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Abstract: Adopting reinforcement learning in the network scheduling area is getting more attention
than ever because of its flexibility in adapting to the dynamic changes of network traffic and network
status. In this study, a timeslot scheduling algorithm for traffic, with similar requirements but
different priorities, is designed using a double deep q-network (DDQN), a reinforcement learning
algorithm. To evaluate the behavior of the DDQN agent, a reward function is defined based on
the difference between the estimated delay and the deadline of packets transmitted at the timeslot,
and on the priority of packets. The simulation showed that the designed scheduling algorithm
performs better than existing algorithms, such as the strict priority (SP) or weighted round robin
(WRR) scheduler, in the sense that more packets arrived within the deadline. By using the proposed
DDQN-based scheduler, it is expected that autonomous network scheduling can be realized in
upcoming frameworks, such as time-sensitive or deterministic networking.

Keywords: reinforcement learning; deep learning; q-learning; double deep q-network; deep q-network

1. Introduction

In network environments with various devices, such as the Internet of Things (IoT),
smart factories, sensor networks, and 5G, it is required to provide stricter qualities of
service (QoS) than before; therefore, it is important to distribute limited network resources
efficiently. Currently, it is common to use simple algorithms such as strict-priority (SP)
scheduling, which always transmits higher-priority packets first. However, network size
is becoming increasingly larger, leading into an era where many different types of data
and devices with various performance requirements are connected; accordingly, it is not
sufficient to provide fixed priority to network flows. In studies that investigated the
application of deep learning to the network field, not only the advantages and effects of
introducing deep learning but also the challenges and difficulties were discussed [1–4].
Deep learning can estimate correlations of data through a neural network, and it uses a lot
of input data to show better performance. Deep learning is already known as a solution
that has achieved the best performance in many fields. Since network problems can often
be modeled with the Markov decision process (MDP), reinforcement learning based on
MDP has proven its feasibility [1]. In particular, deep reinforcement learning (DRL), using
neural networks of deep learning, has demonstrated good performance. Reinforcement
learning defines a problem in the form of MDP, training agents to choose optimal policies
from experience, and adding the approximation of neural networks, which is more effective
than existing algorithms. Various research studies suggest that DRL has outperformed
existing algorithms [5–10]. As traffic targeting time-sensitive applications increases and
networks are expected to become more complex, other algorithms are needed for the shift
in generations. This research was conducted as a necessity to study scheduling based
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on DRL, which uses nonlinear optimizers that can operate in accordance with numerous
network scenarios that cannot be linearly defined.

Before going further, we have introduced the abbreviations we use in this paper in
Table 1.

Table 1. Abbreviations used in this paper.

Abbreviation Meaning

A2C Actor–Critic
C-RAN Cloud-RAN (Radio Access Network)
CNN Convolutional Neural Network

DDQN Double Deep Q-Network
DQN Deep Q-Network
DRL Deep Reinforcement Learning
E2E End-to-end delay
EDF Earliest Deadline First
ET Estimated End-to-end delay

GCL Gate Control List
IoT Internet of Things

MDP Markov Decision Process
NFV Network Function Virtualization
PPO Proximal Policy Optimization
QoS Quality of Service
SDN Software-Defined Network
SON Self-Organizing Network

SP Strict Priority
TAS Time Aware Shaper

TDMA Time Division Multiple Access
TSN Time-Sensitive Networking
WRR Weighted Round Robin

Deep learning has also been discussed as a way to implement autonomous networking.
Autonomous networking has emerged, allowing networks to operate on their own without
manual network management [11]. It is aimed at achieving self-management, including self-
configuration, self-healing, self-optimizing, and self-protection. Reinforcement learning
can be in charge of the intelligence of autonomous networks because it takes appropriate
actions for various situations in the network environment. The following is the meaning of
each “self” function of autonomous networking:

• Self-configuration: the network sets itself without intervention by the administrator or
management system.

• Self-healing: the network automatically solves problems or adapts to a changed environment.
• Self-optimizing: the network finds the optimal way for itself to achieve the network’s

requirement.
• Self-protection: the network automatically prepares to potentially respond to an attack.

In order to improve the flexibility and intelligence of autonomous networking, SDN/NFV-
based standard models, such as self-organizing networks (SON), CogNet, and SELFNET,
have been developed, and data analysis through deep learning or machine learning is
needed [12]. In [13,14], reinforcement learning was applied to implement the autonomy
of networking. In [13], the authors investigated the latest studies on autonomous IoT,
analyzed suitable DRL algorithms, and proposed a general model. A cognitive control loop
was proposed to realize autonomy in [14].

Despite its spectacular prospects, no cases of deep learning application have been
reported on network control problems (i.e., scheduling, routing, etc.). Major challenges in
the field of networks applying deep learning are related to latency and generalization. It is
difficult to implement because the network nodes have to communicate with the central
controller in real time. It also takes considerable time to infer output in deep learning.
Using a transport layer protocol, a single node of information must be delivered to the
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central node to control network congestion [3]. Additionally, generalization is necessary to
respond appropriately to the states of all possible networks. It should have the ability to
learn or respond to unobserved patterns in real time and devise ways to normalize network
parameters of different formats. Centralized controllers struggle to manage the resources of
many network entities with a variety of capabilities, requiring research to learn and deploy
neural network models in a distributed manner [2].

In this study, we propose a scheduler-applied DRL in a timeslotted environment.
Among the various DRL algorithms, we used the value-based DDQN, which is known
to be simple, to perform well, and to be stable in discrete action spaces [13]. In previous
work on deep learning applied to networking problems, it has been demonstrated that
reinforcement learning can be suited to action choice where the state varies every timeslot,
such as the network scheduling problem. This study assumes a timeslot-based scheduling
environment, in which clocks are synchronized and queues are assigned according to the
priority of the flow. It also follows the basic assumptions made by IEEE time-sensitive
networking (TSN) [15] standard regarding the jitter and latency minimization technology
for small networks [16]. The priority is basically determined by the class of the flow. In this
study, the concept of precedence used in military networks is also introduced, assuming
that flows in the same class may have different precedence (or priority) depending on
the user’s authority [17]; i.e., flows may have the same class and similar requirements
but can be entered into different priority queues and scheduled differently. In this study,
the estimated end-to-end delay (referred to as ET in this paper) is used to define MDP
elements because it facilitates training on a single node. A state is defined as the length of
each priority queue and the estimated delay. The reward function is designed to meet the
deadline of the packet. Action is the choice of which priority queue in the timeslot to send
the packet.

