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Abstract: At present, deep neural networks have been widely used in various fields, but their
vulnerability requires attention. The adversarial attack aims to mislead the model by generating
imperceptible perturbations on the source model, and although white-box attacks have achieved good
success rates, existing adversarial samples exhibit weak migration in the black-box case, especially
on some adversarially trained defense models. Previous work for gradient-based optimization either
optimizes the image before iteration or optimizes the gradient during iteration, so it results in the
generated adversarial samples overfitting the source model and exhibiting poor mobility to the ad-
versarially trained model. To solve these problems, we propose the dual-sample variance aggregation
with feature heterogeneity attack; our method is optimized before and during iterations to produce
adversarial samples with better transferability. In addition, our method can be integrated with
various input transformations. A large amount of experimental data demonstrate the effectiveness
of the proposed method, which improves the attack success rate by 5.9% for the normally trained
model and 11.5% for the adversarially trained model compared with the current state-of-the-art
migration-enhancing attack methods.

Keywords: adversarial attack; overfitting; adversarial training; transferability; feature heterogeneity

1. Introduction

Deep neural networks (DNN) are currently performing well in computer vision,
particularly in the areas of semantic segmentation [1–3], instance segmentation [4], target
detection [5–7], image classification [8–10], and other fields. However, the neural network
is easily affected by the adversarial sample in the field of computer vision. Adding some
interference to the original sample that is difficult for human eyes to detect will make the
model output incorrect classification results. Due to the existence of adversarial samples,
security issues in such fields as face recognition [11,12], artificial intelligence [13–15], and
driverless cars [16–18], have to be paid attention to[19,20]. In addition, improving the
transferability of adversarial samples is to find the weaknesses of the model and thus
improve the robustness of the model. In order to better find the flaws in the model, this
forces us to design adversarial samples with better attack performance.

In recent years, many methods for generating adversarial samples have been pro-
posed, such as the fast gradient symbolic method [21], iteration-based gradient sym-
bolic method [22], momentum-based iteration [23], and accelerated gradient iteration
method [24]. They both showed good attack performance in white box settings. However,
it has been demonstrated that the generated adversarial samples are somewhat transferable,
which also suggests that adversarial samples made on the source model may be somewhat
aggressive towards other models. Because of this transferability nature, an attacker can
attack a target model without needing to know any specifics about it, which poses a number
of security issues in real life.
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The process of improving the transferability of adversarial samples is regarded as the
process of improving model generalization [24]. However, methods to improve model
generalization usually use better optimization methods or data augmentation. At present,
the proposed optimization methods are usually divided into two categories. One is to
optimize before each iteration. For example, Lin et al. [24] introduces the Nesterov accel-
eration gradient to jump out of the local optimal solution before each iteration, so as to
obtain a better solution. Wang et al. [25] achieves the same by additional accumulation of
the average gradient of the data points sampled on the gradient direction of the previous
iteration in order to stabilize the update direction and remove the poor local maximum.
The other is to optimize in each iteration process. For example, Dong et al. [23] optimizes
by integrating the momentum term into the iterative process. Wang et al. [26] used the
gradient variance information of the previous iteration to optimize the current gradient
information, so as to achieve the updating direction of the stable gradient.

Specifically, these methods are optimized before and after iteration to improve trans-
ferability; however, there are still two deficiencies: Although the optimization method,
before each iteration, can enhance the portability of opposing samples, this method is
prone to overfitting the source model. The reason is that the gradient information added
to the original sample each time contains the gradient information of the last iteration.
On the one hand, although the gradient is optimized each time in the iterative process
to enhance transferability, the adversarial samples produced by this method have weak
attack performance against the adversarial training model. The reason is that the process
of gradient optimization ignores many characteristic differences between the adversar-
ial sample and the clean image learned by the adversarial training model. In particular,
the uniform sampling approach in [26] for finding the gradient variance information has
high transferability for the normally trained model, but shows poor transferability for the
adversarially trained model, as shown in Figure 1. This has encouraged us to create a
more effective method for discovering model flaws in order to increase transferability and
address some of the issues that arise in the aforementioned two classes of approaches.
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Figure 1. The left figure (a) shows that our method enhances the transferability on the target model
by reducing over fitting, and the right figure (b) shows that our method significantly improves the
attack performance on the confrontation training model. The previous methods mentioned above are
VMI-FGSM, and our methods are all V2MHI-FGSM.

In this study, we propose a Dual-Sampling Variance Aggregation and Feature Hetero-
geneity Attacks (V2MHI-FGSM), which reduces the overfitting of the adversarial samples
to the source model by destroying the model-specific feature information, especially the
black-box model with adversarial training, which has a better attack success rate.

