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Abstract: In this paper, we propose a new digital Hard-Successive-Interference-Cancellation (HSIC),
the Alternating Projections-HSIC (AP-HSIC), an innovative fast computational feedback algorithm
that deals with various destructive phenomena from different types of interferences. The correctness
and convergence of the proposed algorithm are provided, and its complexity is given. The proposed
algorithm possesses the functionality of canceling digital interference without the aid of physical
feedback between the receiver and the transmitter or the loading of learning information about
the state of the Multiple Input–Multiple Output (MIMO) channel to the transmitter. The proposed
AP-HSIC algorithm enables a parallel decoding process from the parallel transmission of Orthogonal-
Space–Time-Block-Coding (OSTBC) under a complex and challenging wireless environment to
facilitate the Dynamic Spectrum Sharing (DSS) capability. We present a performance comparison of
the proposed algorithm with the algorithm for Multi-Group-Space–Time-Coding (MGSTC) under
MIMO fading channels and general interference or high-level Additive White Gaussian Noise
(AWGN). Mathematical analysis and real-time simulations show the advantages of the proposed
algorithm compared to the MGSTC decoding algorithm.

Keywords: MIMO; MGSTC; interference; Alternating Projections; Hard-Successive-Interference-
Cancellation

1. Introduction

Dynamic and shared-spectrum-access techniques are among the most challenging
approaches in advanced modern wireless communication. Examples of technologies
implementing dynamic spectrum spatial capabilities are 5th-Generation New-Radio (5G-
NR)-Heterogeneous-Network (HetNet) [1,2], 6th-Mobile-Generation [3], and Wi-Fi-6,7,8
802.11.ax-be. Moreover, dealing with multi-interference signals, Over-the-Air (OTA) in
the domains of space, time, and frequency, or coping with jamming attacks that strongly
correlate with transmission signals, and simultaneously integrating the application of
modern MIMO techniques poses challenging issues. Existing solutions to these problems
include: intelligent access [4,5], intelligent SIC [6–11], smart management sharing systems,
and dynamic-cognitive-radio-spectra [12–14].

More and more systems in both the civilian and military fields are required to deal
with multi-path phenomena and diverse sources of interference in conjunction with ultra-
reliability and low-air transport requirements [2]. In the advanced modern communication
field, several users per urban area and the number of mobile operators conducting Stand-
Alone (SA) unlicensed communications are massive and intensifying. This process of
congestion leads to the destruction of wireless channels, causing bad conditions for wave
propagation [15], scattering phenomena [16], and interference-jamming problems [17–19].
The meaning of the destruction of wireless channels is that there is a strong correlation
between the desired signal and the interference signal that causes a significant reduction in
the complex power gain of the wireless links. In designing next-generation communication
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systems, it is necessary to consider these decoding and fairness problems in addition to
dealing with these destructive effects.

Two main approaches have been developed in recent years to deal with the challenges
of offsetting the destructive effects of various sources of interference. The capabilities
of those approaches combine spatial selectivity and wireless communication techniques
that increase the channel’s capacity and bring about accurate and fast decoding processes.
The two main approaches can be classified as follows: classical conventional and non-
conventional analog–digital-SIC approach [7,20] or None-Orthogonal-Multiple-Access
(NOMA) techniques [21–23], and advanced MIMO-beamforming techniques such as analog–
digital hybrid-beamforming structure [24–26], and multi-layer-precoding full-dimensional
massive MIMO systems [14,27].

The first approach includes three different families of decoders incorporating inter-
ference offset algorithms. The first family has algorithms such as classical analog–digital-
SIC [7,20,28], zero forcing-interference cancellation (ZF-IC) [29], MGSTC [29–31], and SIC
based on machine-learning/deep-learning algorithms such as SICnet [28] and-deepSIC [7].
The main advantage of these techniques is the absence of the requirement for physical
feedback between the receiver and the transmitter to share the information evaluation
of the wireless channel with the transmitter (e.g., the Channel-State-Information-at-the-
Transmitter (CSIT)). The common denominator of this family is based on serial process
decoders designed for the spatial separation of a block of information intended for a specific
user from a system of simultaneously transmitted blocks. The coalition of the remaining
blocks considered internal interferences are serially offset to decode the desired block.
These methods are limited in dealing with interference processes from external interferers,
such as neighboring users who produce a strong correlation with the signals of the desired
transmitter or an intelligent jammer activated in the same geographic-spatial space. The
reason for this weakness is that the external disturbance process causes a violation of the
legality of the internal offset process predefined in the SIC algorithm. This process damages
the iterative decoding process and significantly damages the system’s performance (as we
prove in the next section).

The second family is the NOMA technique. The NOMA is based on multi-carrier
power control, which allows identifying each user’s reception power values or power
coefficients according to their differences in power-multiplexing. This method is also
vulnerable to external interference from outside the network or from the source of an
intelligent jammer. These interferences disrupt the spatial separation process, which is
based on differentiating the reception power of each user.

The third family is based on minimum-mean-square detection interference-rejection
combiner (MMSE-IRC) [32]. The conventional MMSE-IRC enables spatial selectivity, as
well as dealing with neighboring users who produce complex disturbances within the
legal framework of the network, a high order of diversity, and advanced spatial plural-
ism. The MMSE-IRC is limited in the aspect of eliminating the outsourcing of dynamic
interference and dealing with destructive wireless effects because the construction of the
system mechanisms is heavily based on None-Stand-Alone (NSA) networks or on network-
based regulation protocols, with the help of Physical-Upload-Share-Channel (PUSHC), and
auxiliary Demodulation-Reference-Signals (DM-RS) [1,2].

The second approach is high-resolution beamforming techniques [33], hybrid beam-
forming [4,24], analog–digital-beamforming, and multi-layer-precoding full-dimensional
massive MIMO systems [34]. This approach’s disadvantage is that the receiver must share
with the transmitter CSIT via physical feedback that might be vulnerable. As a result, the
ability of an intelligent jammer or a general disturbance to damage the CSIT is natural
and exists in physical reality. The balance between the need to develop systems without
closed feedback and the development of advanced feedback-based methods is derived
from considerations of the need to implement real-time communication, communication
with minimal computational overhead, and constraints of physical conditions that cannot
connect physical feedback between the receiver and the transmitter. Examples of such
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systems with physical constraints and limitations are satellite communication systems,
critical wireless links (for example, medical systems based on wireless communication),
and autonomous vehicles.