As a result of this work, the DDQN on a single node outperformed existing algorithms
(the SP and the weighted round robin (WRR)) in terms of the total reward. Existing
algorithms achieved an average sum of reward of 90 to 92%, but our trained model achieved
a sum of reward of 100%. In addition, we validated the performance of a trained model
with estimated delay on a single node through simulation in the topology. This implies that
the aforementioned simple states and the reward with respect to estimated delay could be
effective and feasible for a general network. The reason for training on a single node is that
it rarely communicates with a central controller, other than deploying initial models on
each node. If the central controller can know all the situations of the network nodes, the
performance of learning could be superior, but it can be difficult to realize that parameters
must be transmitted in real time. In the simulations, the ratio of packets meeting deadlines
was considered as a performance indicator. Since the SP transmits packets based on priority,
a relatively low-priority queue is not guaranteed. WRR had a disadvantage in that the
weight had to be manually adjusted according to the traffic patterns, such as the period of
traffic. The DDQN-based scheduler was able to overcome the shortcomings of these existing
algorithms and send more packets within the deadline in several scenarios. In addition, by
introducing heuristics to reduce the deep learning inference time occurring per timeslot,
the scheduler could infer only when packets are present in two or more priority queues.
We could further reduce the inference time by recording actions for frequently observed
states, which can also be named as caching. In order to generalize it to actual IoT devices,
it is important to consider energy efficiency as well as inference time. There are various
studies considering energy efficiency in the time-division multiple access (TDMA) scheme,
which is a timeslot environment cognate. In recent studies, methods for transmitting power
to wireless sensor networks or harvesting energy have been proposed. In [18], it is revealed
that the strict-delay constraint leads to a decrease in energy efficiency. In addition, the
authors have proposed an algorithm for determining throughput that increases energy
efficiency in cases where QoS guarantees are required and generated from a delay-sensitive
source. In [19], which is another study of energy efficiency in TDMA, a sleep-scheduling



Electronics 2023, 12, 1042 4 of 23

policy called the multiple vacation and start-up threshold policy is used to mitigate energy
consumption in a TDMA environment.

The main contributions of this paper are as follows:

• The shortcomings of existing algorithms have been resolved. The SP algorithm does
not guarantee a low priority instead of guaranteeing a high priority, and in the case of
WRR, the weight must be adjusted according to the situation. The DDQN has a high
probability of transmitting both high and low priorities of packets within a deadline
and does not manually adjust the weight.

• Despite the assumption that the end-to-end delay (referred to as E2E in this paper)
is unknown and learning with the estimated ET, the topology with which E2E is
obtainable achieved the same or higher performance than the existing algorithms.

• A simple state, action, and reward are defined, and considering the contribution point
above, it can be inferred that learning and application to a specific network situation
may not put much effort into the learning environment.

• Not only reducing computation time and increasing energy efficiency due to deep
learning, but it is designed to not frequently exchange information with the central
system. Thus, the proposed DDQN based scheduler could be a potential solution for
IoT devices.

Section 2 introduces research referenced in this study in detail; in particular, the
motivation and results of reinforcement learning-based network studies, reinforcement
learning and TSN. Section 3 describes the model of our system and defines MDP elements.
In Section 4, we evaluate the results of simulations, including existing algorithms, single
nodes, and topologies; we also discuss strategies to reduce inference time and briefly
describe the implementation results of caching. Section 5 summarizes the proposed work
and discusses the directions and challenges that future work should take. Traditional
network schedulers operate in accordance with a predetermined algorithm, so they do
not have the ability to adequately handle changes of network states. This motivated us
to study intelligent scheduling with DRL that can be used in an advanced networking
environment. The goal of the study is to accelerate the introduction of automated and
intelligent networking.

2. Related Works

Reinforcement learning can utilize the convolutional neural networks (CNNs) that
input images, such as game environments, or utilize prediction models. Network schedul-
ing [5,7,9,20], routing [7], and resource allocation [6,8] through DRL using prediction
models have been studied in various ways. In particular, in a deadline-aware environment,
the rewards and states are usually defined with the goal of sending many packets within
the deadline. Similar to deciding which packet to send, a DQN has been used in the study
of automobile traffic signal systems. In [21], the authors proposed an intelligent traffic
signal system model using real traffic data. In [22], the definition of the appropriate state
and reward in traffic conditions was analyzed. It proved that the optimization of traffic
signals is the minimization of vehicle driving time, and as a result of learning with a
combination of various states and rewards, it achieved optimal performance even with a
simplified state and reward. In [5], the authors devised a method for scheduling using a
DQN for new classes of applications and traffic of IoT devices that will appear in future
mobile networks; In order to adapt to the dynamic traffic, the research achieved optimal
IoT traffic scheduling by implementing a scheduler applying reinforcement learning. In [6],
agents learned the optimal policy to efficiently distribute limited resources in IoT edge com-
puting systems through a DQN. In [7], policy-based proximal policy optimization (PPO)
was used to find the optimal joint scheduling and routing solution in multi-hop wireless
networks. It aimed to send many packets within the deadline. The state consists of queue
and queuing packets for all nodes, and the action selects one of the five heuristic algorithms
in the timeslot. The results of the study outperformed the best heuristic in the training set
scenario by 74% and outperformed the non-training set scenario by 64%. We also show that
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generalized policies learned from datasets of all scenarios are slightly lower than custom
policies learned from individual scenarios, and that exploring a larger number of routes
can reduce deadline missing. In [20], the authors presuppose an SDN environment capable
of real-time telemetry, and schedule it by adjusting the pacing rate of packets in a network
running an application that requires data transmission completion within a given deadline.
The purpose of the study is to maximize the number of flows satisfying deadlines while
maximizing network utilization. Compared with well-known heuristics, such as the earliest
deadline first (EDF) and equal partition, reinforcement learning agents always showed the
same or higher performance, and in particular, the higher the network load, the better the
performance over other algorithms. In [8], advantage actor–critic (A2C) is proposed as a
solution to mobile network load due to strict QoS requirements. Two A2C models were
proposed, and the performance of each model was compared. The model trained with
more information on the state achieved results that increased packet transmission rates by
92%. In [9], in order to solve the resource allocation imbalance in edge computing (which
eventually leads to system performance degradation) caused by numerous devices and
user movements in dynamic environments, a study was conducted to meet the required
deadline of the task with DRL.

