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Abstract: Constant power loading is an effect that appears in multiple-stage energy conversion
systems with individually regulated switching power converters. In a two-stage system, an upstream
or source converter drives one or more downstream or load converters. The downstream converters
in a two-stage power conversion system are designed to provide the fastest transient response in
stand-alone operation. Consequently, they behave as a constant power load (CPL) to the upstream
converter within their control bandwidth. In the past, open-loop power converters feeding CPLs
and operating in discontinuous conduction mode (DCM) were considered to be stable. In this
paper, it is shown that these systems can undergo instabilities, which have been so far overlooked.
First, numerical simulations from the switched model of an open-loop boost converter under DCM
operation and loaded with a tightly regulated buck converter and the same converter loaded by
an ideal CPL are presented to show that they exhibit similar nonlinear behavior and bifurcation
phenomena. Then, the three elementary open-loop DC–DC converters operating in the DCM were
considered and their bifurcation phenomena were revealed. It is shown that the period-doubling
route to chaos in the DC–DC boost converter is interrupted by a sudden appearance of dangerous
destructive dynamics due to the excessively unlimited load current in the CPL. For the buck converter,
only the first period-doubling bifurcation is observed before the destructive behavior appears. The
open-loop buck–boost converter under DCM and feeding a CPL is always unstable and exhibits no
periodic orbit. Based on the observed phenomena, approximate discrete-time models were derived,
which despite their simplicity, were seen to display the most-important and -essential features of the
corresponding switching converters before destructive dynamics occurs.

Keywords: period-doubling; nonlinear circuits and systems; open-loop DC–DC converters

1. Introduction

Cascaded DC–DC power converters appear in many engineering applications of power
electronics such as electric vehicles and ships [1–5], microgrids [6–9], more electric power
aircraft [10], and more electric ships [4], among others. In cascaded DC–DC converters,
the first stage is called the source or the upstream converter, and the second stage is the
load or the downstream converter. When the latter is controlled to maintain a tightly
regulated output voltage on the load, it behaves as a constant power load (CPL) for the
source converter [9–14]. For instance, in a microgrid with different voltage buses, if the
downstream power electronics interface, which could be a grid-connected DC–AC inverter
or a DC–DC converter, is tightly regulated, it will absorb constant power from the upstream
DC–DC converter. The motor of an electric vehicle (EV) with tight velocity control and
under constant torque operation will also absorb constant mechanical power from the
three-phase DC–AC inverter, hence resulting in a CPL to the upstream DC–DC boost
converter [14]. It is remarkable that the source converters in the previously mentioned
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applications feed CPLs and that the number of these applications is increasing at an
enormous rate.

A DC–DC converter comprises reactive elements such as inductors and capacitors and
semiconductor devices such as transistors and diodes operating as periodically controlled
switches that change their state when certain events take place. The common node between
the transistor and the diode connects to an inductor. In most of the applications, continuous
conduction mode (CCM) is employed. In this case, the inductor current never drops to
zero. Yet, discontinuous conduction mode (DCM) can also be used for certain applications.
In this case, the inductor current drops to zero and remains null until the end of the
switching cycle. When a converter operates in DCM, it provides the potential advantages
of better closed-loop stability with simple control and the reduced cost of the converter,
among others advantages [15]. DCM typically occurs with a large inductor current ripple
in a unidirectional converter operating at a light load. For instance, DCM is eventually
encountered in a converter when its load is removed. In some applications, converters are
deliberately designed to operate in DCM for all loading conditions. The DCM operation
of elementary DC–DC converters is characterized by the fact that some switching instants
are internally controlled even under open-loop operation. Indeed, the diode changes its
conducting state when the inductor current becomes zero.

Generally, the mathematical model of cascaded DC–DC converters is high-dimensional,
making their stability analysis challenging. The impedance criterion is a frequency domain
technique widely used for the stability analysis of cascaded converters, after it was first
proposed for predicting input filter interactions in DC–DC converters [16]. Later, the same
criterion was applied for cascaded converters, leading to the definition of the minor loop
gain consisting of the ratio between the output impedance Zo of the load converter and
the input impedance Zi of the source or downstream converter. This minor loop Zo/Zi has
since been widely used to assess the stability of cascaded converters.

In the theoretical treatment of the instabilities of the full-order system, several ideal-
izations of the actual features of its behavior are possible. The choice of the idealization to
be made and the parameters and the state variables to be omitted or simplified in the math-
ematical model depend on the specific problem and the kind of instability to be studied.
The usual idealization of the load converter is to consider it as a CPL, leading naturally to a
static equation for this stage, hence to a significant order reduction of the source converter
model, but at the expense of an additional nonlinearity in the state equations. Indeed, in this
kind of application, the whole system can be simplified as a DC–DC converter supplying a
nonlinear CPL [9,14]. The effect of the different parameters of the source converter from
the perspective of its stability can be, therefore, revealed using reduced-order models.

In reality, the steady-state regime of DC–DC converters is a periodic orbit, not an
equilibrium point. The desired period of this periodic orbit is the same period of the
external driving signal of the switches [17–19]. In the past, current-mode-controlled DC–
DC converters have been a subject of intensive research studies (see [19] and the references
therein), where it was shown using bifurcation theory that these systems are prone to
exhibit a rich variety of complex dynamics and nonlinear behavior such as subharmonic
and chaotic oscillations. The coexistence of different steady-state behaviors has been also
shown to occur in these systems. Another type of bifurcation mainly attributed to the
discontinuity of their Poincaré map models has been also demonstrated to take place in
DC–DC converters. These discontinuity-induced phenomena are called border collision
bifurcations [18]. In this type of bifurcation, the standard cascade period-doubling scenario
is interrupted by a sudden jump to a different behavior due to the collision of the system
trajectory or limit cycle with a border defining the limit of validity of the converter model.