In this paper, we propose a new digital interference cancellation algorithm—the AP-
HSIC—that only requires the Channel-State-Information-at-the-Receiver (CSIR) assumption
and generates computational feedback at the receiver. This computational feedback can
overcome the effects of random scatters in a multi-path fading channel and quasi-static
Flat-Rayleigh-Fading MIMO channels, combined with high-level AWGN and general
interference scenarios. We compare the MGSTC decoding algorithm’s performance based
on the MIMO array’s serial-decoding mode and the proposed algorithm, AP-HSIC, which
combines parallel processing decoding methods in the MIMO array. This comparison was
conducted in an environment of different interferers. The comparison is reflected in the
performance levels of Bit–Error Ratio (BER) vs. the Signal-to-Noise Ratio (SNR) or BER vs.
Signal-to-Interference Ratio (SIR).

The analysis considers different constellation orders (Quadrature Phase Shift Keying
(QPSK); 8-PSK; and 16-PSK) and challenges the two systems under scenarios of high-level
AWGN and two kinds of interference: Partial Band Noise (PBN) [35] and general interfer-
ence [1]. The presence of general interfering signals can be associated with neighboring
users or jamming attacks [17].

The proposed AP-HSIC can generate significant capabilities for successfully canceling
digital interference. The AP-HSIC offers flexibility regarding stand-alone (SA) networks
without the request to control a sharing channel that statistically measures the spatial
domain. The receiver also does not require any control or physical feedback from the
transmitter. In addition, AP-HSIC can decode symbols in a parallel MIMO mode in real-
time without slowing down the decoding process and simultaneously with the interference
cancellation process. These features are significant in applying ultra-bit-rate and heavy-
capacity channel requirements. It has the ability to discern between the original channel
response matrix and interfering factors. The next section defines these factors as the
interrupting part, ∆H, where we show how to calculate an approximation to ∆H and
perform an online update to the general MIMO channel response matrix. The computation
of ∆H allows a total offset of the interference signal. The result is that the system can decode
the originally transmitted symbols without increasing the power and re-transmitting. We
may assume statistical dependence between the general interference (or the jamming signal)
and the user signal, as well as statistical dependence between the AWGN and the user
signal. Furthermore, with the knowledge of the CSIR, we can distinguish between a signal
that transmits data from an interference signal without changing to pilot symbols, changing
modulation, or increasing the transmission power.

The common denominator of advanced wireless communication systems that include
interference offset techniques and innovative parallel decoding algorithms is that the
network operates in Time-Division-Duplex (TDD) communication mode. A significant
advantage of this mode is in the abstraction of the ability to evaluate the wireless chan-
nel and reduce the information overhead between the transmitter and the receiver. The
significant and growing problem with this mode is that it is weak against interference or
neighboring users in the space. The considerable advantages of the proposed algorithm
are not only that it allows information to be decoded in a parallel manner at the same
time as the offset of the interferers without the need for physical feedback between the
transmitter and the receiver, but it also allows applicability to communication systems
that are unable to produce physical feedback due to considerations of system architecture,
critical response time, etc. Examples of this applicability are satellite systems, autonomous
vehicles, and ultra-low latency wireless systems. The proposed algorithm allows these
systems to transmit high data rates in a high order of modulations and simultaneously
decode them under diverse interfering scenarios and under TDD mode.

The remainder of the paper is organized as follows: Section 2 presents the proposed
communication MIMO model under various interference scenarios. Section 3 presents the
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AP-HSIC algorithm, where we prove its correctness, prove its convergence, and analyze
its complexity. Section 4 describes the real-time simulations and numerical results based
on SIMULINK and MATLAB platforms and provides a comparison of the performances
of both systems: the MGSTC and the AP-HSIC. In Section 5, we derive conclusions and a
vision for further research on efficient solutions to communication system problems under
interfering scenarios.

2. Proposed Communication MIMO Model under Various Interference

This section describes and analyzes a proposed communication MIMO model under
various interference scenarios for two different architectures. The first architecture includes
a transmitter based on the MGSTC scheme, including the diversity-transmitting technique-
OSTBC. The receiver is based on the MGSTC decoding algorithm. This architecture is
described in [29]. The MGSTC has the property of interference cancellation and decoding
capability with the ability to separate a single symbol information block from a set of trans-
mitted blocks and combines an error-reducing mechanism. The MGSTC technique works
by iterating a serial decoding mode in the receiver. It includes the parallel transmission
of a series of blocks in space and, on the receiver side, a serial decoding capability that
separates the various transmitted blocks.

In this architecture, as we mentioned, the MGSTC decoding algorithm decodes and de-
multiplexes the individual data streams in a specific user from the other streams and creates,
through serial iterations (i.e., multi-stage decoding), a communication mode capable of
offsetting the noise part (a sum of AWGN with the rest of the broadcast blocks). This
process is performed by utilizing the accuracy of a single decoding stream relative to the
last decoding iteration.

There are two distinct advantages of the MGSTC decoding algorithm. The first one is
based on the fact that, at the end of each iteration, when we move to the next group order,
the MGSTC scheme produces a diversity gain for every matrix of OSTBC transmission mod-
ulation symbols, Sci (Sci included ci MGSTC component-block as i = 1, . . . , I). The diversity
gain is increased by ni× (n1 + · · ·+ ni + Nr − Nt) when the i is the iteration number and ni
is the number of transmission antennas in the i’th group, while Nr, and Nt are the number
of total receiver antennas and the number of total transmission antennas, respectively.