In addition, IEEE TSN aims to be a latency guarantee network in an environment where
time-synchronized node and slot scheduling by a central entity is considered, and the key is
to adjust gate opening in the TSN standard. In a TSN synchronous approach [16], the output
port has a class-based queue, a time-aware shaper (TAS), and a strict-priority scheduler;
TAS has a gate control list (GCL) with information that coordinates the gate opening or
closing of queues per time slot. A TSN synchronous approach is suitable for application to
a network where the period and type of flows are static because the environment is aimed
at a deterministic service. Therefore, we propose a scheduling solution that determines a
queue to send packets per timeslot in a static environment, similar to the gate control of a
TSN synchronous approach. Gate control in TSN is performed through a fixed GCL, but in
our environment, each priority queue is controlled based on the state in the timeslot.

Reinforcement Learning

Reinforcement learning is a process in which the learning agent in the environment
undergoes trial and error in choosing random actions and converges to optimal policies by
learning behaviors that can receive maximum rewards. An episode means from the begin-
ning to the end of the simulation. Several episodes are required for the learning process.
The agent and the environment exchange information at every timestep (i.e., timeslot) and
proceed with learning. When the simulation ends after several timesteps, the simulation
will proceed to the initial state of the next episode. An agent observes the state, which
is information obtained from the environment, and selects action. Then the environment
delivers a reward to the agent. The state is changed to a new one in the next timestep. This
reward is also called an immediate reward because it is a value given instantly after the
timestep in which the agent selects an action. Q-learning (i.e., a representative algorithm of
reinforcement learning) uses Q-value, which denotes the cumulative value pursuant to the
state and action of the agent. The Q-value approximation in the DQN derivation from (1)
to (4) is summarized from [23]. The Q-value is measured by considering not only the im-
mediate reward but also all rewards to be received after timestep t. The immediate reward
is given at timestep t + 1 subsequent to selecting an action at timestep t. Thus, R(t + 1)
becomes the reward received at timestep t. In case the future value is converted to the
value of the present timestep, a discount factor between 0 and 1 represented by the symbol
γ is used to convert future values to the current value, as shown in (1).
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Q(s, a) = R(t + 1) + γR(t + 2) + · · ·+ γ(n−1)R(t + n), (1)

maxaQ
(
s′, a

)
= R(t + 2) + · · ·+ γn−2R(t + n) (2)

If the selected action has the largest Q-value after timestep t, this is expressed as shown
in (2). Thus, the Q-value formula means that the agent would select an action to maximize
reward at each timestep t to t + n. The part of (1) equal to (2) is able to be replaced by (2),
and therefore the Q-value equation is derived as shown in (3) below.

Yt = R(t + 1) + γmaxaQ
(
s′, a

)
. (3)

In (3), maxQ(s′, a) is the maximum Q-value where an agent selects the action a in the
next state s′; thus, it is expressed as (4).

maxaQ
(
s′, a

)
= Q

(
s′, argmaxaQ

(
s′, a

))
. (4)

In order to calculate the Q-value, all rewards received after t are demanded. According
to the Q-learning algorithm, a two-dimensional matrix Q-table with s as rows and a as
columns was introduced to record the Q-value of every combination of (s, a). Several
numbers of simulations are required to update each Q(s, a) of the Q-table. As mentioned
above, (3) is calculated as the sum of (4) and the immediate reward; then, consequently, the
Q-table is updated. The combination of state or action could be diversified; however, the
size of the Q-table and the amount of computation will increase if there are many states
and actions. To address these limitations, the DQN opened a new chapter in reinforcement
learning with deep learning by devising the neural network Q-network to estimate Q-
value [23]. For general deep learning tasks, input data are computed with the parameters
of the neural network and passed through the activation layer; finally, it produces output
data. Since output is the value predicted by the neural network, there is a target which
the output of the neural network is supposed to attain. It is trained to update the neural
network by back propagating the error between the target and the prediction in order
that the output is close to the target. The entire system described above is referred to as
deep learning. The input of the Q-network is state s, and the output is the Q-value of
each action a in the action space. In (3), Y is calculated by the immediate reward R(t + 1)
and maxQ(s′, a), which becomes the target of the Q-network. DQN learning is conducted
through an error between Y and Qpred(s, a) that is predicted as the Q-value by the Q-
network. If maxQ(s′, a) in (3) was predicted through the Q-network, the target would
change in every step. Due to the fixed target, this problem does not occur in supervised
learning; however, in reinforcement learning, there is not a fixed target. Therefore, the
learning might not be performed correctly only with the Q-network. The target network,
which has the same structure as the Q-network and fixed weights, calculates maxQ(s′, a)
and periodically copies weights of the Q-network; this is one of the characteristics of a
double DQN (DDQN). As shown in Figure 1, copying weights of the Q-network is named
as a soft update.
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Figure 2 describes the proposed approach. The network simulation with deep learn-
ing requires customization of a simulator which reflects constraints of the network. We
designed the elements of the network, such as the source, node, and link, to organize
the environments.
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3.1. Experiment Environment