Our method is as follows: we add the aggregate gradient difference to the original
image to make the original image achieve feature heterogeneity, so as to solve the overfitting
of the source model by the adversarial samples. More specifically, the original image is
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preprocessed by randomly deleting pixels due to the specific differences between the
image of the deleted pixel and the original image in the network; therefore, we add this
difference to the original sample, which is usually called feature heterogeneity. Further,
in order to enhance the black-box attack success rate of adversarial samples against the
adversarial training model with high robustness, we aggregate the variance information
obtained from uniform distribution and normal distribution sampling. More specifically,
we average the gradient variance information obtained by the two sampling methods,
which will effectively improve the attack success rate of adversarial samples on the more
robust model. Additionally, the adversarial samples generated by our method perform
better in the standard training model. Finally, our method has been improved through both
the pre-iteration and iteration processes, and the experiment shows that it is superior in the
context of a black box.

Our main contributions are summarized as follows:

• The adversarial examples generated by the existing methods have weak generalization
and low transferability, which is due to an overfitting to the source model. In order to
direct the creation of more transferable adversarial examples, we introduce aggregated
gradient differences.

• At the same time, the adversarial samples produced by the current state-of-the-art
methods show poor transferability to the adversarially trained classification model.
On this basis, we introduce the dual-sampling variance aggregation method to fur-
ther improve the transferability of the adversarial samples on the adversarially
trained model.

• Numerous tests on various classification models show that the adversarial examples
produced by our suggested method have better transferability than cutting-edge
adversarial attack techniques.

2. Related Work

Given a clean sample x as the input, f as the classifier, y as the true label of x, f (x, θ)
is the output after x is input to the model, which is the predicted label of x, and θ is
the network parameter. We denote J(x, y, θ) as the loss function of the classifier f , which
generally defaults to the cross-entropy loss function. We define adversarial attack as finding
an imperceptible adversarial example xadv to mislead the model f (xadv; θ) 6= y, and the
adversarial example satisfies ||xadv − x||p ≤ ε this constraint, where || · ||p denotes the
p-norm distance, and we keep p=∞ in line with previous work.

2.1. Adversarial Attacks

Existing adversarial attacks can roughly be divided into two settings based on the
threat of adversarial examples to the model: (a) In a white-box attack, the attacker has
total access to all of the model’s hyperparameters, outputs, gradients, model architecture,
etc. (b) In a black-box attack, the attacker only has access to the model’s output; all of
the other parameters are unknown. The current white-box attack research has produced
good attack performance, and while researching the white-box attack, it is discovered
that the adversarial samples produced on one model exhibit good transferability between
different models. The use of adversarial examples, also known as “black-box attacks”,
can deceive both the source model and other models simultaneously. To address the low
portability of current adversarial attack methods, several improved adversarial (gradient-
based) attack methods have been put forth. Dong et al. [23] suggested incorporating
momentum into iterative gradient-based attacks from gradient optimization. To further
improve the migrability, Lin et al. [24] proposed the accelerated gradients of Nestorve
from image optimization. According to Liu et al. [24], the migrability can be increased
even more by combining the aforementioned gradient-based optimization and image-
based optimization techniques with integrated model attacks that target multiple models.
Therefore, our method can be used in conjunction with both integrated model attacks to
produce more migrable adversarial samples.
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Additionally, according to some studies, applying different input transformations
to the original image can enhance the transferability of adversarial examples even more.
For example, DIM [27] randomly crops and fills the input image within a certain range
with a fixed probability, and inputs the processed image into the model to generate noise
to enhance transferability. The translation-invariant [28] uses a set of images to compute
gradients. Dong et al. [28] shift the image by a small amount to reduce the computation
of gradients, and then they approximate the gradient by convolution the gradient of the
unshifted image with the kernel matrix. Scale-invariant methods [24] compute gradients by
scaling the input image to a set of images by a factor of 1/2i (i denotes a hyperparameter)
to enhance the mobility of the generated adversarial examples. Meanwhile, current work
integrates input transformation-based attacks, ensemble model attacks, and gradient-based
attack techniques to further enhance the transferability of adversarial examples. Our
approach is a novel gradient-based assault that not only relies on gradients but also on
picture features to produce more portable adversarial examples. It may be integrated with
ensemble model attacks and input transformation-based approaches to increase portability.

2.2. Adversarial Defense

Finding the weaknesses in adversarial attacks is crucial for improving the robustness
of deep learning models. However, one of the most effective methods to strengthen
the model is adversarial training, which involves including adversarial samples in the
training set. Numerous studies have demonstrated that this technique can successfully
increase the model’s robustness [29]. Ensemble adversarial training, which combines
adversarial training with the ensemble model, is an alternative to applying it to a single
model. The method has been shown to be resistant to adversarial samples with migration
when the adversarial training is combined with the integrated model to create integrated
adversarial training, which trains the adversarial samples produced by the integrated
model alongside clean samples.

