicious.

5.1.1. Confusion Matrix

A confusion matrix is a table that allows for the visualization of the performance of a
model by showing which values the model thought to belong to which classes. It has an
N × N size, where N is the number of classes, with the columns representing the actual
classes and the predicted classes’ rows.

5.1.2. Precision

Precision is the metric that evaluates the model by calculating the fraction of correctly
identified positives.

It is calculated using the following formula:

Precision =
TP

TP + FP
(1)

5.1.3. Accuracy

The accuracy metric evaluates the model by calculating the fraction of correct predic-
tions over the total number of predictions.

It is calculated using the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

5.1.4. Recall Score

Recall score is a metric that evaluates the model by calculating the fraction of actual
positives that was correctly identified.

It is calculated using the following formula:

Recall =
TP

TP + FN
(3)

5.1.5. F-1 Score

F-1 score is a metric that calculates the harmonic mean of the precision and the recall
score. It is considered an extension of the accuracy metric, as it considers both false positives
and false negatives in the same equation.

It is calculated using the following formula:

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)
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While the F-1 score is originally used for binary classification, it can also be used in
multiclass classification by macro-averaging, where all the classes are considered equally.
The result in this paper is based on macro-averaging.

F1(Macro) =
n

∑
i=1

[
F1(i) ∗

1
n

]
(5)

5.2. Experimental Results

ML algorithms address application problems by using a dataset for learning. The
dataset is divided into training and testing sets. The training set is used to learn and
study the dataset’s various features. For instance, given an intrusion detection dataset, the
algorithms learn features from the training dataset to classify a given sample as an attack
or normal. The ML algorithm’s task is to improve the algorithm’s classification accuracy
by performing behavioral analysis of normal and attack traffic scenarios in the network.
ML algorithms are categorized into classification and clustering algorithms. Classification
algorithms work with labeled data samples and build prediction models by analyzing
input parameters and mapping them with the expected output. Thus, these methods
build the relationship between input and output parameters. In the training phase of the
classification algorithm, the learning model is trained using a training set. The learning in
the training phase is then utilized to predict and classify new data input.

Classification methods are recognized for learning using data representation and la-
beling, whereas clustering methods are known for learning using unlabeled datasets.
The result for the simulation is split into binary classification results and multiclass
classifications results.

5.2.1. Binary Classification Results

For the binary classification results, we evaluated the algorithm’s performance with
285,000 flows, with normal/malicious traffic labels equivalent to 73,000/212,000. First,
we evaluated the time spent building the model using the hardware specifications in the
experimental setup. This time varies from one hardware to another, but all the experiments
were carried out on the same hardware, so the values are used for comparison. In addition,
the accuracy values were presented. We then evaluated the precision, recall, and F-1 score.

The results for the response time and the accuracy of the four algorithms in the binary
classification are illustrated in Figure 2.
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Figure 2. Response time versus accuracy for binary classification.

The results for the binary classification in Table 5 show superior results in terms of
accuracy for the J48 classifier (97.4%) and the filtered classifier (99.2%). In comparison,
the lowest accuracy was obtained from the naïve Bayes algorithm (86.7%). We also no-
ticed that the filtered classifier consumed more time (5.15 s) in the modeling than the J48
classifier (4.09 s).
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Table 5. Binary classification simulation results.

Response (s) Accuracy (%)

Naïve Bayes 0.31 86.7

J48 classifier 4.09 97.4

Attribute select 2.48 91.5

Filtered classifier 1.15 99.2

However, in terms of precision, recall, and F-1 score, the filtered classifier achieved the
highest rank among all other algorithms, as shown in Table 6.

Table 6. Precision, recall, and F-1 score for binary classification.

Model
Precision (%) Recall (%) F-1 Score (%)

Normal Attack Normal Attack Normal Attack

Naïve Bayes 0.84 0.87 0.59 0.96 0.69 0.91

J48 0.92 0.99 0.98 0.97 0.95 0.98

Attribute select 0.76 0.98 0.97 0.89 0.85 0.94

Filtered classifier 0.97 1 0.99 0.99 0.98 0.99

Figure 2 depicts the binary classification results, which show the response time of the
model in seconds and the accuracy in percentage for the four algorithms under test.

The filtered classifier achieved the highest results in terms of precision, recall, and
F-1 score.

5.2.2. Multiclass Classification Results

For the multiclass classification results, we evaluated the algorithm’s performance
with 285,000 flows, with a detailed label of the type of attack. The number of samples
per class is illustrated in Table 7. The same was performed during the binary classification.
First, we evaluated the response time of the algorithm and the accuracy; then, we evaluated
the precision, recall, and F-1 score.

Table 7. Number of samples per class.

Class Number of Samples

Benign 73,082

C&C 15,044

DDoS 51,361

Okiru 78,603

Part of a horizontal port scan 67,849

The results for the response time and the accuracy for the four classifier algorithms
under test in the multiclass classification are presented in Table 8.

Figure 3 depicts the multiclass classification results, which show the response time
of the model in seconds and the accuracy in percentage for the four classifier algorithms
under test.
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Table 8. Multiclass classification simulation results.