We designed a simple experiment environment in our study to find that reinforcement
learning in timeslot scheduling is feasible. The structure of the output port of a switch
node is shown in Figure 3. The DDQN agent is responsible for scheduling a timeslot of
two priority queues in the node, and the output port is one. In this work, the agent was
trained with only a simple experimental environment, and then evaluated by applying
trained agents to mesh-type network topologies. Considering that it is a node on a network
topology where many nodes exist, we introduced the number of remaining hops as each
packet having to be sent when they arrive at the node, which is configured as a hyper-
parameter. A current delay denotes latency while the packet generated from the source
arrives in the node. The current delay and remaining hop count are set to arbitrary values.
All packets have a fixed size, and the size of a timeslot is equal to a packet size. Since our
work configured the bandwidth to 20 Mbps and the size of the packet to 1500 bytes, the
timeslot size would be 0.6 ms; i.e., a packet takes 0.6 ms to send to the next node. The packet
arrival probability distribution is affected by the packet generation period, the number of
flows, and the number of packets. In this study, we experimented with different numbers
of packets and the period of packet generation for each of the two flows. In the training
simulation environment of the DDQN, the number of packets is 40 for flow1 and 100 for
flow2, and the period is the same as 1 timeslot. On the other hand, in the test simulation
environment of the trained DDQN model, the number of packets is all equal to 60, and the
generation period is equal to 2, or flow1 is allocated to 2 timeslots and flow2 is allocated
to 4 timeslots. Hence, the three different packet generation and arrival patterns can be
observed. When the number of packets in each flow is expressed as n and the period is
expressed as p, the duration for packet generation can be expressed as n× p. Then it could
be generalized as follows, in which the subscript denotes priority of the flow.

If n1 p1 < n2 p2; P(0 ≤ t ≤ n1 p1) =
1
p1

+
1
p2

, P(n1 p1 < t ≤ n2 p2) =
1
p2

.

If n1 p2 = n2 p2; P(t) =
1
p1

+
1
p2

, i f n1 p2 = n2 p2.
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Figure 3. The output port structure of the network that is prepared for DDQN training in this study.
In the training DDQN environment, there is a single node with two input ports to priority queues
and one output port.

Both priorities have deadlines to be met; every packet should arrive at its destination
within the deadline, but there is a difference in their importance. The SP always serves a
packet of high priority as long as the packet remains in the queue; therefore, occasionally
low-priority packets cannot be transmitted within the deadline in situations with high
utilization. Utilization is with respect to the transmission period of the packet. The shorter
the generation period of packets using the link, the greater the utilization. Referring to
Table 2 below, it may be seen that the arrival probability of priority 2 packets is lower
than that of priority 1 packets. Thus, reinforcement learning was applied to schedule
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packets within the deadline according to their importance. In order for the reinforcement
learning agent to implement optimal scheduling, it should delay high-priority packets a
little and send more low-priority packets, but only to the extent that high-priority packets
could satisfy the requirement. This is a point that emphasizes the need for reinforcement
learning-based scheduling, with a need for algorithms that are required to operate very
delicately and that must also change as the environment changes.

Table 2. Probability of meeting the deadline of each priority in SP.

Priority 1 Priority 2

Probability of meeting deadline 100% 80%
Average of estimated end-to-end

delay (ET) 2 ms 2 ms

3.2. Application of DDQN

The DQN selects the best action in the current state through the Q-network. The Q-
value approximation of the Q-network in DDQN derivation from (5) to (7) is summarized
from [24]. Qpred(s, a) is the output of the Q-network, and weights of the Q-network are
expressed as θQ. Equally, Q(s′, a) is an output using weights θtarget in the target network.
The target can be expressed in (5). By calculating the square error of the target and
Qpred(s, a), the error used in the learning can be obtained as shown in (6) below.

Yt = R(t + 1) + γmaxaQ
(
s′, a; θtarget), (5)

Error =
(

Yt −Qpred
(

s, a; θQ
))2

. (6)

The Epsilon-greedy algorithm was used to increase the learning effect. The method
uses the probability value ε, which gradually decreases from 1 to 0.01, to allow the agent
to randomly select the action according to ε. Since ε decreases as episodes continue, the
frequency of selecting the action that produces the maximum Q-value is increased. In this
way, agents could establish the optimal policy and learn from various data. A tuple of
〈s , a , s′, r〉 is observed for each timestep and then stored in a replay memory buffer, and
all data are divided into a mini-batch to proceed with the neural network’s learning. The
replay memory buffer serves as a dataset of supervised learning, and a mini-batch consists
of some samples acquired by the DDQN agent to efficiently train the neural network, as
in supervised learning where the dataset is divided into batches. The DDQN has been
proposed to solve the problem of overestimating Q-value in DQN or Q-learning [24]. By
predicting a more accurate Q-value, our work achieved a stable arrival of a higher reward.
The difference from the DQN is in calculating the target. In the case of the DQN, the action
of the next state is selected only with θtarget, as shown in (5). On the other hand, the DDQN
selects an action in the next timestep with θQ and substitutes an output corresponding to
the Q-value of the action selected with θtarget. This is expressed in the formula as shown
in (7).

Yt = R(t + 1) + γQ
(

s′, argmaxaQ
(

s′, a; θQ
)

; θtarget
)

. (7)

It is known that this could prevent propagation from occurring with an overestimated
Q-value. Reinforcement learning should define the state, action, and reward to apply to the
MDP problem of decision-making over discrete time. State, action, and reward are defined
as in the following subsections, and symbols used to define the elements of reinforcement
learning are described in Table 3.
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Table 3. Symbols used in state, action, and reward formulation.