Based on the above methods to enhance robustness, recent studies have proposed
some variants to enhance the robustness of the model. Xie et al. [30] used random resiz-
ing and padding (R&P) at image input to mitigate the effect of adversarial perturbations.
Liao et al. [31] cleaned the images by using a trained high-level representation denoiser
(HGD) on the images to enhance the recognition. Xu et al. [21] proposed to detect adver-
sarial samples by compressing the extracted features using bit-depth reduction (bit-Red).
A JPEG-based defensive compression framework called feature distillation (FD) [32] can
successfully target adversarial samples. An end-to-end image compression model that can
successfully fend off hostile samples is called ComDefend [33]. Stochastic smoothing (RS)
was used by Cohen et al. [34] to train a trustworthy ImageNet classifier. An automatically
derived supervised neural representation purifier (NRP) based model that can successfully
purify adversarially perturbed images was created by Naseer et al. [35].

3. Methodology

In this section, we first provide a brief overview of previous gradient-based attack
methods. The feature heterogeneity attack (VMHI-FGSM) and the dual-sampling variance
aggregation attack(V2MI-FGSM) are then described in detail. Finally, the difference between
our method V2MHI-FGSM method and previous methods is introduced.

3.1. Gradient-Based Adversarial Attack Methods

This section mainly introduces typical adversarial attack algorithms based on gradi-
ent improvement.

Fast Gradient Sign Method (FGSM). FGSM [36] generates adversarial examples
with one-step update:

xadv = x + ε · sign(∇x J(x, y, θ)), (1)
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where ∇x is the gradient of the loss function J(·) with respect to x. In general, J(·) is
the cross-entropy loss function, and sign(·) represents the function of finding the sign of
the gradient.

Iterative Fast Gradient Sign Method (I-FGSM). I-FGSM [22] extends the one-step
attack on FGSM to multiple steps by introducing a step size α:

xadv
t+1 = xadv

t + α · sign(∇xadv
t

J(x, y, θ)), (2)

where xadv
1 = x, α = ε/T is a small step size, and T is the number of iterations.

Momentum Iterative Fast Gradient Sign Method (MI-FGSM). MI-FGSM [23] accu-
mulates the gradient of each iteration of I-FGSM as momentum into the next iteration to
improve mobility:

gt+1 = u · gt +
∇xadv

t
J(xadv

t , y; θ)

||∇xadv
t

J(xadv
t , y; θ)||1

, (3)

xadv
t+1 = xadv

t + α · sign(gt+1),

where gt is the gradient of the t-th iteration with g0 = 0 and µ is the decay factor.
Nesterov Iterative Fast Gradient Sign Method (NI-FGSM). NI-FGSM [24] introduces

the idea of Nesterov [37] gradient descent, replacing xadv
t in Equation (3) with xadv

t + α ·µ · gt
to further improve the transferability of MI-FGSM.

Variance momentum Iterative Fast Gradient Sign Method (VMI-FGSM). VMI-FGSM
[26] uses the gradient variance information of the previous iteration to adjust the current
gradient information, so as to better stabilize the gradient update direction. It replace
Equation (3) by

gt+1 = u · gt +
∇xadv

t
J(xadv

t , y; θ) + vt

||∇xadv
t

J(xadv
t , y; θ) + vt||1

, (4)

where vt+1 = 1
N ∑N

i=1∇x J(xi, y)−∇x J(xadv
t , y), xi is a sample randomly sampled from a

certain uniform distribution range of x.

3.2. Feature Heterogeneity Attack

In order to eliminate the local optimum and achieve higher transferability than I-
FGSM [22], MI-FGSM [23], which is based on gradient optimization, stabilizes the update
direction of the current gradient by adding the gradient from the previous iteration. On
this basis, the method based on image optimization NI-FGSM [24] performs an operation
similar to preprocessing before the image is input into the model. It introduces Nesterov’s
idea to accelerate the gradient to have a look-ahead feature before each image enters the
model. The present image input model may thus converge more quickly and attain higher
transferability. However, because the gradient information from the previous iteration
is added to the image during each iteration phase, this will result in the phenomena of
overfitting to the source model. Due to the adversarial samples’ final addition of too much
source model feature information after several iterations, the adversarial samples ends up
being overfitted.