Close to an operating point, CPLs exhibit a negative resistance behavior, leading to
a high risk of instability [11,14,20,21]. A large number of different analysis attempts have
been published for the converters feeding CPLs and operating in CCM, but only a few of
these converters operating in DCM have been addressed. From the existing literature, it
can be claimed that, with the exception of [22,23], the research and results that have been
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published so far on the instability issues in DC–DC converters feeding CPLs considered
the CCM operation. The available results on the stability analysis in [22,23] were based
on averaged models, leading to inaccuracies in predicting the onset of instability in these
systems in the parameter space. Indeed, it was concluded in [23] that the open-loop buck
and boost converters operating in DCM are stable when they are loaded by CPLs. Using a
nonlinear implicit discrete-time model [17,24–28], we show here that such claims about the
stability of the buck and the boost converter are not accurate.

It is well known that closed-loop switching converters with both resistive loads and
CPLs are prone to exhibit a large variety of complex dynamics and undesired instabili-
ties [18,19,29–37]. The common denominator in all the past studies and research works
was the consideration of a closed-loop converter either under VMC [17,26–28,38–41] or
current mode control (CMC) [42–47]. In converters with a linear load, either resistive [17,26–
28,38,40] or constant current [41] load, the piecewise linear state equations are employed
for DC–DC converters to obtain the discrete-time model, and the stability analysis passes
through solving the eigenvalues problem of the Jacobian matrix of this model, which can
be obtained in closed-form. This is not directly applicable to DC–DC converters loaded by
a CPL [30,31]. To effectively study instabilities in this case, ad hoc stability analysis tech-
niques must be used. For instance, the piecewise linear approach can still be be employed
to obtain their approximate discrete-time model and to perform the stability analysis of
their periodic orbits, but after a careful linearization of the nonlinear model of the CPL [31].

For DC–DC converters with a resistive load operating in DCM and under a VMC
feedback loop intending to regulate the output voltage, approximated discrete-time models
were used in [38,39] to predict the onset of period-doubling bifurcation. The approximate
discrete-time models were obtained by approximating the state transition matrices corre-
sponding to each switch position of the converters. The same model can be obtained by
discretizing the averaged model at the switching frequency rate. This is particularly useful
when the state transition matrices are not available in closed-form, as when the load is
nonlinear, such as a CPL. The model used in [38,39] was re-utilized in [48] to study the
small signal behavior of a DC–DC converter. It is worth noting that, in the previous work,
open-loop operated converters were not considered. Obviously, with a linear resistive
load, the discrete-time model corresponding to an open-loop DC–DC converter is linear
and always stable, and therefore, bifurcation phenomena cannot take place. The situation
is different when the load is nonlinear, as the one considered in this study. In this case,
the discrete-time model of the converter is nonlinear even under open-loop operation, and
bifurcation phenomena can take place, as will be detailed later.

The main novelty in this paper is that the nonlinear behavior was observed in DC–DC
converters operating in open-loop, i.e., with a duty cycle given in a fixed pattern and
without any feedback loop. Apart from [49], which was our initial work on this topic,
the literature reports no other work on nonlinear behavior such as period-doubling and
bifurcation phenomena in open-loop-operated DC–DC converters. Indeed, an accurate
implicit discrete-time modeling approach was proposed in [49], where the dynamics of
the open-loop boost converter operating in DCM and feeding a CPL was explored in the
parameter space, revealing the occurrence of period-doubling bifurcation when suitable
parameters were varied. Following our previous work in [49] for the boost converter, we
extended here our study to other elementary switching converters. The three open-loop
elementary DC–DC converters feeding CPLs were considered and their stability analysis
performed. Approximate explicit discrete-time models for the buck and the boost were
also derived, allowing us to analytically perform the stability at the fast switching scale,
predicting the onset of period-doubling and other bifurcations in the parametric space.
The derived models, despite their simplicity, were to display the most-important and
-essential features of the corresponding switching converters.

The rest of this paper is organized as follows: After this Introduction, in Section 2,
the dynamical behavior of a DC–DC boost converter loaded by a CPL and operating in
DCM is compared to the behavior of the same converter loaded by a tightly regulated buck
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converter, putting in evidence the CPL effect of the latter. The experimental setup and
some measurements are presented in Section 3, showing period-doubling bifurcation in an
open-loop-DCM-operated boost converter with a CPL. The switched models of the three
elementary DC–DC converters loaded by a CPL are given in Section 4, and the parametric
space region where they operate in DCM is determined in Section 5 in tabular form. In Sec-
tion 6, the average dynamics for DCM-operated power converters loaded by a CPL are
given, and the expression of their equilibrium points, static voltage conversion gains, and
stability boundary at the slow time scale (low-frequency) are determined. In Section 7, the
period-doubling bifurcation of periodic orbits in open-loop-DCM-operated DC–DC con-
verters feeding CPLs are shown to occur in these systems by using numerical simulations
performed on the exact switched model implemented in the PSIM© software. The nonlin-
ear dynamic behavior is addressed in Section 8, where the existence conditions and the
stability and bifurcation analysis of the fundamental one-periodic orbit are presented, and
different regions in the parameter space are determined for the open-loop boost and the
buck converters. Finally, Section 9 summarizes the conclusions of this work.