Symbol Description

h Remaining hops to destination
c Current delay that the packet has experienced so far

qd Current queue position of the packet
p Priority, p ∈ { 1, 2 }
ep The estimated E2E delay (ET) of the packet with priority p
Ep The set ETs of packets waiting in queue corresponding priority p
Lp Length of the queue of packets of priority p
dp Deadline of packets with priority p

ωp
Status of a packet whether it has been transmitted or not,

ωp ∈ { 0, 1 }

(1) State

The state should include the necessary information as concisely as possible but should
represent all the situations that the environment needs to know. The agent could not have
information about real E2E, which is essential to observe the state of the network. Thus,
the state included ET information instead of real E2E. The current delay and the queueing
delay of the packet are able to be observed. However, the delay of the packet from the
single node to its destination cannot be observed in the single node. It takes a timeslot to
transmit a packet in the timeslot-based environment; thus, ET has a unit of timeslot. The
remaining hops and current delay are counted in units of timeslots as well. Since it can take
exactly one slot for the packet to reach the next node, for remaining hops, it was assumed
that the packet would be delayed as much as the remaining hops when estimating ET. The
state denoted by St is the set of the length of each queue and the maximum ET of packets
in each queue, which changes according to timeslot t.

ep = h + c + qd, ep ∈ Ep,

St = [L1, L2, max(E1), max(E2)].

(2) Action

Because we assumed that one packet per timeslot can be transmitted, the choice of
agent could be simplified to send a priority 1 or priority 2 packet at each timeslot. The
agent selects an action of 0 or 1, where 0 means priority 1 packet transmission and 1 means
priority 2 packet transmission.

at = { 0, 1 }.

(3) Reward

Rewards should be set to induce behavior expected from reinforcement learning
agents. Since the goal is to send as many packets as possible within the deadline, R1
rewards if ep is less than dp. In the case of using only R1, it might happen that the agent
does not send a packet, because it is expected to return the same reward as sending a packet
over the deadline. To prevent this situation, R2 always returns if the packet is sent, and
parameter β is set to be much smaller than α and greater than zero. Consequently, the total
reward at timeslot t, Rt, is defined as in the following equations. R1 is defined to induce
the agent to transmit as many packets as possible within the deadline while preserving
weights of each priority, and R2 is defined to prevent the agent from taking action not to
transmit a packet if R1 is not received.

R1p
t = 1

{
dp > ep

}
,

R2p
t = 1

{
ωp

}
,
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Rt =
p

∑
i=0

αiR1i
t + β

p

∑
i=0

R2i
t .

4. Performance Evaluation

For the performance evaluation, we have implemented deep learning on the network
using a discrete event-based simulation tool. A reinforcement learning simulation platform,
Simpy, was used for our experiments [25]. For implementation of our simulator, the
packet generation process and link, transport, source, and node are modularized with
their processes. Training and tests are executed by interacting with the TensorFlow-based
DDQN with the agent. The DDQN trains the outside of the simulation environment
defined in Simpy; it does not affect the packet latency. In other words, training the DDQN
results in delay due to inference and learning operations of the neural network, but the
simulation environment does not take interference into account. However, in real-world
network environments (i.e., where scheduling is required for every time slot), the delay of
deep learning computation could occur. In preparation for this situation, the agent could
select an action only with information about its own state, even if all switch nodes in the
network were not known; it allows decentralization of the DDQN scheduler. The role of
the trained DDQN is to output an optimal action by using the state as an input; the optimal
action for the current state observed at the node could be recorded in the look-up table.
The parameters set to train the DDQN are summarized in Table 4 on network simulation
parameters and in Table 5 on the DDQN learning parameters. The structure of the DDQN
can be seen in Figure 4. Linear was used for the activation function at the final output
terminal, and Adam was used for the optimizer. This method uses an adaptive learning
rate optimization algorithm, which is known to improve learning performance by updating
weights using individual learning rates. In this study, the learning rate of 1× 104 was
empirically determined based on the most effective value for loss reduction. The algorithms
used for the result comparison are SP and WRR. SP is an algorithm that unconditionally
sends packets in the highest priority queue. WRR is an algorithm that services queues
sequentially in proportion to the weights allocated to each priority queue. In all simulations,
including the DDQN, if a packet exists in only one priority queue, work-conserving was
applied to send the packet regardless of the result of the scheduling.

Table 4. Network parameters for training the model.

Parameter Value

The number of priority 1 packets transmitted at 1 episode 40
The number of priority 2 packets transmitted at 1 episode 100

The deadline of priority 1 packets 5 ms
The deadline of priority 2 packets 50 ms

The size of the packet 1500 byte
Timeslot size 0.6 ms
Bandwidth 20 Mbps

The range of arbitrary h 0~4
The range of arbitrary c in priority 1 0~2 slots
The range of arbitrary c in priority 2 30~45 slots

The period of priority 1 1 slot
The period of priority 2 1 slot
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Table 5. DDQN parameters for training the model.

Parameter Value

Total number of episodes 20,000
Maximum timeslot in episode 330 slots
The frequency of soft update 500 episodes

α [0.6, 0.1]
β 0.01
γ 0.99

Learning rate 1× 104
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4.1. Existing Algorithms

In this study, existing algorithms were used to objectively evaluate the performance
of the DDQN agent. As mentioned in Section 3 some packets could not arrive within the
deadline in situations where utilization increases due to the sudden influx of packets into
the link. Table 2 confirms that existing algorithm SP has weaknesses that are difficult to
adaptively respond to. Unlike SP, which unconditionally gives preemption to high priority,
WRR can perform more flexible scheduling than SP in that it can assign weights to each
queue. Work-conserving has been applied to all algorithms, including SP, WRR, and DDQN
agents, to ensure that packets are sent when they are waiting. For instance, if packets exist
in only one of the two queues, they are sent immediately without using the scheduling
algorithm. Not only did this meet the requirements of the packet, but it also helped reduce
the running time. WRR allows the allocated weights to be involved only when packets exist
in both queues; in other words, when it has a weight of 3:1, it means transmission of three
priority 1 packets and one priority 2 packet only by scheduling without work-conserving.
The weight is set according to the network situation; even in the same situation, the result
might vary depending on the weight. Therefore, for each simulation below, an indicator
for evaluating the performance according to the weight of the WRR is added.