To reduce the overfitting phenomenon after multiple iterations of the adversarial
sample, we suggest Feature Heterogeneity Guided Momentum Iterative (HMI-FGSM),
an NI-FGSM version that shares many of the same properties as NI-FGSM—the same
forward-looking features as FGSM. More specifically, we add some different features to
the image of each iteration. The HMI-FGSM, as illustrated in Figure 2, finds the difference
between the averaged gradient and the gradient of the original image after averaging the
gradient obtained after the image has had random pixel points removed. This discrepancy
exists between the original image and the image with the erased pixels, and finally intro-
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duces the difference into the original image. The updating process can be summarized
as follows:

x̂adv
t = xadv

t + α · Dt−1, (5)

ĝt = ∇x̂adv
t

J f (x̂adv
t , y), (6)

gt = µ · gt−1 +
ĝt

||ĝt||1
, (7)

xadv
t+1 = xadv

t + α · sign(gt), (8)

Dt =
1
N

N

∑
i=1
∇x̂adv

t �Mm
P
− ĝt, Mp ∼ Bernoulli(1− p) (9)

where MP represents a binary matrix of the same size as x, and � represents element-wise
multiplication. The ensemble number N represents the random mask number for the input
x, and Dt−1 represents the feature difference from the previous iteration. For forward
guiding, HMI-FGSM takes into account the gradient difference around the input x rather
than all past gradients as in NI-FGSM, which can enhance adversarial attacks.

img_1

img_2

img_n

Original Image

Original Image

Gradient

Backpropagation

Aggregation

Gradient

Aggregation

Gradient Difference

Masked Image Gradient

Random Mask

Figure 2. Illustration of aggregation gradient difference. The aggregated gradients are obtained from
multiple random mask images, and the final aggregated gradient difference (i.e., feature difference)
is represented by the difference between the average mask gradient and the original image gradient.
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3.3. Dual-Sampling Variance Aggregation Attack

In the current research on the latest gradient-based attack methods, in order to stabilize
the gradient update direction and significantly increase the transferability of adversarial
examples, the work VMI-FGSM [26] technique adjusts the current gradient information
using the gradient variance data from the previous iteration based on MI-FGSM [23]. When
determining the gradient variance information from the previous iteration, VMI-FGSM
uses the uniformly distributed sampled samples and then determines the discrepancy
between it and the initial sample gradient. We discover that the adversarial sample attack
performance obtained through uniform sampling performs better on a model that has
been normally trained but worse on one that has been trained in an adversarial manner,
as shown in Figure 3.
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Figure 3. Adversarial samples generated by the V2MI-FGSM method on the Inc-v3 model. The two
lines indicate that uniform sampling is better on normal training and normal sampling is better on
adversarial training models.

We examine the attack performance of the adversarial samples with a focus on the
stronger models because they are now more frequently used. As a result, we were motivated
to create an adversarial sample that performs better in attacks on both normally trained
and adversarially trained models.

Based on some problems existing in the above methods, we use dual-sampling vari-
ance aggregation to further optimize the gradient in the iterative process of each gradi-
ent optimization. The gradient variance information is averaged to replace the original
single-layer sampling. We compute the variance aggregated gradient for the t-th iteration
as follows:

V(xadv
t ) =

VU
t + VN

t
2

(10)
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V(x) =
1
N

N

∑
i=1
∇xi J(xi, y)−∇x J(xadv

t , y) (11)

where xi = x + ri. When the sampling method is normal ri ∼N[0,(γ · ε)d]; when the
sampling method is uniform ri ∼U[-(β · ε)d, (β · ε)d], and N[0, ad] and U[bd, cd] represent
the d-dimensional normal distribution and uniform distribution, respectively.

After computing the double-sampled variance aggregation gradient, we can use the
double-sampled aggregation gradient variance at the (t − 1)-th iteration to adjust the
gradient of xadv

t at the t-th iteration to stabilize the gradient. Finally, we fuse feature
heterogeneity attack and double sampling variance aggregation attack to obtain our final
method V2MHI-FGSM, as shown in Algorithm 1. Overall, our method not only shows
better performance, but our method can be integrated with DIM, TIM, and SIM to achieve
better results.

Algorithm 1 Dual-Sampling Variance Aggregation and Feature Heterogeneity Attacks

Input: A clean samples x and ground truth labels y, and a classifier f with parameters
θ and loss function J; the magnitude of perturbation value ε; number of iterations T
and decay factors µ; the factor β for the upper bound of neighborhood and number of
example N for variance tuning; the upper limit factor γ for the variance field and for the
sampling number Nnor; the image pixel deletion number P and gradients aggregation
number Nagg.