Having the ability to raise the diversity order means being able to reduce the average
power transmission of each group inversely to the diversity order of each group; for
example, the average power per symbol transmission at antennas 1 and 2 in the first
group is defined as Es, and the diversity order is 4, the average power per symbol at
antennas 3 and 4 will be Es

2 , with diversity order of 8. The second advantage is based on the
fact that in each given iteration, as the iteration process continues forward, the decoding
accuracy increases, a process that results in the elimination of the noise part in relation to
the previous iteration.

The challenging issue in the MGSTC and in multi-stage decoding, in general, is
that the advantages become disadvantages in several communication scenarios. Those
advantages, as mentioned above, at the same time, lead to disadvantages for MGSTC
systems when interference cases are present in the same spatial domain. The disadvantages,
reflected in the SIC process of the MGSTC, are based on it being a serial decoding mode
of data blocks. Every error accumulated in a given SIC process is dragged into the next
iteration and amplified. Another significant weakness of the MGSTC is the wireless links
between the antenna couples in the descending order of the antenna array of the transmitter
(e.g., antennas 5 and 6 in our simulation) to all antenna arrays of the receiver. The weakness
arises from the fact that these paths are more attenuated in terms of the SNR or SIR and
because of the reliance on diversity gain. Thus, in the presence of interfering signals, fading
effects, or high levels of AWGN that hit these paths, an imbalance in the trade-off between
a higher diversity gain and lower SNR occurs, leading to increased values of BER.

We propose the second architecture using the MGSTC-OSTBC at the transmitter and
the AP-HSIC scheme at the receiver instead of the MGSTC decoding algorithm. This



Electronics 2023, 12, 761 5 of 26

proposed hybrid scheme produces immunity against various interference scenarios, as can
be seen in the simulation results below. In addition, a more efficient and accurate process
of parallel spatial decoding of the series of simultaneously transmitted symbols blocks is
achieved in this scheme compared to the first scheme we described.

We separately analyze and simulate the two architectures under three challenging
interference scenarios acting in the same spatial domain. The first interference scenario
is a high-leveled AWGN. The second scenario is PBN, and the third scenario is a general
interference simulating a smart jamming device or a neighboring user.

We start the first and essential analysis with the general interference case. In that case,
the communication standard ideal model Y = HSci + Z changes to (see [29]):

Y =
√

PHTRSci +

√
P

SIR
HJRSJ +

√
P

SNR
Z, (1)

where Y is the received signal, with dimensions [Nr × k], Nr is the number of receiver
antennas, and k is the number of sample symbols per frame. The MIMO channel response
matrix between the transmitter and receiver is HTR, with dimensions [Nr × Nt], where Nt
is the number of transmission antennas. The MIMO channel-response matrix between the
interference and the receiver is defined by HJR, with dimensions

[
Nr × NJ

]
, where NJ is

the number of interference transmission antennas. Sci is the matrix of OSTBC transmission
modulation symbols of the desired transmission, with dimensions [Nt × k] and SJ is the
matrix of OSTBC interference modulation symbols, with dimensions

[
NJ × k

]
. Finally,

the SIR is the signal interference ratio, P is the total transmission power, and Z is the
independent complex Gaussian random variable noise. The model communication is
described in Figure 1.

Figure 1. Scheme blocks of the MGSTC transmitter, general receiver (including MGSTC or AP-HSIC
decoding algorithm), and general interference/smart jammer.

For the MGSTC decoding algorithm, in the presence of the interference signal, Ỹc1 , [29]
becomes:

Ỹc1 = Θc−c1Y = Θc−c1

[
√

PHTRSci +

√
P

SIR
HJRSJ +

√
P

SNR
Z

]

=
√

PΘc−c1 HTRSci + Θc−c1

√
P

SIR
HJRSJ +

√
P

SNR
Z̃c−c1

(2)
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where Ỹc1 is the receive-matrix for decoding the first symbol-block, Sc1 . Θc−c1 is the null
space matrix relative to the decoding process of Sc1 , and Z̃c−c1 is the independent complex
Gaussian random variable noise multiplied with the null space matrix, Θc−c1 .

The second part of this equation, the interference that is received as an additive factor
to the MGSTC decoding algorithm, produces the most destructive effects as it destroys
the orthogonality of Θc−c1 relative to the other part of the MIMO channel-response matrix–
destruction that the MGSTC algorithm cannot deal with (see [36]).

In order to solve the problem of interference estimation and digital interference can-
cellation in the presence of general interference by using self-computational feedback at
the receiver, we describe two main approaches with different assumptions to model the
interference intervention. The first approach is based on the assumption that the number
of interference transmission antennas and the number of legitimate transmission anten-
nas are different, implying that there exists no correlating matrix Ψ such that SJ = ΨSci ,
and therefore we do not have any information about the interference tactic. The second
approach is applied under the assumption that there exists a correlation unknown matrix
Ψ such that SJ = ΨSci . Under the most general assumption, writing Sci = S, we can
decompose (1) into:

Y =
√

PHTRS +

√
P

SIR
HJRSJ +

√
P

SNR
Z

=
√

PHTRS +

√
P

SIR
HJRSJ

(
I − S+S + S+S

)
+

√
P

SNR
Z

=

(
√

PHTR +

√
P

SIR
HJRSJS+

)
S +

√
P

SIR
HJRSJ

(
I − S+S

)
+

√
P

SNR
Z,

(3)

where S+ is the Moore–Penrose pseudo-inverse of S. Multiplying from the right by S+S,
we obtain:

YS+S =

(
√

PHTR +

√
P

SIR
HJRSJS+

)
S +

√
P

SNR
ZS+S,

since S+SS+ = S+ (which implies (I − S+S)S+S = 0, see Remark 1) and since SS+S = S.
Let the interference factor be defined by:

∆H =

√
P

SIR
HJRSJS+. (4)

Furthermore, let
H =

√
PHTR, (5)

and Z̃ =
√

P
SNR ZS+S.