4.2. DDQN Training Results

As a result of training for hyperparameter tuning, it was confirmed that the higher
the value assigned to priority 1, the better the performance that was shown. B should
have less effect than α and greater than 0, so a value of 0.01 was assigned. Figure 5 is a
learning curve comparing the results of DDQN training with 20,000 episodes, DQN training
with 10,000 episodes, and SP simulation in 20,000 episodes. The moving average of the
DQN learning curve showed a continuous decrease, and we stopped the training early
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because we decided that there was no possibility of improvement. The cumulative sum of
rewards, which is specified as a score obtained in each timestep of an episode, was used
as the result indication. The moving average of the score with window size 1000 and the
moving standard deviation with the range of 30% transparency were exploited to display
the learning curve. Each score was normalized to a range between 0 and 1 by adjusting the
score with the max value in the episode. As ∈ decreased, the score of the DDQN increased
and learning was progressing properly. Referring to Figure 6, the score of the DDQN was
recorded higher as compared with existing algorithm SP after 15,000 episodes. It was
confirmed that the loss function gradually converges close to zero as well. As mentioned
above, loss function is used to optimize neural network parameters and we define it to
be MSE (Mean Square Error), which is applied to measure and improve the accuracy of
prediction. It is a partial derivative with respect to the parameters, then back propagated
to update them. Hence, a decrease of loss denotes that the criterion of accuracy has been
improved through iterations of training. The progress of loss during episodes is shown in
Figure 7.
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4.3. Single Node Simulations

The training was successfully performed in the single node that has the output port
structure shown in Figure 3. Simulations were conducted under the same environmental
variables as the existing algorithm by applying a trained agent for evaluation. Figure 8
indicates the comparison between the trained deep learning model and the existing al-
gorithms. All algorithms were tested 10 times; thus, the distribution of data could be
considered. Unlike the environment of DDQN learning, with 200% of maximum link
utilization (i.e., priority 1 and priority 2 packets generated at a period of 1 timeslot), all
packet generation periods were set to 2 timeslots and tested. The deadlines of all flows were
fixed at 7 timeslots, and the packet number of each flow was set to 40. The current delay
was designed considering remaining hops since we assumed that packet has a smaller
remaining hop means packet was sent from source longer timeslots ago. As could be
seen from Figure 8, the trained DDQN achieved 100% of a normalized score even though
parameters were changed, proving that it would adapt well to dynamic environments.
On the other hand, the existing algorithms remained in average performance at around
90%~92%. This result suggests that the DDQN could guarantee deadline requirements for
more packets in timeslot scheduling with priority unlike other algorithms. SP and WRR
showed similar normalized scores. WRR, with a weight of 1:1, showed higher average
performance than WRR at 3:1. Table 6 shows the results of deadline satisfaction according
to weight in the same network environment. Since the period ratio of each priority is 1:1,
the weight also achieved a higher satisfaction rate as it is closer to 1:1; however, it could not
achieve more than 90% in priority 2. In order to confirm whether a deadline is guaranteed
or not for every flow (i.e., to confirm the accomplishment of the purpose of our work), the
delay for each algorithm and priority was confirmed in Figure 9. The gray area denotes the
deadline. As we assumed that the agent utilizes ET, it is impossible to find the real E2E of
packets. The timeslot is 0.6 ms and the deadline is 4.2 ms; thus, the deadline is 7 timeslots.
In the simulation environment, as the packet arrival is constant, the length of the queue is
increased. Accordingly, since packets transmitted at the beginning of the packet generation
process have a small ET, and packets transmitted later have a larger ET, some fluctuation of
the number of packets may occur. The ET of priority 1 was slightly increased but the ET of
priority 2 was slightly decreased, so that all packets arrived within the deadline, contrary
to other algorithms. Therefore, the simulation results in a single node might be interpreted
as an accomplishment of the purpose and intention of the training DDQN agent.
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Table 6. WRR results according to different weights in single node simulation.

Algorithm Priority 1 Priority 2

DDQN 100% 100%
SP 100% 77.5%

WRR 4:1 100% 80.5%
WRR 3:1 100% 77.5%
WRR 2:1 100% 90%
WRR 1:1 100% 90%
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4.4. Simulations in Network Topology

In Section 4.2, it was confirmed that the DDQN operates in various parameters in the
single node environment. We implemented a well-known mesh-type network topology
with nine nodes, as shown in Figure 10 [16,26], in order to verify that the DDQN scheduler
works properly even when expanding the network size, and then applied the same trained
model for comparison of the performance of the scheduling algorithms and analysis of
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delay. We used ET when training on a single node, but there is no way to observe whether
the DDQN agent correctly estimated the E2E. Hence, we measured that simulation in the
network topology is also essential. In the topology, each node delivers the state to a trained
DDQN agent, which is assumed to be embedded inside of each node and receive the action.
Because the state defined as an MDP problem is independent, the entire network situation
is unknown to other nodes. Therefore, the key of our work is that scheduling is properly
performed with ET through topology simulation. If the information of another node is
added to the state, scheduling performance could be improved, but the state-space would
be vast, resulting in a large amount of computation, and as the node is added, it will be
difficult to apply. We conducted a simulation on various scenarios which are set with
eight flows and two priorities. The eight flows are shown in Table 7, and the route is the
sequence of nodes through which the flow passes. The number of nodes is the same as in
Figure 10. The first index is the node connected to the source, and the last index is the node
connected to the destination. Each node of the topology has two input ports and two output
ports. The structure of the output port defined in Figure 3 is applied, which means that
there are two priority queues per port. Scheduling is performed on a per-port basis, and
as mentioned, the scheduling algorithm operates only when packets are simultaneously
queued in two priority queues. In particular, if the flows defined in Table 7 share the same
link, the scheduling algorithm is applied instead of work-conserving; The link from node 2
to node 5 is shared by F1 and F2, and the link from node 8 to node 5 is shared by F7 and
F8. Therefore, the simulation can be conducted with only F1, F2, F7, and F8. Our proposed
DDQN-based timeslot scheduling process is described in Algorithm 1.