2. Period-Doubling Bifurcation in an Open-Loop DCM-Operated Boost Converter
Feeding a Tightly Regulated Buck Converter

The CPL effect was retaken here for a cascaded connection of two converters being the
source converter operating in open-loop and under DCM and the load converter under a
tight control of the output voltage. As an example, we considered here an open-loop boost
converter loaded by a voltage-mode-controlled buck converter using a two-zero three-pole
Type-III controller, as illustrated in Figure 1. Notice that, traditionally, converters with
tight voltage control using a fixed frequency PWM are considered as a CPL [1,2]. Since the
power delivered to the load is proportional to the squared voltage, if the voltage is tightly
regulated, the instantaneous absorbed power will be practically constant. The values of the
circuit parameters for the source converter and the load converters are depicted in Table 1.
The chosen parameter values of the boost converter guarantee DCM operation. Those of
the buck converter power stage and its operating duty cycle (output voltage) correspond to
CCM. The parameter values of the Type-III voltage controller were chosen for an optimal
response in terms of bandwidth and overshoot. For that, the gain of the controller was
κ = 0.6, the two zeros’ frequencies were 1 kHz and 8 kHz, and the two poles’ frequency
was 50 kHz both. The buck converter was loaded by a resistive load, whose resistance RL
was varied according to the power of the CPL (P = v2

ref/RL).

vC1

+

−

D1

S1

L1

u1

C1

+
Vi

iL1

−
+

vref
vramp

Type-III
Controller

RL

+

−

vC2

+

−

L2

C2

iL2

S2
D2

Open loop dc-dc boost converter Voltage mode controlled dc-dc buck converter

Figure 1. An open-loop boost converter loaded by a voltage-mode-controlled buck converter.

Figure 2 shows the behavior of an open-loop boost converter operating in DCM
loaded, in the first case, by a tightly regulated buck converter with VMC and, in the second
case, by an ideal CPL with the load power corresponding to a stable periodic regime and
subharmonic oscillation in both cases. The agreement between the results depicted in
Figure 2 was remarkable. Therefore, we continued our study by considering the load
converter as an ideal CPL.
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Table 1. Parameters used in the numerical simulations of the cascaded boost and buck converters.

Source Converter (Boost) Load Converter (Buck)

Input voltage, Vi =100 V Output voltage vref 48 V
Duty cycle, D = 1

3 Load resistance RL variable
Inductance, L1 = 326 µH Inductance L2 =250 µH
Capacitance, C1 = 4.5 µF Capacitance C2 = 47 µF
Switching frequency fs1 = 5 kHz Switching frequency fs2 = 200 kHz
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CPL as aload
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(a) P = 800 W.
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(b) P = 800 W.
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(c) P = 900 W.
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-10

0

10

20

30
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Buck  as a load

(d) P = 900 W.

Figure 2. Behavior of an open−loop boost converter operating in DCM loaded by a tightly regulated
buck converter and by an ideal CPL. (a, b) P = 800 W: stable periodic regime, (c, d) P = 900 W:
subharmonic oscillation.

3. Experiments

An experimental prototype was used to observe some of the nonlinear phenomena
considered in this study. A picture of the experimental setup is shown in Figure 3.
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Figure 3. The experimental setup to observe period-doubling bifurcation in an open-loop boost
converter with a CPL. À Power supply, Á Function generator. Â Electronic load. Ã Power supply.
Ä Boost converter circuit. Å Oscilloscope.

A dynamic load, ELEKTRO-AUTOMATIK EL3400-25, was used to emulate a CPL
as a load for the converter. The nominal values of parameters were the same ones used
in the theoretical study that will be presented. The switch was implemented using the
IPB60R099CPA CoolMOS, and the used diode was STTH30R06CW (a Schottky diode).
The inductor was fabricated using the Toroidal Magnetics Kool-mu core 2300HT-220-V-R
with a nominal value of 200 µH. Its internal resistance was measured to be approximately
0.1 Ω. The output capacitor used consisted of a parallel connection of three film capacitors
with a capacitance of 1.5 µF for each one, for a total capacitance of 4.5 µF. The driving
square wave signal for the switch was provided by a function generator, Tektronix AFG2021.
The switching frequency was fixed to 5 kHz, and its duty cycle was fixed to 0.22. The input
voltage was fixed to 48 V. All the measurements were captured using a TEKTRONIX
oscilloscope, MDO 3024.

Figure 4 shows the time domain waveforms and the state plane trajectories for two
different values of the power. For P = 28 W, the system behavior was stable and periodic
with the same period as the driving signal (Figure 4a,b). For P = 30 W, the converter
exhibited subharmonic oscillation due to a period-doubling bifurcation (Figure 4c,d).

Remark 1. Due to the danger of experimenting with a CPL because of the destructive dynamics
associated with the small CPL voltage and, consequently, unlimited current, the values of the power
used were deliberately chosen to be low in the experiments. However, the same phenomena take
place for higher values of the power, but this could result in a dangerous catastrophic destructive
behavior for the converter and also the electronic load emulating the CPL. Our main concern in
this paper was to demonstrate that period-doubling bifurcation is possible in an open-loop-operated
DC–DC converter when this is loaded by a CPL. Observe that, under complex dynamics, such as
subharmonic oscillation and chaotic regimes, the ripple of the state variables becomes so large, that if
the voltage of the CPL approaches low values, its current becomes very large, and vice versa, if the
current approaches very small values, the voltage becomes very high. In both cases, once the current
or the voltage reaches a certain value, the protections of the electronic load that we used to emulate
the CPL are activated. With the protections activated, the dynamics of the system change, and some
phenomena such as chaotic behavior would not be possible to detect.
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(a) (b)

(c) (d)

Figure 4. waveforms of an open-loop boost converter operating in DCM loaded by an ideal CPL.
(a,b) P = 28 W: stable periodic regime, (c,d) P = 30 W: subharmonic oscillation due to period-
doubling bifurcation.