Response (s) Accuracy (%)

Naïve Bayes 0.3 77

J48 classifier 4.23 99.2

Attribute select 2.81 97.19

Filtered classifier 1.62 99.2
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From the results of the multiclass algorithms, again as the binary classification, the J48
classifier and the filtered classifier both achieved the highest accuracy (99% for both). In
contrast to the binary classification, the modeling time for the filtered classifier (1.62s) was
lower, with a more significant value than the J48 classifier (4.23s). The reason behind the
quicker modeling time for the filtered classifier in the multiclass (1.62 s) than the binary
classification (5.15 s) is due to the nature of the filtered classifier algorithm. It evaluates
each class separately and in parallel (five small chunks of parallel operations). This is as
opposed to the binary classification, which deals with the whole data set (285,000 samples)
at once. Moreover, the naïve Bayes algorithm achieved the lowest accuracy result (77%).
In terms of precision, recall, and F-1 Score, both the J48 classifier and the filtered classifier
achieved the same results, as shown in Table 9.

Table 9. Precision, recall, and F-1 score for multiclass classification.

Model
Precision (%) Recall (%) F-1 score (%)

Normal Attack Normal Attack Normal Attack

Naïve Bayes 0.99 0.85 0.59 0.77 0.59 0.77

J48 0.97 0.99 0.99 0.99 0.98 0.99

Attribute select 0.91 0.97 0.98 0.97 0.94 0.97

Filtered classifier 0.97 0.99 0.99 0.99 0.98 0.99

Notice that the figures for the precision, recall, and F-1 are the weighted average
among the classes in the dataset.

Comparing the results with other state-of-the-art methods, as in other studies [19,20],
shows the superior results of using the filtered classifier (accuracy of 99.2%) over the other
deep learning algorithms (maximum accuracy of 97%).

Table 10 represents the accuracy in detecting different types of attacks using the
filtered classifier.
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Table 10. Accuracy of the filtered classifiers for different types of attacks.

Attack Description Result Accuracy

Benign That is the normal traffic Detected 99.9%

DDoS Denial of service Detected 100%

C&C Communication with command-and-control server Detected 99.8%

Botnet Botnet traffic used to employ the IoT device in other attacks—Okiru Detected 100%

Scan Part of the horizontal scan is the initial phase of reconnaissance that
the attacker uses to learn the open ports Detected 96.8%

Overall Weighted average 99.2%

The model successfully classified the traffic as either benign or malicious (in the binary
classification). It classified the different types of attacks (in the multiclass classification)
with a very high accuracy of 99.2% using the filtered classifier algorithm.

6. Discussions and Limitations

The issue of security in the EVCS is a real industrial problem. The effect of a cyberattack
on the EVCS can be catastrophic if exploited by malicious actors and state-sponsored attack
groups. With the limited number of EVCSs currently deployed and the increasing number
of electric vehicles with short battery range, any downtime in one EVCS can affect the
travel plans for many EV users. Furthermore, the whole power grid can be halted due to
a cyberattack, which can directly affect the economy. If we also add unknown exploits,
known as zero days, the risk is even higher. In order to mitigate this risk, there a need for
an accurate and efficient algorithm. The use of machine learning to build an IDS engine
was discussed in this paper. In order to evaluate the proposed IDS correctly, a relevant
dataset is also needed to represent the real traffic and attacks. In this paper, we used the
IoT-23 dataset, which is built from native IoT network traffic, to evaluate four different
machine learning classifier algorithms that can be used in ML-based IDS. Each classifier
has different logic behind its theory of operation. We noticed, from the results, that filtered
classifiers perform very well on testing data in terms of accuracy and other metrics. Hence,
they can be applied for zero-day attack detection.

Likewise, our study experienced some limitations, which are listed below:
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For intrinsic evaluation, we should consider several datasets in our comparison.
However, in this work, we only used the IoT-23 dataset to train and evaluate different
ML algorithms. We are planning to build our own dataset from a real EVCS system
and consider several datasets to build a robust intrusion detection model.

7. Conclusions and Future Work

The EVCS ecosystem is vulnerable to many types of attacks targeting IoT systems.
Therefore, the need for an accurate and efficient method of detection arises. In this paper,
the proposed ML-IDS in IoT EVCS was used to detect the different types of attacks by
malicious actors. We surveyed other research efforts in the literature that have touched on
the same subject. We selected the latest IoT dataset and used it to examine four different
types of classical machine learning classifiers. We found that the filtered classifier is the
best choice for anomaly detection and classification using the IoT23 dataset, as it achieved
the highest accuracy in both binary classification and multiclass classification and also
in terms of precision, recall, and F-1 score. The result of this study is in line with other



Electronics 2023, 12, 1044 16 of 17

studies as well. The proposed algorithm can also be applied to any critical industrial
control system (ICS), such as SCADA systems and green hydrogen control systems, to
enhance their security resilience as they were originally built without taking security
into consideration. We believe this paper’s findings will help build a comprehensive
IDS by recognizing that classification models should be trained with the relevant dataset
addressing the relevant application. It is highly recommended to build a dedicated dataset
for EVCSs that will benefit the researchers in developing and examining different types of
attacks. Future research aims to find the minimum amount of data to be used in training
while preserving the same accuracy level. Future studies should also focus on measuring
the impact of feature selection and consider new methodological steps to developing deep
learning models. For future work, we will use deep learning algorithms to evaluate system
performance with different datasets.
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