Algorithm 1 DDQN scheduling simulation in topology

N = number of nodes in topology
P = number of priority queues in a port of a node = 2
Init priority_queues [1..P]
Init action[1..N], state[1..N], next_state[1..N], reward[1..N], timeslot
DDQN← trained_ddqn_weights
while not done : timeslot += 1

for each SourceModule do:
SourceModule.PacketGeneration

if timeslot : # not initial timeslot
for n in 1..N:

state[n]← next_state[n]
if any NodeModule[n].Queues is not empty:

action[n]← DDQN.ChooseAction
else:

action[n]← NodeModule[n].WorkConserving
for n in 1..N:

packet← NodeModule[n].Scheduling(action[n])
priority_queues[P]← packet #the priority of the packet is P
NodeModule[n].Send(priority_queues[P])
next_state[n]← NodeModule[n].StateObserve

if transmission terminated: done = True
return

In Table 8 below, there are six scenarios where we experimented. The deadline and
period are represented by tuples for priority 1 and 2, respectively, and T means timeslot.
The probability of meeting the deadline of the DDQN, SP, and WRR in simulations of
each scenario are shown in Figures 11 and 12. There are scenarios in which the model
trained from the single node using ET shows 100% deadline meeting, and the DDQN
performance is higher overall. In the case of SP, 100% of the deadline was met for priority 1,
but the deadline for priority 2 is not perfectly guaranteed. In the case of WRR, if the packet
generation period is longer than two slots due to work-conserving, scheduling is similar to
that of SP. Since it has a weight of 3:1, it shows a low probability of meeting deadlines in an
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environment such as S5, where the packet generation period is different from its weight’s
inverse proportion. This means that when using WRR, the weight must also be changed
according to the changing environment. In the case of the proposed DDQN scheduler, the
results have been demonstrated to successfully address the drawback of SP and WRR.
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We implemented a mesh-type network topology with nine nodes to verify that the DDQN scheduler
works properly even when expanding the network size.

Table 7. Flows in network topology.

Flow Priority Route

F1 1 [1, 2, 5, 6, 9]
F2 2 [3, 2, 5, 4, 7]
F3 2 [4, 1, 2]
F4 2 [4, 7, 8]
F5 2 [6, 3, 2]
F6 2 [6, 9, 8]
F7 2 [7, 8, 5, 6, 3]
F8 1 [9, 8, 5, 4, 1]

Table 8. Flows in network topology.

Scenario Period Deadline Flows

S1 (2T, 2T) (8T, 7T) All flows
S2 (2T, 2T) (7T, 7T) All flows
S3 (2T, 2T) (7T, 8T) All flows
S4 (2T, 2T) (7T, 8T) Without F3~F6
S5 (1T, 5T) (8T, 9T) Without F3~F6
S6 (2T, 4T) (6T, 7T) Without F3~F6
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Table 9 denotes the results of deadline meets according to weight at scenario S4. In
S4, since each period of priority is 2T, it shows the highest satisfaction at a weight of 1:1.
Among the S1 to S6, WRR showed especially poor performance in S5. This shows that the
weight of the WRR is sensitive to the maximum utilization (i.e., period of the packet). In
Table 10, the WRR results according to the weight of S5 may be confirmed. Since S5 has
periods of 1T and 5T, respectively, it is an environment with high utilization of up to 120%.
This demonstrated the more weight needing to be assigned to the packet having the shorter
period. However, this is slightly lower than that of the DDQN, and there is a disadvantage
that WRR weight must be reassigned when the utilization changes. In Figure 11, the E2E in
the DDQN, SP and WRR was illustrated. It was confirmed that every packet scheduled by
the DDQN arrived within the deadline. The left graph of Figure 11 corresponds to flow
F1 and the right graph corresponds to F2, and the graphs mean the E2E of 60 packets in
scenario S4.
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Table 9. WRR result at S4 according to different weights in topology.

Algorithm Priority 1 Priority 2

DDQN 100% 100%
SP 100% 76.67%

WRR 4:1 100% 85%
WRR 3:1 100% 83.33%
WRR 2:1 100% 91.67%
WRR 1:1 100% 95%

Table 10. WRR result at S5 according to different weights in topology.

Algorithm Priority 1 Priority 2

DDQN 100% 78.33%
SP 100% 75%

WRR 3:1 20% 88.33%
WRR 10:1 58.33% 75%
WRR 15:1 86.67% 75%
WRR 20:1 100% 75%

The x-axis represents the E2E in ms instead of the timeslot unit. Figure 13 might imply
why it could substantially improve the performance. Scheduling algorithms including the
DDQN transmitted high-priority packets within the required deadline, but the DDQN
transmitted more low-priority packets compared to other existing algorithms. It can be
seen that the trained DDQN agent takes action to transmit low-priority packets while
delaying high-priority packets to a limit where the packets can be transmitted within the
deadline. In contrast, the SP and WRR algorithms transmit many high-priority packets
even though there are many deadlines left, so it can be seen that low-priority packets are
delayed. This also can be observed in Figures 9 and 13. Although the research results
demonstrate that DRL shows potential for network scheduling, several challenges remain:
reinforcement learning agents should be generalized so that the agents do not operate only
in the environment configured in the simulation, and the computational complexity should
be reduced so that DRL can be applied to network equipment.
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4.5. Simulations in Network Topology