4. Switched Model of Open-Loop Elementary DC–DC Switching Converters with
a CPL

The theoretical study carried out in this paper corresponded to the elementary buck,
boost, and buck–boost converters loaded by a CPL depicted in Figure 5. It was supposed
that the switch Q of the converter is driven by a square wave periodic signal u with a period
T (switching frequency fs = 1/T) and a fixed duty cycle D ∈ (0, 1). Table 2 summarizes the
state equations of three elementary converters with physical state variables and parameters,
where vC is the voltage across the capacitor, whose capacitance is C, iL is the current through
the inductor, whose inductance is L, Vi is the input voltage, and P is the CPL power.

Table 2. State equations for the three elementary converters with a CPL.

Buck Boost Buck–Boost
dvC
dt − P

CvC
+ iL

C − P
CvC

+ (1−u)iL
C − P

CvC
+ (1−u)iL

C

diL
dt − vC

L + uVi
L

(u−1)vC
L + Vi

L
(u−1)vC

L + uVi
L
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vC

+

−iL
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(b)

(a)

L

(c)

+
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+

−

L
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iL

P

C
P
L
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+

−

D

S

L

C

+
Vi

iL

S

P

C
P
L

P

C
P
L

D

u

u

u

Figure 5. Elementary switching converters loaded by a CPL: (a) buck, (b) boost, and (c) buck–boost.

5. Parametric Space Region for DCM Operation

As in the resistive load case, the boundary between the CCM and DCM operation
can be derived in terms of the switching period T, inductance value L, duty cycle D, and
input voltage Vi. In the case of the CPL, the boundary also depends on the constant power
P. The analysis reported in [50] (Chap. 5) was here adapted for the case of a CPL. In the
boundary between CCM and DCM, the inductor current iL of any elementary converter
behaves in steady-state, as illustrated in Figure 6. Roughly speaking, the operation in
DCM will eventually take place if either the ripple ∆iL is increased or the average inductor
current IL is decreased. The expression of IL is given in Table 3 for the three elementary
converters. At the boundary of CCM–DCM, one has ∆iL = 2IL = Ip.

Table 3. Expressions for the steady-state value of the average inductor current IL, the critical value
Pcri of the power P, and the critical value Kcri of the dimensionless parameter K at the boundary of
CCM–DCM for the three elementary DC–DC converters operating in DCM.

Buck Boost Buck–Boost

IL
P

DVi
P
Vi

P
(1−D)Vi

Pcri
V2

i D2T
2L (1− D)

V2
i DT
2L

V2
i D2T
2L

Kcri D2(1− D) D D2

T

iL

t

Ip

2T 3T

IL ∆iL

Figure 6. Steady-state inductor current iL at the boundary of CCM–DCM for any elementary converter.
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By particularizing the previous condition for the three elementary converters, the ex-
pressions shown in Table 3 for the critical value Pcri of the power P were obtained for the
three elementary converters. The converter will work in DCM if P < Pcri. Let us define
the dimensionless parameter K = 2LP/(V2

i T). In terms of this dimensionless parameter,
the CCM–DCM boundary conditions for the three elementary converters can be rewritten
as K = Kcri(D), where Kcri(D) is given Table 3. Figure 7 shows the CCM–DCM boundary
for the three elementary switching converters with a CPL in the dimensionless parameter
space (D, K). For a specific value of D, if K > Kcri(D), CCM takes place, and if K < Kcri(D),
DCM occurs.

It is worth noting that, for the buck converter, the maximum value of Kcri(D) is 4/27.
This maximum value occurs for D = 2/3. Therefore, for this converter, the DCM operation
will not take place for no value of D if K > 4/27. For the boost and the buck–boost
converter, there will always exist an interval of the operating duty cycle D within which
the DCM operation will theoretically take place if K < 1. This interval becomes wider if the
value of the dimensionless parameter K decreases.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 7. The critical value Kcri of K at the boundary CCM–DCM for elementary switching converters
loaded by a CPL. For a specific value of D, if K > Kcri(D), CCM takes place, and if K < Kcri(D),
DCM occurs.

6. Average Dynamics for DCM-Operated Power Converter with a CPL: Equilibrium
Point, Static Voltage Conversion Gain, and Stability
6.1. Averaged Model

Under certain conditions, the dynamics of a DCM-operated converter can be accurately
described by an averaged model. Let us assume that the capacitor voltage vC ripple is
sufficiently small during a switching cycle such that time dependence of the inductor
current iL can be considered linear: iL goes from 0 to a certain peak value Ip during the
time interval (0, DT) (that for u = 1); after that, iL drops to 0 during the time interval
(DT, (D + D′)T) and remains 0 during the rest of the period with duration (1− D− D′)T
(Figure 8).

DT

iL

t

Ip

0 (D + D′)T T

Figure 8. Sketch of the inductor current iL waveform for any DCM-operated elementary converter.
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From the expression of the inductor current time derivative diL/dt in Table 2 with
u = 1, the peak inductor current Ip was obtained, and from the same equation with u = 0,
one obtain the expression of the ratio D′. These results are summarized in Table 4, and
using them in the capacitor voltage derivative dvC/dt (Table 2), in which iL in the buck
is substituted by its average (D + D′)Ip/2 and (1− u)iL in the boost and buck–boost is
substituted by D′ Ip/2, the following averaged models are obtained:

dvC
dt

=
P

CvC

(
Vi − vC

Vi

D2

K
− 1
)

buck (1)

dvC
dt

=
P

CvC

(
vC

vC −Vi

D2

K
− 1
)

boost (2)

dvC
dt

=
P

CvC

(
D2

K
− 1
)

buck–boost (3)

where the overline stands for averaging over one switching period, i.e., vC(t) =
∫ t+T

t vC(τ)dτ.
It is worth noting that the previous models are nonlinear with respect to both the average
state variable vC and the duty cycle D. Note also that, in order, to guarantee the DCM
operation, the condition D + D′ < 1 must hold; thus, the value of Kcri in Table 3 can also
be obtained from this condition with D′ and vC = VC (steady-state) given in Table 4.