Output: Adversarial samples xadv

1: α = ε/T
2: g0 = 0; D0 = 0; v0 = 0; xadv

0 = x
3: for t = 0→ T − 1 do
4: x̂adv

t = xadv
t + α · Dt−1

5: Calculate the gradient ĝt = ∇x̂adv
t

J(x̂adv
t , y; θ)

6: Updating gt+1 by momentum-based variance aggregation and feature differences

gt+1 = µ · gt +
ĝt + v2

t
||ĝt + v2

t ||1
(12)

7: Update Dt by Equation (9)
8: Update v2

t+1 = V(xadv
t ) by Equation (10)

9: Update xadv
t+1 by applying the sign of gradient

xadv
t+1 = xadv

t + α · sign(gt+1) (13)

10: end for
11: xadv = xadv

T
12: return xadv

3.4. Relationships among Various Attacks

Here, we provide a summary of the connections between numerous adversarial
assaults from the FGSM to the present, as shown in Figure 4. Our method V2MHI-FGSM
degrades to VMI-FGSM if the upper limit factor γ = 0 and the integration number Nagg
= 0. If the upper limit factor β in VMI-FGSM is set to 0, then VMI-FGSM are degraded to
MI-FGSM. If the decay factor µ = 0, then both MI-FGSM are degraded to I-FGSM. If the
number of iterations T = 1 in I-FGSM, then it is degraded to FGSM. Meanwhile, the above
adversarial attack method can be combined with various input transformations (i.e., DIM,
TIM, and SIM) to form a more powerful counterattack method.
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Figure 4. The relationship between various gradient-based attacks. From top to bottom we can adjust
some hyperparameters to correlate various attacks derived from FGSM. Further, we can combine
these attack methods with the input transformations to improve the migrability of the adversarial
samples in one step. Here, D(T,S)I-FGSM means DI-FGSM, TI-FGSM or SI-FGSM.

4. Experiments

To validate the attack performance of our proposed V2MHI-FGSM attack method, we
performed extensive experimental validation on the standard ImageNet2012 dataset [38].
We set up the data, models, etc., needed for the experiments, and then our method was also
compared with the baseline in the case of integration with several input transformations.
Note that the attack success rates in this article are all the false-recognition rates of the
model. Our method clearly outperforms the baseline attack success rate, as shown in
Table 1. Finally, we further investigated the discard probability P and the set number N
of feature differences in gradient aggregation, as well as the hyperparameters γ and N in
orthogonal sampling.

Table 1. Attack success rates (%) of adversarial attacks against the eight baseline models under
single-model setting. The adversarial examples are crafted on Inc-v3. * indicates the white-
box model.

Attack Inc-v3 * Inc-v4 IncRes-v2 Res-101 Inc-v3_ens3 Inc-v3_ens4 IncRes-v2_ens Inc-v3_adv Average

FGSM 67.3 25.7 26.0 24.5 10.2 10.4 4.5 12.1 22.5
I-FGSM 100.0 20.3 18.5 16.1 4.6 5.2 2.5 6.4 21.7

MI-FGSM 100.0 45.6 42.3 35.8 14.1 12.4 6.2 19.3 34.4
NI-FGSM 100.0 51.5 49.4 40.6 13.0 12.3 6.8 20.0 36.7

VMI-FGSM 100.0 71.4 68.5 60.0 32.7 30.6 17.4 35.4 52.0
VNI-FGSM 100.0 76.8 75.0 64.6 34.5 33.3 19.2 40.0 55.0

V2MI-FGSM 99.9 70.4 68.0 62.3 39.4 38.8 23.9 42.5 55.6
V2MHI-FGSM 99.8 76.2 73.9 67.6 44.8 42.5 26.4 48.5 60.0
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4.1. Experimental Setup

Data. Similar to [26], we randomly selected 1000 images of different categories from
the ILSVRC2012 validation set, and we also make sure that all these 1000 images can
be correctly classified by each model in this paper; randomly selected, these images are
pre-resized to 299 × 299 × 3.

Model. Our model has four normally trained models Inception-v3(Inc-v3) [39],
Inception-v4(Inc-v4), Inception-Resnet-v2(IncRes-v2) [40], Resnet-v2-101(Res-101) [41],
and four adversarially trained models, namely ens3-adv-Inception-v3(Inc-v3ens3), ens4-
Inception-v3(Inc-v3ens4), ens-adv-Inception-ResNet-v2(IncRes-v2ens), and adv-Inception-
v3(Inc-v3adv) [42].

Baseline. Four gradient-based attack techniques—the MI-FGSM, NI-FGSM, VMI-
FGSM, and VNI-FGSM—are compared to our approach. We also combined our method
with various input transforms, namely DIM, TIM, SIM, and DTS (which represents the
integration of the three of them), denoted as V2M(N)HI-DTS, V2MHI-FGSM-DIM, V2MHI-
FGSM-TIM, and V2MHI-FGSM-SIM. Finally, our method was integrated into the attack
method of the ensemble model [24] to further demonstrate the effectiveness of our method.