As mentioned in Section 1, there is a problem of deep learning inference time as a
task to be solved in order to apply DRL to networks. In this study, in an effort to reduce
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the inference time, inference at every timeslot is prevented through work-conserving,
and single nodes can independently act without correspondence with the central node.
Despite it being designed this way, the action is still chosen by the agent; and it takes
considerable computation time. We designed the simulation not to consider the deep
learning inference time, but it is difficult to do this in real situations. Therefore, we have
introduced a table look-up method as a simple way to reduce inference time. This means
all observed states and actions in multiple times of simulation are stored in a look-up table,
and the simulation with a look-up table is performed with the table look-up method instead
of the DDQN. When it uses the table look-up method, the action of the next timeslot is
decided by searching the state from the look-up table, avoiding the computation of the
DDQN. If a state does not exist in the look-up table, it operates as an SP algorithm. Because
of the simulation in the same scenario, the rate at which packets arrive within a deadline
is very similar to the DDQN results in Figure 12, but the inference time is significantly
reduced, as shown in Table 11 below; for example, in Scenario 1, the simulation time of the
look-up table is approximately 1.4/100 of the DDQN time. This suggests the possibility
that if the model is trained, the inference can be partially replaced by the table look-up
method; also, it can be expected that reinforcement learning can be introduced in small
networks by distributing only simplified tables without having to periodically distribute
models after training all newly observed samples at the central processing node. However,
the disadvantage of this method is that the agent needs to know the state and action
possible for all scenarios, and that it can only choose one predetermined action for the
state. As a solution to this, a policy-distillation method for reducing the computation of
reinforcement learning can be considered [27]. Policy distillation is a technique that lessens
the computation by transferring a teacher model, where training is actually done, to a
small student model. Policy-distillation has shown that the computational time is very
low, and the student’s performance can be close to that of the teacher. In fact, there has
been a discussion in [4] that the implementation problem of deep learning in networks
can be solved through policy transfer learning of policy distillation. In addition, in [10],
policy distillation was applied as a way to output real-time tasks in microseconds to replace
existing congestion control algorithms in C-RAN with DRL. In the study, policy was
transferred to a decision tree of appropriate depth that achieves performance similar to the
original model and negligible inference time. The proposed model based on the DDQN is
trained in every timeslot. The experience replay keeps repeating while training. As a result,
the learning slows down, and the complexity increases as the learning progresses due to
the accumulation of observed data samples. To address these issues, we tried to exclude
unnecessary experience and deep learning inference. Timeslot data that are not needed
during training (e.g., state elements are all 0 and no packets are generated at a timeslot)
are not added to memory. In addition, when there are packets in only one of Queue 1 or
Queue 2, the experience replay is not required, so it is excluded from replay memory. This
could make it possible to not significantly slow down.

Table 11. Inference time of the DDQN simulation and table look-up method in each scenario.

S1 S2 S3 S4 S5 S6

DDQN
inference 3.75 3.67 3.77 2.10 2.15 2.038

Table
look-up 0.053 0.054 0.054 0.039 0.045 0.44

5. Conclusions

This study proposed timeslot scheduling based on deep reinforcement learning. Re-
inforcement learning with deep learning has been known as an algorithm that reduces
computational time and increases Q-value prediction performance compared to Q-learning.
With deadlines also required for traffic of lower priority, we hypothesized that more packets
would be sent within deadlines if the higher priority yielded a timeslot to the lower priority
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at an appropriate state. The DDQN agent was conducted to reward when the ET of the
packet was less than the deadline. After about 15,000 episodes, the score of the DDQN
showed that it outperformed SP on the learning curve. As a result of simulation under the
environment of utilization smaller than the learning environment, SP or WRR recorded a
score of 90% and the DDQN recorded a score of 100%. This means that the DDQN could
guarantee more packet deadlines than existing algorithms. Furthermore, in the results of
testing by expanding the network structure, the DDQN always performed higher or the
same while improving the weaknesses of other algorithms. The E2E of packet scheduling
with the DDQN was validated to be adjusted in order to meet the deadline. Reinforcement
learning would provide optimal scheduling to meet the requirements of networks where
vast amounts of data are transmitted without intervention of an administrator, and be able
to reach the goal of autonomous networking that responds immediately to changes in the
network environment. This study has shown the feasibility of introducing deep learning
into future intelligent networks. We are planning to develop a well-adapted agent to a
more dynamic network environment for a generalized reinforcement learning scheduler.
The essential factors of future work are defining different priorities and classes of flows,
and being robust for various utilization and requirements. In addition, we are planning
to devise a solution for reduction of operation, such as a policy-distillation method to
reduce inference time, aiming for DRL in the network to be applied in a real case. In
order to apply the deep learning modules in PyTorch or TensorFlow, we implemented
our Simpy-based simulation, and not use other network simulation frameworks. Hence,
it makes deep learning difficult to be accepted in networking. In order to apply a deep
learning model based on Python to a network, most of the related research developed the
simulator independently, which is able to be employed on their work only [28]. Therefore,
the simulator should be standardized so that various environments and models can be
tested and compared. In order to develop deep learning-based networks, it will be directed
to improve DRL scheduling performance, which remains a challenge, as well as to build
standardized simulators and benchmark datasets.

Reinforcement learning-based network scheduling is still in its early stage. Although
the DDQN agent in this paper showed better performance than the existing algorithms, the
following limitations are remaining. We also suggest future work to solve these limitations.

(1) Generalization and robustness issues: In this study, priority-based scheduling
is performed in a simplified timeslot environment. However, real traffic patterns and
network conditions can be more complex. We expect the scheduler performance would
be different according to such discrepancies in more realistic environments. Therefore, in
subsequent studies, the flow configurations will reflect better the real-word traffic, and
network topologies and sizes will reflect the real networks. We also plan to compare the
results in diverse aspects and analyze the agent’s policy. In addition, various DRL models
will be explored and simulated and compared in terms of efficiency and performance.

(2) Scalability issues: Limitations on computing resources make it difficult to realize
the suggested framework in real implementations. In subsequent studies, a more scalable
approach will be employed, in which the central node distributes a lightweight model
(for example, policy distillation), and the other nodes use the lightweight model to reduce
complexity in terms of computation and memory.

(3) Bias issues: The evaluation results shown in this work may have been biased. Since
the simulator was developed by itself and was executed only in a network environment
where conditions were set, it is necessary to compare the results in various aspects and
analyze the agent’s behavior to give objectivity. It is possible to enhance the proposed
framework by modifying the inference frequency and the system input/output.
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