Table 4. Peak current IP, ratio D′, averaged voltage VC, and conversion ratio M(D, K) for the three
converters with a CPL under DCM operation.

Buck Boost Buck–Boost

IP
(Vi−VC)DT

L
Vi DT

L
Vi DT

L

D′ (Vi−VC)D
VC

Vi D
VC−Vi

Vi D
VC

VC
Vi(D2−K)

D2
ViK

K−D2 6 ∃

M(D, K) D2−K
D2

K
K−D2 6 ∃

6.2. Equilibrium Points

In the case of existence, the equilibrium points can be obtained by making dvC/dt = 0
in the previous differential equations, hence obtaining the expressions of VC shown in
Table 4 for the buck and the boost converters, while no equilibrium exists for the DCM-
operated buck–boost converter with a CPL. Note that, for the equilibrium point to exist in
the buck and the boost converters, the conditions K < D2 and K > D2 must be fulfilled,
respectively. Note also that D2 < D2(1− D), ∀D ∈ (0, 1), and therefore, an equilibrium
point always exists for the buck converter provided that it operates in DCM (K < Kcri :=
D2(1− D)).

6.3. Conversion Ratio

Under the existence conditions, the voltage conversion gain M(D, K) := VC/Vi for the
DCM-operated buck and the boost converters with a CPL are given in Table 4. These conver-
sion ratios are plotted in Figure 9 in terms of the duty cycle D for different values of K. It is
worth noting that, at the boundary between CCM and DCM, the conversion ratios become
the widely known load-independent voltage gains M(D) = D and M(D) = 1/(1− D) for
the buck and the boost converters, respectively.
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Figure 9. The conversion gain M(D, K) for the buck and the boost converter for different values of
dimensionless parameter K. The conversion gain for CCM is also shown for comparison.

As stated before, the DCM-operated open-loop buck–boost converter does not have
an equilibrium point. Indeed, the solution of its averaged differential Equation (3) can be
obtained in closed-form, and it confirms the previous statement. Let z(t) = 1

2 Cv2
C, that is

the averaged stored energy in the capacitor. Therefore, from (3), one obtains the following
differential equation corresponding to the buck–boost converter in terms of z.

dz
dt

= P
(

D2

K
− 1
)

(4)

whose solution is as follows:

z(t) = z(0) + P
(

D2

K
− 1
)

t (5)

Equivalently, in terms of the averaged value vC, one has

vC(t) =

√
v2

C(0) +
2P
C

(
D2

K
− 1
)

t (6)

Three different cases arise depending on D2 and K. These are:

• K < D2 (DCM operation): The response does not reach any equilibrium in steady-state.
It is unbounded, and the system is unstable.

• K = D2 (CCM–DCM boundary): The response is bounded, but presents an infinite
number of equilibria depending on the initial condition vC(0). Indeed, in this case,
one has vC(t) = vC(0) ∀t.

• K > D2 (CCM operation): The response collapses at a certain time instant tc given by

tc =
Cv2

C(0)
2PK(K− D2)

(7)

At this time instant, the voltage vC across the CPL becomes zero and the current
through it becomes infinite. For t > tc, no real solution exists for the buck–boost converter
averaged state equation. A similar treatment can be made for the buck and the boost
converters under the conditions Vi � vC and Vi � vC, respectively, but in general, the
average state equations of these two converters cannot be integrated in closed-form.

Remark 2. A so-called fast instability was reported in [20], where it was stated that, based on
the system parameter values, the converter can go to instability very fast and it does not have
enough time even to change the status of the switch. In that work, a resistive load was added in
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parallel with the CPL in the buck–boost converter for an equilibrium point to exist. In reality, this
phenomenon takes place because either the initial condition is selected out of the basin of attraction
of the equilibrium point or the latter does not exist, provoking a voltage collapse to zero and an
infinite current through the CPL. In the experimental circuit, this dangerous catastrophic destructive
dynamics may lead to the destruction of switching devices.

Remark 3. The previous remark is based on the averaged model of the converters. In the real
switched system, the ripple of the state variables either in periodic, subharmonic, or chaotic regimes
may make voltage collapse to take place at a time instant smaller than tc.

6.4. Stability at the Low Frequency (Slow Scale)

To perform the stability analysis of the equilibrium point of the buck and the boost
converters, let us define the error e := vC −VC. Therefore, from (1) and (2), one can write

de
dt

= ϕ(vC) (8)

where ϕ(vC) is the following function:

ϕ(vC) = − P
CVivC

D2

K
buck (9)

ϕ(vC) = − P
C(vC −Vi)vC

(
1− D2

K

)
boost (10)

Let us consider the Lyapunov function candidate V = e2/2. Its time derivative is
dV/dt = ede/dt = ϕ(vC)e2. For the buck converter, ϕ(vC) is always negative, and the
equilibrium point is unconditionally stable since the time derivative of the Lyapunov
function is negative in this case. For the boost converter, under the existence condition of
the equilibrium point (D2 < K) and if the condition vC > Vi is guaranteed, ϕ(vC) will be
negative, and the error asymptotically vanishes in this case.