Now, Ẑ :=
√

P
SNR Z ∼ CMNm×k

(
0m×k, σ

m Im, σ
k Ik
)
, where σ = σẐ =

√
P

SNR , which

implies that Z̃ ∼ CMNm×k
(
0m×k, σ

m Im, σ
k S+S

)
. We therefore have

σ2
Z̃ =

σ2

k
trace

(
S+S

)
≤ σ2, (6)

since trace(S+S) = rank(S+S) = rank(S) ≤ Nt and Nt ≤ k (whatever the coding modula-
tion is, using the fact that S+S is Hermitian with simple eigenvalues from the set {0, 1}).
The last implies that we reduce the noise part by multiplying with S+S, assuming that k is
large enough.

We therefore have
YS+S = (H + ∆H)S + Z̃. (7)
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Note that when a correlation matrix Ψ exists such that SJ = ΨS, then SJ(I − S+S) =
ΨS(I − S+S) = 0 and (3) is equivalent to

Y =

(
√

PHTR +

√
P

SIR
HJRSJS+

)
S +

√
P

SNR
Z, (8)

which we write as:
Y = (H + ∆H)S + Z̃, (9)

where Z̃ =
√

P
SNR Z.

In order to compute ∆H and S from (7) or from (9), we can start with the standard
ideal model to obtain a first approximation for S, using the known channel response matrix
H. Then, we iterate on (7) or on (9) to compute the best approximations for ∆H and
for S, as explained in Section 3. In [36], it has been proven and demonstrated through
simulations that the worst-case scenario is where a rotation correlation matrix Ψ exists such
that SJ = ΨS. Thus, our analysis includes the case where S, SJ are correlated. Note that
‖S+S‖2

F = trace
(
(S+S)∗S+S

)
= trace(S+S) = rank(S) ≤ Nt. Therefore:∥∥YS+S− (H + ∆H)S

∥∥
F =

∥∥YS+S− (H + ∆H)SS+S
∥∥

F

=
∥∥(Y− (H + ∆H)S)S+S

∥∥
F ≤ ‖Y− (H + ∆H)S‖F ·

∥∥S+S
∥∥

F

≤ ‖Y− (H + ∆H)S‖F ·
√

Nt.

This implies that ‖YS+S− (H + ∆H)S‖F ≤ ε, if ‖Y− (H + ∆H)S‖F ≤ ε√
Nt

. Thus, contin-
uing with (9) does not lose the generality, as (7) can be solved by the same algorithm, with
the error threshold ε√

Nt
instead of ε.

A more simplified case is when SJ = S (although it is not simple for the jammer to
generate S exactly). Practical examples of intelligent jammers (or neighboring users with
the same modulation order), where SJ = S or SJ = ΨS, were considered in [17,36,37].

Note that, in view of (3), the part
√

P
SIR HJRSJ(I − S+S), which is orthogonal to S+S

(in the Frobenius inner-product 〈A, B〉F = tr(B∗A)) is simply canceled by multiplication

with S+S from the right. However, the part ∆HS =
√

P
SIR HJRSJS+S, which is in the

direction of S+S, cannot be canceled without intervening in the channel-state by using
some feedback. This explains why, in the aforementioned papers, the simplified cases
appear as the most challenging interferences. Mathematically, these resemble simple cases
or mathematical simplification, but physically, these cases create disturbances in terms of
nonlinear distortions in the constellation or duplication of symbols in the constellation, as
described in [36].

In the following, we present computational feedback that cancels ∆H by computing
∆H and using it to reliably decode S and update the new MIMO channel-response matrix
to be H + ∆H without the need to update the transmitter. The next interference scenario is
the PBN case. The PBN case represents the noise energy caused by a jammer, a neighboring
user under the same operator, or a user from a neighboring operator that leaks energy
across a specific portion of the system’s target bandwidth. The noise power bandwidth
of the PBN may be less than that of the user, but the power amplitude of the PBN can be
much higher than the user’s received signal. The last scenario is a high-leveled AWGN that
is added to the existing noise part, Z, as described in [38].

3. The Alternating Projections HSIC Algorithm

In this section, we write n = Nt for the number of transmission antennas and m = Nr
for the number of receiver antennas for the simplicity of presentation. Let A be any
Cm×n matrix. Then, we denote the Moore–Penrose pseudoinverse by A+. Let an singular
value decomposition (S.V.D.) of A be denoted by A = UΣV∗, where U is an m × m
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unitary matrix, V is an n × n unitary matrix, and Σ is an m × n rectangular diagonal
matrix with non-negative entries, i.e., σ1 ≥ σ2 ≥ . . . ≥ σ` > 0, where ` ≤ min(m, n)
are the singular values of A. Then, A+ = VΣ+U∗, where Σ+ is just the diagonal n× m
matrix with 1

σ1
, . . . , 1

σ`
on its main diagonal. Note that, for A = UΣV∗, as above, we have

A = ∑`
k=1 σkukv∗k , where uk, vk, k = 1, . . . , ` are the first ` columns of U, V, respectively.

Therefore, A+ = ∑`
k=1

1
σk

vku∗k .

Remark 1. Note that A+ = limε→0+ A∗(εI + AA∗)−1. Therefore, if A is a random matrix, and
Ã = A Almost Surely (A.S.), then Ã+ always exists and, Ã+ = A+ A.S. In that case, we have:

E
[

Ã
]
= E[A] and E

[
Ã
]+

= E[A]+, as well as E
[

Ã+
]
= E[A+] and E

[
Ã+
]+

= E[A+]
+. Let

LA = In − A+A and RA = Im − AA+. Then, ALA = 0, LA A+ = 0 and A+RA = 0, RA A = 0,
where L2

A = LA, R2
A = RA and LA, RA are self-adjoined with simple eigenvalues in the set {0, 1}.

Furthermore, (AA+)
2
= AA+ and (A+A)

2
= A+A are self-adjoined with simple eigenvalues in

the set {0, 1}.