Hyper-parameters. We are consistent with the parameter settings in [26]: the maxi-
mum perturbation is ε = 16, step size α = 1.6, the number of iterations T = 10, β = 3/2, N =
20 in uniform sampling. For the momentum term, we set the decay factor u=1 to the same
as [23,24]. For DIM, the transformation probability is set to 0.5. For TIM, we use a Gaussian
kernel with a kernel size of 7 × 7. For SIM, the number of scale replicas is 5 (i.e., i = 0, 1,
2, 3, 4). In our proposed method V2MHI-FGSM, the drop probability when attacking the
normal training model is P = 0.2, the set in the aggregated gradient is Nagg = 10. For the
parameter γ in sampling the positive distribution, it is set to 3/2, the domain the number
of samples within Nnor = 20.

4.2. Comparison with Gradient-Based Attacks

We first generate adversarial examples in the single-model setting and test its attack
performance on both white-box and black-box, as shown in Table 1. Next,we generate
adversarial examples in the ensemble model setting and test their attack performance on
the ensemble model, as shown in Table 2. Finally, we randomly select five clean images
and visualize the adversarial samples produced after four adversarial attacks, as shown in
Figure 5.

Table 2. Success rates (%) against eight models in a multi-model setup through various gradient-
based iterative attacks. Adversarial examples are generated by integrating on four models, namely
Inc-v3, Inc-v4, IncRes-v2, and Res-101. * indicates the white-box model.

Attack Inc-v3 * Inc-v4 * IncRes-v2 * Res-101 * Inc-v3_ens3 Inc-v3_ens4 IncRes-v2_ens Inc-v3_adv

FGSM 64.8 49.3 43.9 68.8 15.8 15.1 8.9 15.5
I-FGSM 99.9 98.6 95.6 99.8 19.1 16.8 10.4 18.1

MI-FGSM 99.9 98.7 95.0 99.9 39.7 35.5 23.8 36.4
NI-FGSM 100.0 99.8 99.2 99.9 41.2 34.9 22.9 37.1

VMI-FGSM 100.0 99.6 99.3 99.9 77.2 73.0 59.9 75.1
VNI-FGSM 100.0 99.9 99.9 99.9 78.7 73.9 59.9 77.9

V2MHI-FGSM 99.8 99.5 98.5 99.4 79.4 77.2 66.5 78.0
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Clean VMI-FGSM VNI-FGSM V2MHI-FGSM V2MHI-FGSM-DTS

Figure 5. Five randomly selected clean images and their four adversarial samples made by four
adversarial attack methods. All the adversarial samples are generated with the Inc-v3 model as the
source model.

Attack a single model. We first produced adversarial samples using six adversarial
attack methods on a single model, and the produced adversarial samples were attacked
against the baseline methods in this paper; these adversarial attack methods include
FGSM,I-FGSM, MI-FGSM, NI-FGSM, VMI-FGSM, and our proposed dual-sampling vari-
ance aggregation with feature heterogeneity attacks V2MHI-FGSM and V2MI-FGSM. All of
the above attack algorithms produced adversarial samples on the Inc-v3 model, and the
generated adversarial samples were tested on Inc-v3 and the remaining seven models,
i.e., the misclassification rate of the adversarial samples on the corresponding models.

Our method shows the best block attack performance among the existing methods, as
shown in Table 1. Meanwhile, our method and the optimal method were compared with
four different models as source models, respectively, as shown in Table 3.
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Table 3. The success rates (%) on eight models in the single model setting by various gradient-
based iterative attacks. The adversarial examples are crafted on Inc-v3, Inc-v4, IncRes-v2, and Res-
101, respectively. * indicates the white-box model.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3_ens3 Inc-v3_ens4 IncRes-v2_ens Inc-v3_adv

Inc-v3 VMI-FGSM 100.0 * 71.4 68.5 60.0 32.7 30.6 17.4 35.4
V2MHI-FGSM 99.7∗ 75.7 73.8 67.1 43.4 40.6 25.0 46.0

Inc-v4 VMI-FGSM 78.1 99.7 * 70.5 63.0 38.5 36.6 24.1 35.2
V2MHI-FGSM 79.9 97.5 * 75.0 66.7 48.2 46.5 32.5 45.3

IncRes-v2 VMI-FGSM 77.9 72.3 97.8∗ 68.0 47.6 40.0 34.8 44.1
V2MHI-FGSM 76.3 71.0 94.2 * 67.9 53.1 47.4 44.7 49.7

Res-101 VMI-FGSM 75.7 68.4 69.9 99.3 * 44.6 40.9 29.9 42.9
V2MHI-FGSM 79.4 75.2 74.3 99.7 * 54.0 52.4 40.4 53.0

Attack ensemble model. Lin et al. [24] showed that the adversarial samples produced
by integrating logits from multiple models have better transferability. There are three types
of ensemble methods for general models, namely ensemble in loss function, ensemble in
prediction result, and ensemble in logits. In this paper, we fuse the logits output of the
four models. In this section, our ensemble attack method averages the logit outputs of
the models Inception-v3, Inception-v4, Inception-Resnet-v2, and Inception-v2-101; our
approach also exhibits optimal attack performance, as shown in Table 2.