7. Period-Doubling Bifurcation of Periodic Orbits in Open-Loop-DCM-Operated
DC–DC Converters Feeding CPLs

The fast scale dynamics in the switching period taking into account ripples in the state
variables cannot be predicted by the averaging approach. In this section, the switched
model is used for predicting period-doubling bifurcation in the open-loop-DCM-operated
boost and the buck converters with CPLs.

7.1. The Boost Converter

To reveal the possible dynamical behaviors that can exhibit a DCM-operated boost
converter with a CPL, a bifurcation diagram was computed using the exact switched
model of the converter implemented in the PSIM© software. The result is represented in
Figure 10. The used fixed parameter values are depicted in Table 5. The parameter P was
taken as a bifurcation parameter, which varied in the range (0.80, 0.96) kW. The sampled
values of the capacitor voltage vC[n] := vC(nT), n = 0, 1, 2 . . . are plotted versus the
dimensionless parameter K. Clearly, it can be observed that, from an initial fundamental
(one-periodic) orbit, a cascade of period-doubling bifurcations culminates in a chaotic
regime. First, a stable two-periodic orbit is generated at a critical value of the power P,
Pflip ≈ 847 W, or equivalently, the dimensionless parameter K, Kflip ≈ 0.276, and further
variations of the bifurcation parameter P or equivalently K make this emerging orbit also
unstable, and so on, finally producing chaotic dynamics. This phenomenon is the celebrated
period-doubling bifurcation route to chaos encountered in many mathematical and physical
systems. By increasing the bifurcation parameter P a bit further, a non-admissible dynamics,
both from a mathematical and a practical point of view due to an unlimited CPL current,
comes out. Indeed, the increasing size (interval for vC[n]) of the chaotic attractor due
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to further variation in the parameter produces the mentioned very high current in the
load, and so, the dynamics makes no sense. A numerical integration, for instance with
commercial software, would give incoherent results similar to the ones mentioned in
Remark 1. The upper value of the bifurcation parameter was selected smaller than the one
corresponding to any voltage collapse.

Figure 10. Bifurcation diagram of the DCM-operated boost converter with a CPL obtained using the
PSIM© software.

Table 5. The used parameter values for the open-loop buck and boost converters loaded by a CPL.

Vi L C T D

100 V 326 µH 4.5 µF 200 µs 1
3

As an important detail, it is worth mentioning that the route to chaos scenario cor-
responds to the classical period-doubling without border collision bifurcations, widely
observed in switching converters [18,19], because the DCM operation is maintained for
all the switching cycles even after bifurcations take place. In some cases, not shown here
for the simplicity of presentation, it may happen that DCM is not accomplished for all the
switching cycles in an arbitrary orbit. Obviously, this fact induces some deviation in the
bifurcation diagram regarding the more standard patterns observed in Figure 10, due to
discontinuity transitions associated with mixed CCM–DCM operation in a specific orbit.

Representative time domain waveforms and state trajectories are represented in
Figure 11. They were obtained using the same fixed parameters as in Figure 10 for different
values of the dimensionless parameter K or, equivalently, power P. In this figure, orbits
of different periodicity can be observed. The case of Figure 11a,b corresponds to a funda-
mental DCM one-periodic orbit. Figure 11c,d stand for the subharmonic oscillation with a
periodicity of two produced; after that, the fundamental one-orbit loses its stability by a
conventional smooth period-doubling bifurcation. The resulting DCM two-periodic orbit
evolves such that it undergoes a period-doubling resulting in the DCM four-periodic orbit
represented in Figure 11e,f. Finally, Figure 11g,h represent a DCM chaotic attractor.
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Figure 11. Time domain waveforms of the capacitor voltage and the inductor current for different
dynamical behaviors obtained from the switched model of an open-loop-DCM-operated boost
converter implemented in the PSIM© software.
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7.2. The Buck Converter

The region of DCM operation in the parametric space for the buck converter is much
smaller than the one corresponding to the boost converter (Figure 7). The set of parameter
values of Table 5 was also used here for the buck converter. A bifurcation diagram of the
converter was computed using the PSIM© software. The result is shown in Figure 12. It
was observed that the system only exhibited a first period-doubling bifurcation at a critical
value Pflip ≈ 113 W of the power P (equivalently, at a critical value Kflip ≈ 0.037 of K)
without the period-doubling cascade route to chaos. After that, the DCM two-periodic
orbit emerged, and it existed for values of P lower than another critical value. By increasing
P further, the destructive unlimited current phenomenon took place. The upper value of
the bifurcation parameter was selected smaller than the value at which this phenomenon
occurred (K < 0.049) (equivalently, P < 150 W).

0.025 0.03 0.035 0.04 0.045 0.05

30

40

50

60

70

80

90

100

Figure 12. Bifurcation diagram of the DCM-operated buck converter with a CPL obtained using the
PSIM© software.

8. Approximate Explicit 1D Discrete-Time Model and Fast-Scale Stability Limits
8.1. Boost Converter
8.1.1. Approximate Map

The discrete-time model of a switching converter is usually obtained by first obtaining
the system response in the time domain and sampling it in synchronicity with the switching
period. For switching converters with a CPL, an analytical expression for the system
response is not available in continuous time for all sub-circuits. Therefore, here, we proceed
in a different way. By performing a forward Euler discretization of the averaged model
(2), one obtains the following discrete-time model for the open-loop-DCM-operated boost
converter loaded by a CPL.

vC[n + 1] = f (vC[n]) (11)

where f (vC[n]) is given by the following expression:

f (vC[n]) = vC[n]−
PT
C

(
1

vC[n]
− 1

vC[n]−Vi

D2

K

)
(12)

The model is only valid if the converter is effectively working in DCM, i.e., for K < Kcri.
Otherwise, CCM will take place, and the model is no longer valid.