Let z be a random m × 1 complex vector. Then, we write z ∼ CNm×1(µ, Σ) if the

p.d.f. of z is
exp(−((z−µ)∗Σ−1(z−µ)))

det(πΣ) , where µ = E[z] is an m× 1 complex vector, and Σ =

E
[
(z− µ)(z− µ)∗

]
is a positive-definite m×m complex matrix. Let Z be a random m× n

complex matrix. Let vec(Z) denote the function transforming the matrix Z into a vector by
aligning its columns into a single mn× 1 column vector. We write Z ∼ CMNm×n(M, U, V)
for Z having the Probability Distribution Function (P.D.F.):

exp
(
−trace

(
V−1(Z−M)∗U−1(Z−M)

))
πmn det(U)n det(V)m =

exp
(
−
∥∥∥U−1/2(Z−M)V−1/2

∥∥∥2

F

)
det(πV ⊗U)

,

where M = E[Z] is a complex m × n matrix, V is a positive-definite complex n × n
matrix, and U is a positive-definite complex m × m matrix. One can show that Z ∼
CMNm×n(M, U, V) if and only if vec(Z) ∼ CNmn×1(vec(M), V ⊗U). Note that, if Z ∼
CMNm×n(M, U, V), then N + AZB ∼ CMNm×n(N + AMB, AUA∗, B∗VB). Also note
that if Z ∼ CMNm×n(M, U, V), then E

[
(Z−M)(Z−M)∗

]
= Utrace(V),

and E
[
(Z−M)∗(Z−M)

]
= Vtrace(U). The latter implies that

σ2 := E
[
‖Z−M‖2

F

]
= E

[
trace(Z−M)∗(Z−M)

]
= traceE

[
(Z−M)∗(Z−M)

]
= trace(U)trace(V).

Therefore, if Z ∼ CMNm×n
(
0m×n, σ

m Im, σ
n In
)
, then, E

[
‖Z‖2

F

]
= σ2. The following lemma

can be easily proven.

Lemma 1. Let A ∈ Cm×n and B ∈ Cm×p. The matrix equation AX = B has solutions if and
only if AA+B = B (i.e., RAB = 0). In that case, the set of all solutions is given by:

X = A+B + LAW, (10)

where W ∈ Cn×p is an arbitrary n× p matrix. Moreover, we have ‖X‖2
F = ‖A+B‖2

F + ‖LAW‖2
F,

implying that a minimal Frobenius-norm solution is X = A+B. Moreover, even when the condition
AA+B = B is not satisfied, X = A+B is still a minimal Frobenius-norm solution to the problem
minX∈Cn×p‖AX− B‖2

F.

The following theorem would be useful for turning our non-convex problem into a
convex one:
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Theorem 1. The set of full-rank matrices is dense in the set of all matrices, i.e., for any A ∈ Cm×n

and any ε > 0, there exists a full-rank matrix Aε such that ‖A− Aε‖F ≤ ε.

The proof of this theorem and of the following theorems is given in the Appendix A.
Under the assumptions mentioned above, the standard ideal MIMO model is

described by:
Y = HS + Z, (11)

where S is an n× k OSTBC symbol matrix of signals. We assume that k ≥ m ≥ n. The
m × n matrix H is the channel matrix (random with the unknown p.d.f., but assumed
to be stationary) and Z ∼ CMNm×k

(
0m×k, σ

m Im, σ
k Ik
)
, which is equivalent to vec(Z) ∼

CNmk×1

(
0mk×1, σ2

mk Ik ⊗ Im

)
.

Theorem 2. Assume that the communication is made with some modulation not containing 0 and
let r0 be the radius of the modulation point with minimal radius. Assume that k ≥ max(m, n) and
let S =

[
S1 S2 · · · S` S`+1

]
be the OSTBC symbol matrix of signals, where k = n`+ q

and each Sj is n× n, chosen such that SjS∗j ≥ r2
0 In for j = 1, . . . , `, and S`+1 is an arbitrary n× q

matrix. In addition, we also assume that S is known to the receiver. Let H0 = YS+. Then, H0 is a
random matrix such that:

E
[
‖H − H0‖2

F

]
=

σ2

k
∥∥S+

∥∥2
F. (12)

Moreover, since ‖S+‖F is bounded above, by taking k→ +∞, it follows that E
[
‖H − H0‖2

F

]
= 0,

implying that H0 = H A.S. holds.

In view of Remark 1, H0 = H A.S. implies that H+
0 = H+ A.S., from which we

can conclude that E[H0] = E[H], and that E
[
H+

0
]
= E[H+]. Now, when S is unknown,

when we search for S that minimizes ‖Y− HS‖2
F, by Lemma 1, we need to take S = H+Y.

However, as H is random and Y is random, S = H+Y is random, while the true S that was
sent by the transmitter is not random. However, as it is almost sure that H0 = H, we can
take S̃ = E

[
H+

0
]
Y as an approximation for S. Note that S̃ is still a random matrix, but it

would give us what is needed, as is expressed in the following theorem.

Theorem 3. Let H0 be an m× n matrix as in Theorem A2, and further assume that m ≥ n and
that E[H0] is full-rank. Let S denote an unknown signal matrix that is sent by the transmitter and
let Y = HS + Z be the signal measured by the receiver. Let S̃ = E[H0]

+Y = E[H0]
+(HS + Z)

(note that S̃ is a random variable matrix, while S is not random). Then,

E
[
S̃
]
= S. (13)

The following theorem connects the expectation of the square error between the
approximated computed symbol matrix S̃ and the real symbol matrix S, in terms of the
transmission power, the number of antennas, and the SNR level. This would give us a new
formula for the BER, as we will see in the simulations section.