4.3. Input Transformation Attack

To further enhance the migrability of the generated adversarial samples, we combine
previous gradient-based attack techniques with three input transformations (e.g., DIM [27],
TIM [28], and SIM [24]). Additionally, we combine our suggested method with these three
input transformations, as shown in Table 4, and experimentally show that both our method
and earlier adversarial attack methods perform at their best when doing so.

Table 4. These adversarial samples are made on single models, * indicates the white-box model.

Attack Inc-v3 * Inc-v4 IncRes-v2 Res-101 Inc-v3_ens3 Inc-v3_ens4 IncRes-v2_ens Inc-v3_adv

DIM 99.1 65.7 62.2 54.9 20.4 18.9 9.8 24.4
V2MHI-DIM(Ours) 98.3 77.0 74.6 69.4 45.8 44.7 27.8 50.3

TIM 100.0 49.0 44.7 39.5 24.5 20.6 13.7 25.4
V2MHI-TIM(Ours) 99.5 77.1 74.5 67.6 60.0 59.8 44.7 60.4

SIM 100.0 70.4 66.4 61.9 32.3 32.0 16.5 36.1
V2MHI-SIM(Ours) 99.8 89.9 88.3 83.5 64.9 62.3 45.2 65.8

DTS 99.3 84.8 80.8 76.6 66.8 62.7 47.0 64.5
V2MHI-DTS(Ours) 99.2 89.4 88.0 84.4 81.2 78.5 68.5 79.9

Combining these input transformations with the gradient-based attack algorithm,
while integrating the combined results over multiple models, as shown in Table 4, our
approach also exhibits optimal performance.

As described in [43], the combination of DIM, TIM, and SIM can be performed as DTS,
which can further enhance the portability of the gradient-based attack algorithm. Further,
we combined our method with DTS, as shown in Tables 4 and 5, which shows optimal
attack performance for the remaining four models of black-box attacks, especially on the
adversarially trained models, indicating that our method generates better generalization of
adversarial examples.
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Table 5. These adversarial samples are made on four ensemble models, * indicates the white-
box model.

Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3_ens3 Inc-v3_ens4 IncRes-v2_ens Inc-v3_adv

DIM 99.4 * 97.4 * 94.7 * 99.8 * 56.3 50.7 36.4 53.1
V2MHI-DIM(Ours) 99.7 * 99.0 * 98.3 * 98.4 * 82.0 79.8 71.3 82.2

TIM 99.8 * 98.0 * 95.0 * 99.9 * 61.3 56.7 47.8 54.5
V2MHI-TIM(Ours) 99.7 * 99.4 * 97.8 * 98.6 * 88.0 87.7 83.2 87.3

SIM 99.9 * 99.3 * 98.5 * 100.0 * 78.5 74.4 60.4 74.1
V2MHI-SIM(Ours) 99.9 * 99.9 * 99.7 * 99.8 * 91.3 90.2 85.9 91.2

DTS 99.6 * 98.9 * 97.9 * 99.7 * 92.1 90.2 86.6 89.8
V2MHI-DTS(Ours) 99.8 * 99.7 * 99.5 * 99.4 * 95.6 94.5 92.5 95.4

4.4. Ablation Experiment on Hyper-Parameters

To better show the performance of the double-sampling variance aggregation and
feature heterogeneity attack methods, we conducted ablation experiments on variance
parameters and Nnor in the double-sampled variance ensemble. The characteristic heteroge-
neous attacks in the heterogeneity attack aggregation number Nagg and discard probability
P on the performance of the V2MHI-FGSM method, as well as the parameter settings of
uniform sampling, are consistent with [26]. We used Inc-v3 as a source model to make
confrontation samples, and set the default settings γ = 3/2, Nnor = 20, P = 0.2, and Nagg = 10.