A bifurcation diagram obtained from the model in (12) by taking the parameter K
as a bifurcation parameter is depicted in Figure 13a, where a cascade of period-doubling
bifurcation was obtained and a good agreement can be observed with Figure 10.
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Figure 13. (a) Bifurcation diagram of the open−loop-DCM-operated boost converter with a CPL
obtained using the approximated discrete−time model. The evolution of the fixed point is also
represented by the dotted line. (b) Characteristic multiplier µ.

8.1.2. Fixed Points and Their Stability

The fixed point of the map f (·) can be found by solving the equation f (vC[n]) −
vC[n] = 0 for vC[n]. In doing so, the expression of the fixed point is the same as the one
obtained for the equilibrium point of the averaged mode, that is VC in Table 4, for the boost
converter. The evolution of fixed point is represented by the dotted line Figure 13a. Its
stability status can be estimated by the characteristic multiplier, which is defined by

µ =
d

dvC[n]
f (vC[n])

∣∣∣∣
vC [n]=VC

(13)

By applying (13) to (12), µ results:

µ = 1 +
PT
C

(
1

V2
C
− 1

(VC −Vi)2
D2

K

)
(14)



Electronics 2023, 12, 1030 17 of 22

After some algebra, taking into account the value of VC in Table 4, the characteristic
multiplier for the boost can be expressed as

µ = 1−
(
K− D2)3T2

2LCD2K
(15)

The behavior of the converter around a fixed point generally depends on whether the
absolute value of the characteristic multiplier µ is greater or smaller than one. If it is smaller
than one, the fixed point is an attractor, and if it is greater than one, it is a repellor. When µ
crosses −1 as a parameter is varied, this possibly indicates a period-doubling bifurcation.
In Figure 13b, the characteristic multiplier is plotted in terms of the bifurcation parameter.
Observe that, at the first period-doubling bifurcation point, one has µ = −1.

For this kind of map, the second iterate f ◦ f = f (2) can also address a new period-
doubling bifurcation if the parameter is further modified, and the same can occur for
successive iterations of the map. This explains the period-doubling cascade observed in
Figures 10 and 13a. Needless to say, the onset of instability can also be predicted by the
pole of the discrete-time transfer function corresponding to the map f (·) [51]. Indeed,
the characteristic multiplier coincides with the discrete-time pole.

8.1.3. Stability Boundaries in the Parametric Space

The period-doubling bifurcation boundary can be obtained by making µ = −1; hence,
from (14), the following condition in terms of the system parameters holds at this boundary:

V2
i D2T2

2LC(VC −Vi)2 − 2− PT
CV2

C
= 0 (16)

This is a very useful expression for delimiting the stability boundary in the parameter
space at the fast-switching scale of the converter. Furthermore, from the third-degree
K-polynomial in (15), the critical maximum value Kflip for guaranteeing the stability is

Kflip =

(
A

3T
+

4LC
AT

+ D
)

D (17)

where A is a constant given by the following expression:

A = 3

√
6LC

(
9DT +

√
(9DT)2 − 48LC

)
(18)

Accordingly, the corresponding maximum value Pflip of power P can be obtained
from (17) and the expression of K in terms of P defined previously. For the parameter
values considered in this study, the critical value of the dimensionless parameter K at
the flip bifurcation point is Kflip ≈ 0.276, and from this, the critical value of the power P
is Pflip ≈ 847 W, in remarkable agreement with the bifurcation diagrams represented in
Figures 10 and 13a. In terms of the output capacitance, the closed-form expression obtained
from (17) with µ = −1 is simpler and can be written as follows:

Cflip =

(
2LP− TD2V2

i
)3

8D2L2PV4
i

(19)

Figure 14 shows the regions of the dynamical behavior of the open-loop-DCM-
operated boost converter with a CPL in the parametric plane (D, K). The DCM-operated
converter is stable below the period-doubling boundary line. Increasing the capacitance
C makes the stability region wider. In this case, the period-doubling bifurcation curve is
monotonously increasing in terms of the duty cycle D.
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Figure 14. Regions of the dynamical behaviors of the open-loop-DCM-operated boost converter with
a CPL in the plane (D, K) and the parameter values shown in Table 1.

Note that a maximum value Dflip,max of the duty cycle D exists, above which period-
doubling bifurcation cannot take place, since, in this case, Kflip > Kcri and the converter
will operate in CCM. The expression of Dflip,max can be obtained in closed-form by solving
the equation Kflip − Kcri = 0. Taking into account that Kcri = D (see Table 3 for the boost
converter), the following expression for Dflip,max from (15), with µ = −1, is obtained:

Dflip,max = 1− 3

√
4LC
T2 (20)

Under the circuit parameters in Table 5, the value Dflip,max = 0.473 is obtained. This
particular value of the duty cycle D is illustrated in Figure 14 as a vertical dashed line.