Theorem 4. Let Y = HS + Z, where H can be the ideal channel matrix or H + ∆H, the resulting
channel matrix of the disrupted channel. Assume that the exact H (or the exact H + ∆H, respec-
tively) is known to the receiver and assume that H (or H + ∆H, respectively) is constant for the
current session. Let S be the true symbol matrix for the current session, and let S̃ = H+Y be the
approximated symbol matrix. Then, the distribution of S̃ − S (given the constant matrix H or
H + ∆H, respectively) is:

S̃− S ∼ CMN n×k

(
0n×k,

σ

m
H+H+∗,

σ

k
I
)

. (14)
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Moreover, the expectation of the square error satisfies:

E
[∥∥∥S̃− S

∥∥∥2

F

]
=
‖H‖2

F‖H+‖2
F

mSNR
=

P‖H+‖2
F

mSNR
. (15)

In the following, we propose an algorithm for the computational self-feedback of the
receiver that identifies both ∆H and an unknown matrix symbol S. For this purpose, we
regard H0 as H and ignore the measurement noise Z. Therefore, we write Y = HS. Assume
that the system has undergone a jamming attack, and the new channel matrix is H + ∆H.
Now, the signal received by the receiver is:

Y = (H + ∆H)S. (16)

In view of Theorem A1, we may assume w.l.o.g. that H + ∆H is full-rank, i.e., has
rank(H + ∆H) = n, since we assume that n ≤ m. Therefore, (H + ∆H)+(H + ∆H) = In,
and (16) implies that

(H + ∆H)+Y− S = 0. (17)

Let us write (17) as: [
S (H + ∆H)+

][ Ik
−Y

]
= 0. (18)

Then, in view of Lemma 1, the general solution to the last equation is given by:

[
S (H + ∆H)+

]
=
[

W1 W2
](

Im+k −
[

Ik
−Y

][
Ik
−Y

]+)
, (19)

where W1, W2 are arbitrary matrices with sizes n× k and n×m, respectively. Since[
Ik
−Y

]+
= (Ik + Y∗Y)−1[ Ik −Y∗

]
,

it follows that:
S = W1

(
Ik − (Ik + Y∗Y)−1

)
+ W2Y(Ik + Y∗Y)−1

(H + ∆H)+ = W1(Ik + Y∗Y)−1Y∗ + W2

(
Im −Y(Ik + Y∗Y)−1Y∗

)
,

(20)

which is equivalent to:

S = W1Y∗(Im + YY∗)−1Y + W2(Im + YY∗)−1Y

= (W1Y∗ + W2)(Im + YY∗)−1Y

(H + ∆H)+ = W1Y∗(Im + YY∗)−1 + W2(Im + YY∗)−1

= (W1Y∗ + W2)(Im + YY∗)−1,

(21)

which is more efficient from the complexity point of view since we assume that m ≤ k.
Note that the set (21) is actually a subspace, that is the left kernel of

[
Ik −YT ]T that we

denote as Ker
([

Ik −YT ]T
)

and is, therefore, closed and convex. Note that W1 = 0 and

W2 = H+(Im + YY∗) leads to ∆H = 0 and S = H+Y, that is the best approximation for the
true S in terms of Lemma 1 and Theorem A3 when there is no interference.

Now, as (21) might yield an infeasible point related to the symbol coding that is being
used (here, we use QPSK, 8-PSK, and 16-PSK), letting QPSK = {±1± i} ⊂ C, we define
a projection PQPSK : Cn×k → QPSKn×k by (22) below with ` = 2, which actually projects
any entry of the matrix S onto the closest point in the QPSK constellation (breaking ties
arbitrarily). In the following experiments, we used Algorithm 1, also with 8-PSK and 16-PSK
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codings, for performance comparison with the QPSK coding. For this purpose, we defined
the following general projections for 2`-PSK (for any ` ≥ 2, including 22-PSK=QPSK):

P2`−PSK(S)p,q = cos(φ) + i sin(φ)

φ =
2πκ

2`
, κ =

⌊
2`θ
2π

+
1
2

⌋
θ = arctan

(
=
(
Sp,q

)
,<
(
Sp,q

)) (22)

In order to use the following Algorithm 1, we need to encapsulate QPSKn×k in a
relatively small closed convex set, for which projections can be conveniently calculated.
Since any point in QPSK has an absolute value

√
2, we define by B

(
0,
√

2nk
)

the matrix-ball

of all n× k matrices S with ‖S‖F ≤
√

2nk. Now, if S ∈ QPSKn×k, then
∣∣Si,j

∣∣ = √2 implying

that ‖S‖2
F = ∑n

i=1 ∑k
j=1
∣∣Si,j

∣∣2 = 2nk, from which we conclude that S ∈ B
(

0,
√

2nk
)

and
moreover, that each such matrix is on the boundary of the matrix-ball.

Algorithm 1: AP-HSIC: Receiver Self-Feedback Algorithm

Require: An algorithm for computing Moore–Penrose Pseudoinverses and algorithms for comput-
ing PC0 , PC1 and PQPSK.
Input: H, Y, ε > 0.
Output: ∆H and S such that (H + ∆H)+Y = S, where S ∈ QPSKn×k.

1. ∆H0 ← 0
2. S0 ← H+Y
3.
(
(H + ∆H1)

+, S1

)
← PC1

(
(H + ∆H0)

+, S0

)
4.
(
(H + ∆H1)

+, S1

)
← PC0

(
(H + ∆H1)

+, S1

)
5. ∆H1 ←

(
(H + ∆H1)

+
)+
− H

6. t← 1
7. while

√
‖∆Ht − ∆Ht−1‖2

F + ‖St − St−1‖2
F > ε do

8.
(
(H + ∆Ht+1)

+, St+1

)
← PC1

(
(H + ∆Ht)

+, St

)
9.

(
(H + ∆Ht+1)

+, St+1

)
← PC0

(
(H + ∆Ht+1)

+, St+1

)
10. ∆Ht+1 ←

(
(H + ∆Ht+1)

+
)+
− H

11. t← t + 1
12. end while
13. ∆H ← ∆Ht
14. S← PQPSK(St)
15. return t, ∆H, S

Let
C0 =

{(
(H + ∆H)+, S

)
|∆H arbitrary and S ∈ B

(
0,
√

2nk
)}

, (23)

and
C1 =

{(
(H + ∆H)+, S

)
|∆H and S are given by (21)

}
, (24)

and note that these sets are closed and convex sets in Cn×m ×Cn×k.
We now need projections on C0 and on C1 such that any given point in Cn×m ×Cn×k

which is out of the set is projected to the closest point in the boundary of the set. Let PC0 be
defined by (A, B) 7→ (A, βB), where:

β =

{
1 if ‖B‖F ≤

√
2nk√

2nk
‖B‖F

otherwise
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The projection PC0 is realized in Algorithm 2.