The variance parameter γ in normal distribution sampling. We studied the parame-
ter γ and determined the impact of the neighborhood size in the neighborhood distribution
on the attack success rate of the black-box settings in Figure 6. Fixed Nnor = 20. When
γ = 0, V2MI-FGSM degenerates to VMI-FGSM, and the lowest migration is achieved. When
γ = 1/5, although the samples are very small, our proposed two-sample variance aggrega-
tion attack can effectively improve the migration of adversarial samples. With the increase
of γ, when γ = 4/2, the average success rate of the black-box attack of our method reaches
its peak, especially for the transferability of the combination of training models. As a result,
we choose γ= 4/2.
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Figure 6. Attack success rates (%) on the remaining seven models using adversarial examples
produced by V2MHI-FGSM-FGSM and V2MHI-FGSM-DTS on Inc-v3 when adjusting factor γ for the
variance in the normal distribution.
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The number of samples in the field Nnor. We analyzed the impact of the number of
samples in the sample in a normal distribution (γ fixed to 4/2) . As shown in Figure 7,
when Nnor = 0, the V2MI-FGSM degenerates to VMI-FGSM, and the lowest migration
is achieved. When Nnor = 20, the migration of the adversarial samples of our method
production is significantly higher. When the Nnor continues to increase, the transferability
can increase slowly. Because a large number of gradients need to be calculated at each
iteration, the greater the value of Nnor, the greater the calculation overhead. In order to
balance calculation overhead and migration, we set Nnor = 20 in the experiment.
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Figure 7. Attack success rates (%) on the remaining seven models using adversarial examples
produced by V2MHI-FGSM-FGSM and V2MHI-FGSM-DTS on Inc-v3 when adjusting factor Nnor for
the number of pixels removed from the image.

In short, when Nnor>20, Nnor has a small impact on migration, and parameter γ plays
an important role in the impact success rate. In our experiments, the ultra-parameters
γ and Nnor in the dual sampling square polymerization method were set to 4/2 and
20, respectively.

About the number of random deletions of image pixels. In Figure 8, we studied the
impact of discarding probability on the success rate of an attack under black-box settings.
Among them, fixed Nagg = 10 increased the abandoned probability from 0 to 0.9, and the
step length was 0.1. When P = 0, V2MHI-FGSM degenerates to V2MI-FGSM, and the lowest
migration can be achieved. When P = 0.1, the probability of discarding is very small, but the
success rate of the black-box attack has improved significantly. When P > 0.1, the success
rate of the black-box attack gradually decreases with the increase of P; therefore, we discard
the probability to 0.2, when the average success rate of a black-box attack is maximized.

The number of deleted pixel images Nagg. Finally, we analyzed the effects of the
aggregate Nagg on the attack success rate under the black-box settings (discard probability
P = 0.2). As shown in Figure 9, when Nagg = 0, V2MHI-FGSM degenerates to V2MI-FGSM,
and the lowest migration is achieved. When Nagg = 1, although the number of aggregation
is small, our method can significantly improve the transferability of the adversarial samples.
With the increase of Nagg with the step length, the power of black-box attacks only increases
in a small amount. Because the process of seeking gradient aggregation requires a lot
of computing resources, we balance the success rate of black-box attacks and computing
resources. We set up Nagg = 10.
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Figure 8. Attack success rates (%) on the remaining seven models using adversarial examples
produced by V2MHI-FGSM-FGSM and V2MHI-FGSM-DTS on Inc-v3 when adjusting factor P for the
number of random deletions of image pixels.
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Figure 9. Attack success rates (%) on the remaining seven models using adversarial examples
produced by V2MHI-FGSM-FGSM and V2MHI-FGSM-DTS on Inc-v3 when adjusting factor Nagg for
the number of pixels removed from the image.

In short, the discarding probability P plays a key role in migration, and when Nagg
>10, Nagg has a small impact. Therefore, in our experiments, we set P to 0.2, Nagg = 10.

5. Conclusions

In this paper, we propose a dual-sample variance aggregation with a feature hetero-
geneity attack method to improve the transferability of the adversarial samples. Although
based on the the previous method, our method has certain differences: our method starts
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from both pre-iteration and in-iteration perspectives, optimizing the image before the
iteration and optimizing the gradient during the iteration, respectively. First, feature in-
formation with differences is added to the images, and then the gradients of the images
are optimized by double-sampling variance aggregation to improve the transferability of
the adversarial samples, as evaluated on the standard ImageNet dataset. Our method
maintains similar success rates to the state-of-the-art methods in the white-box setting and
significantly improves the transferability of the adversarial samples in the black-box setting.

Our state-of-the-art V2MHI-FGSM attack method with three input transformations for
integration achieves an average attack success rate of more than 83%, and our method with
integrated models and three input transformations for combination achieves an average
attack success rate of more than 97%, significantly improving the transferability of the
adversarial samples. Additionally, on eight different models, our approach outperforms
cutting-edge attack methods by an average of 8%. Our research demonstrates that the
current defense models are technically flawed, necessitating an increase in the models’
robustness.
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