8.2. Buck Converter
8.2.1. Approximate Map

Following the same procedures as the ones followed for the boost converter, the map
of the open-loop-DCM-operated buck converter is given by the following expression:

f (vC[n]) = vC[n]−
PT
CK

(
K− D2

vC[n]
+

D2

Vi

)
(21)

8.2.2. Fixed Point and Its Stability

The expression of the fixed point is the same as in Table 3. Its stability can be de-
termined by the characteristic multiplier, which can be expressed for the DCM-operated
open-loop buck converter with a CPL as follows:

µ = 1−
(
TD2)2

2LC(D2 − K)
(22)

The critical value of K at the border of instability (µ = −1) is given by

Kflip = D2
(

1− T2D2

4LC

)
(23)

With the parameter values of Table 5, the critical value Kflip of K at which period-
doubling bifurcation takes place is Kflip ≈ 0.027, corresponding to a critical value Pflip ≈
83 W of the power P. It is worth noting that this approximation of the critical bifurcation
parameter value is smaller than the one obtained by the numerical simulations shown in
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Figure 12 from the exact switched model. The discrepancy is attributed to the Euler approx-
imation used to obtain the explicit discrete-time model from the averaged continuous-time
model. Such an approximation is more accurate for the boost converter for which the capac-
itor voltage is piecewise linear than for the buck topology for which the capacitor voltage
is piecewise quadratic. In terms of the output capacitance, the closed-form expression at
the bifurcation boundary can be expressed as

Cflip =
D4T2

4L(D2 − K)
(24)

8.2.3. Boundaries in the Parameter Space

The expression (23) is only valid if 0 < Kflip < Kcri for legitimately representing
the period-doubling bifurcation boundary. This takes place for values of the duty cycle
D within a certain interval (Dflip,min, Dflip,max). Solving the equations Kflip − Kcri = 0
and Kflip = 0 for the duty cycle D, the following expressions for Dflip,min and Dflip,max
are obtained:

Dflip,min =
4LC
T2 , Dflip,max =

√
Dflip,min (25)

Figure 15 shows the regions of the dynamical behavior of the open-loop-DCM-
operated buck converter with a CPL in the plane (D, K). If Dflip,min < D < Dflip,max,
period-doubling bifurcation is expected to take place for Kflip < K < Kcri. The interval
(Dflip,min, Dflip,max) is shown as a yellow strip in Figure 15.

Figure 15. Regions of the dynamical behavior of the open-loop-DCM-operated buck converter with a
CPL in the plane (D, K).

For Kcri < Kflip < K, it may happen that period-doubling bifurcation coexists with
low-frequency oscillation ([52]), since, in this case, the converter will operate in CCM
and an open-loop converter with a CPL operating in this mode is unstable at the slow
scale. This will give rise to a mixed mode of operation in which, during some cycles,
DCM will take place in the subharmonic regime, and during other cycles, CCM will occur,
showing instability at the slow scale. If Dflip,min <

√
2LC/T, the expression of Kflip as

a function of D presents a maximum Kflip,max at D =
√

2LC/T. If Dflip,min >
√

2LC/T,
the maximum value Kflip,max is larger than Kcri and Kflip will be monotonously decreasing
within the legitimate range of duty cycle D. This occurs if the capacitance C or inductance
L are increased or the period T is decreased. The interval (Dflip,min, Dflip,max) moves to the
right in this case. Figure 15 shows in the dashed line an example of such a monotonously
decreasing Kflip curve for a relatively larger value of the capacitance (C = 18 µF) than that
shown in Table 5.
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Note that, because D < 1, the expression of Dflip,max is legitimate only if 2
√

LC < T.
In the opposite case, the interval of D within which period-doubling bifurcation may
take place disappears. Therefore, a possible way to make the open-loop-DCM-operated
converter be free from period-doubling bifurcation is to make Dflip,max illegitimate, hence
making T < 2

√
LC.

Finally, it is worth noting that a further accurate analysis based on an implicit discrete-
time modeling [53], not shown here for simplicity, revealed that, while the approximate
expressions for predicting period-doubling bifurcation boundary were quite accurate in
the case of the boost converter, the ones corresponding to the buck converter presented
a significant error. For instance, the exact value of Dflip,max corresponding to the buck
converter was larger than the one predicted by (25), and consequently, the exact theoretical
width of the interval (Dflip,min, Dflip,max) was larger than the approximated one. Therefore,
the analytical results presented in this section for the buck converter are only indicative.

9. Conclusions

In this work, we focused on studying the dynamics of open-loop DC–DC convert-
ers with CPLs operating in DCM. First, it was shown that a DCM-operated boost con-
verter loaded by a tightly regulated voltage-mode-controlled buck converter may exhibit
period-doubling bifurcation for certain values of the system parameters. The performed
experimental measurements from a DCM-operated boost converter with a CPL showed
that the system may exhibit practically the same behavior. Therefore, the work focused
on the dynamics of the three elementary converters loaded by an ideal CPL. Numeri-
cal simulations from the switched model revealed that, for the boost converter, after the
fundamental one-periodic orbit loses stability, a standard scenario of successive period-
doubling leads to a chaotic attractor. Further variation of the bifurcation parameter may
lead the system to exhibit destructive dynamics associated with low output voltage and,
consequently, unlimited output load current. In the case of the buck converter, only the first
period-doubling bifurcation was observed, and the destructive behavior due to unlimited
output current interrupted the period-doubling cascade. Approximate discrete-time mod-
els were derived for the three elementary converters. The model of the boost converter
was demonstrated to accurately predict the onset of the first period-doubling bifurcation
for this converter. Concerning the approximate discrete-time model of the buck converter,
the analytical results obtained from it were only indicative, and a more accurate numerical
analysis is needed for predicting this bifurcation. It was also found that a fundamental
periodic orbit does not exist in the case of the buck–boost converter. It is worth noting
that, in the previous study, ideal circuit elements were considered. However, in a real
circuit, parasitic elements such as the DC resistance of the inductor, the equivalent series
resistance of the capacitor, the ON resistance and the OFF resistance of the transistor, and
the forward-voltage diode could have an effect on the dynamic behavior of the converter.
Namely, they can slightly modify the critical values of other more relevant circuit parameter
values at the onset of period-doubling bifurcation and other complex behavior. However,
the approximate discrete-time models with ideal circuit elements, despite their simplicity,
were shown to display the most-important and -essential features of the corresponding
switching converters.
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