For a given couple (A, B) as above, let f (W1, W2) =
∥∥∥(W1Y∗ + W2)(Im + YY∗)−1 − A

∥∥∥2

F

and let g(W1, W2) =
∥∥∥(W1Y∗ + W2)(Im + YY∗)−1Y− B

∥∥∥2

F
.

Let U = (U1, U2) ∈ Cn×m × Cn×k be a directional matrix, which is with ‖U‖F =√
‖U1‖2

F + ‖U2‖2
F = 1 and let h > 0. Then, the directional derivative at (W1, W2) in the

direction U is defined by:

∇U f (W1, W2) =
∂ f
∂U

(W1, W2) = lim
h→0+

f (W1 + hU1, W2 + hU2)− f (W1, W2)

h
. (25)

We compute:

f (W1 + hU1, W2 + hU2)− f (W1, W2) =
∥∥∥((W1 + hU1)Y∗ + W2 + hU2)(Im + YY∗)−1 − A

∥∥∥2

F

−
∥∥∥(W1Y∗ + W2)(Im + YY∗)−1 − A

∥∥∥2

F

=
∥∥∥h(U1Y∗ + U2)(Im + YY∗)−1 + (W1Y∗ + W2)(Im + YY∗)−1 − A

∥∥∥2

F

−
∥∥∥(W1Y∗ + W2)(Im + YY∗)−1 − A

∥∥∥2

F

= h2
∥∥∥(U1Y∗ + U2)(Im + YY∗)−1

∥∥∥2

F

+ 2h<
〈
(W1Y∗ + W2)(Im + YY∗)−1 − A, (U1Y∗ + U2)(Im + YY∗)−1

〉
F

,

from which we conclude that:

∇U f (W1, W2) = 2<
〈
(W1Y∗ + W2)(Im + YY∗)−1 − A, (U1Y∗ + U2)(Im + YY∗)−1

〉
F

= 2<trace(Im + YY∗)−1(YU∗1 + U∗2 )
(
(W1Y∗ + W2)(Im + YY∗)−1 − A

)
= 2<trace(YU∗1 + U∗2 )

(
(W1Y∗ + W2)(Im + YY∗)−1 − A

)
(Im + YY∗)−1.

(26)

Now, a necessary condition for (W1, W2) to be a minimum point for f is that ∇U f (W1, W2) = 0 for
any U = (U1, U2) as above. This implies that(

(W1Y∗ + W2)(Im + YY∗)−1 − A
)
(Im + YY∗)−1 = 0, (27)

which is equivalent to
W1Y∗ + W2 − A(Im + YY∗) = 0. (28)

Similarly, for g, we have:

∇U g(W1, W2) =
∂g
∂U

(W1, W2) = lim
h→0+

g(W1 + hU1, W2 + hU2)− g(W1, W2)

h
. (29)

We compute:

g(W1 + hU1, W2 + hU2)− g(W1, W2) =
∥∥∥((W1 + hU1)Y∗ + W2 + hU2)(Im + YY∗)−1Y− B

∥∥∥2

F

−
∥∥∥(W1Y∗ + W2)(Im + YY∗)−1Y− B

∥∥∥2

F

=
∥∥∥h(U1Y∗ + U2)(Im + YY∗)−1Y + (W1Y∗ + W2)(Im + YY∗)−1Y− B

∥∥∥2

F

−
∥∥∥(W1Y∗ + W2)(Im + YY∗)−1Y− B

∥∥∥2

F

= h2
∥∥∥(U1Y∗ + U2)(Im + YY∗)−1Y

∥∥∥2

F

+ 2h<
〈
(W1Y∗ + W2)(Im + YY∗)−1Y− B, (U1Y∗ + U2)(Im + YY∗)−1Y

〉
F

,
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from which we conclude that:

∇U g(W1, W2) = 2<
〈
(W1Y∗ + W2)(Im + YY∗)−1Y− B, (U1Y∗ + U2)(Im + YY∗)−1Y

〉
F

= 2<traceY∗(Im + YY∗)−1(YU∗1 + U∗2 )
(
(W1Y∗ + W2)(Im + YY∗)−1Y− B

)
= 2<trace(YU∗1 + U∗2 )

(
(W1Y∗ + W2)(Im + YY∗)−1Y− B

)
Y∗(Im + YY∗)−1.

(30)

A necessary condition for (W1, W2) to be a minimum point for g is that ∇U g(W1, W2) = 0 for any
U = (U1, U2) as above. This implies that(

(W1Y∗ + W2)(Im + YY∗)−1Y− B
)

Y∗(Im + YY∗)−1 = 0, (31)

is equivalent to (
(W1Y∗ + W2)(Im + YY∗)−1Y− B

)
Y∗ = 0

↔ (W1Y∗ + W2)YY∗(Im + YY∗)−1 − BY∗ = 0

↔ (W1Y∗ + W2)YY∗ − BY∗(Im + YY∗) = 0.

(32)

Gathering (28) and (32), we obtain:

[
W2 W1

][ Im YY∗

Y∗ Y∗YY∗

]
=
[

A(Im + YY∗) BY∗(Im + YY∗)
]
, (33)

which, in view of Lemma 1, implies that the best approximation in terms of the Frobenius norm is:

[
W2 W1

]
=
[

A(Im + YY∗) BY∗(Im + YY∗)
][ Im YY∗

Y∗ Y∗YY∗

]+
. (34)

Finally, we define the projection PC1 by (A, B) 7→
(

Â, B̂
)

, where:

{
Â = (W1Y∗ + W2)(Im + YY∗)−1

B̂ = (W1Y∗ + W2)(Im + YY∗)−1Y,
(35)

where W1, W2 are given by (34). The projection PC1 is realized in Algorithm 3.
Algorithm 1, as presented below, which we call the Alternating Projections Hard Successive Inter-

ference Cancellation (AP-HSIC), solves the problem of finding ∆H and S, such that (H + ∆H)+Y = S,

where S ∈ B
(

0,
√

2nk
)

, after which it uses PQPSK (or the related modulation projection) in order to

project S into QPSKn×k as the final decision. In its main loop, it computes
(
(H + ∆Ht+1)

+, St+1

)
by

applying PC1 to
(
(H + ∆Ht)

+, St

)
and next, by applying PC0 to the result, thus alternating between

C1 and C0 until convergence to an intersection point (i.e., in C1
⋂ C0) is verified.

We can start from any couple; however, a good choice is needed in order to obtain faster
convergence, which we took as ∆H0 = 0, S0 = H+Y with the last H known to the receiver, before the
jamming attack began, which is a good starting point, as revealed by Theorem A3.

Remark 2. Note that Y = (H + ∆H)S with the true S implies that

(H + ∆H)(H + ∆H)+Y = (H + ∆H)(H + ∆H)+(H + ∆H)S

= (H + ∆H)S = Y.

Let S̃ = (H + ∆H)+Y be computed by Algorithm 1. Then,

(H + ∆H)S̃ = (H + ∆H)(H + ∆H)+Y = Y.

Therefore, by solving (H + ∆H)+Y = S instead of Y = (H + ∆H)S, we do not lose the generality.



Electronics 2023, 12, 761 14 of 26

Algorithm 2: For PC0

Require: Matrix and Arithmetic Operations
Input: (A, B) such that A is n×m and B is n× k.
Output:

(
Â, B̂

)
∈ C0 closest to (A, B).

1. if ‖B‖F >
√

2nk then
2. β←

√
2nk
‖B‖F

3. else
4. β← 1
5. end if
6.
(

Â, B̂
)
← (A, βB)

7. return
(

Â, B̂
)

Algorithm 3: For PC1

Require: An algorithm for computing Moore–Penrose Pseudoinverses
Input: (A, B) such that A is n×m and B is n× k and Y.
Output:

(
Â, B̂

)
∈ C1 closest to (A, B).

1.
[

W2 W1
]
←
[

A(Im + YY∗) BY∗(Im + YY∗)
][ Im YY∗

Y∗ Y∗YY∗

]+
2. Â← (W1Y∗ + W2)(Im + YY∗)−1

3. B̂← (W1Y∗ + W2)(Im + YY∗)−1Y
4. return

(
Â, B̂

)
Algorithm Correctness, Convergence, and Complexity

The general problem that we need to solve here is the problem Y = (H + ∆H)S, for the
unknowns ∆H and S, where S ∈ QPSKn×k. We assume that H ∈ Cm×n is known to the receiver;
however, this is not a mandatory assumption since we can rename H + ∆H as an (unknown) H and
solve the problem indifferently. The aforementioned general problem is non-convex since it involves
the multiplication ∆H · S of two unknown variables ∆H and S, and QPSKn×k is a discrete set (with
4nk elements) which is obviously non-convex. Indeed, the decision problem: “Given H, ∆H, Y, does
there exist S ∈ QPSKn×k such that Y = (H + ∆H)S?” is NP-hard to solve, as one can prove the
existence of a polynomial-time reduction from the SUBSET-SUM problem. Therefore, solving the
problem Y = (H + ∆H)S where ∆H is also unknown, is harder, and under the widespread belief that
NP 6=P, it is not expected to have an efficient (i.e., polynomial-time) exact algorithm. Therefore, the
proposed algorithm is an efficient algorithm as an approximation algorithm.

In the previous section, we have shown that we may assume that H + ∆H is full-rank, thus lead-
ing to the relaxed problem: (H + ∆H)+Y = S, where S ∈ QPSKn×k. The constraint S ∈ QPSKn×k

was replaced by a closed convex approximation envelope S ∈ B
(

0,
√

2nk
)

and the parametrization

in terms of W1, W2 of all the solutions for (H + ∆H)+Y = S was given. Next, the closed convex sets
C0 and C1 were defined, and their related projections (of an outer point to its closest point in the
related set) PC0 and PC1 were defined. We, therefore, need an intersection point, i.e., a point in C0

⋂ C1.
For this purpose, we use the Alternating Projections (AP) algorithm, which is a known efficient

algorithm that finds a point of intersection of a collection of closed convex sets, and was proven
to have a linear rate of convergence globally (see [39,40]) and linear rate of convergence locally

for non-convex sets (see [41]). Let ε0 =

√
E
[
‖S0 − S∗‖2

F + ‖∆H0 − ∆H∗‖2
F

]
denote the initial error,

where
(
(H + ∆H0)

+, S0

)
is the initial point in the search space and

(
(H + ∆H∗)+, S∗

)
is a solution

to the problem Y = (H + ∆H)S where S∗ ∈ QPSKn×k, which, in view of Remark 2, is a point of the

intersection C0
⋂ C1. We may therefore take

(
(H + ∆H∗)+, S∗

)
to be the point of intersection C0

⋂ C1

with S∗ ∈ QPSKn×k that is the closest to the initial point. Therefore, the algorithm converges to a

point
(
(H + ∆H)+, S

)
of intersection C0

⋂ C1, where S ∈ B
(

0,
√

2nk
)

is the closest to S∗ ∈ QPSKn×k.
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Let εt =

√
E
[
‖St − S∗‖2

F + ‖∆Ht − ∆H∗‖2
F

]
denote the error after iteration t was executed.

Then, the linearity of convergence means that limt→+∞
εt

εt−1
= α for some 0 < α < 1. It follows that

there exists c > 0 such that εt ≤ cε0αt, for any t. Therefore, for a given error threshold ε > 0, cε0αt ≤ ε

implies that the needed number of iterations to achieve the goal is t = d 1
ln(α)

(
ln
(

ε
ε0

)
− ln(c)

)
e, that

is t f = O
(∣∣∣ln( ε

ε0

)∣∣∣), where t f is the final number of iterations. The complexity of a single iteration

is O
(
max(m, n, k)3) due to matrix multiplications, matrix inversions, and pseudo-inversions. We con-

clude that the overall complexity of the proposed AP-HSIC algorithm is: O
(

max(m, n, k)3
∣∣∣ln( ε

ε0

)∣∣∣).

Since the only constraint on ∆H is that it should satisfy (H + ∆H)+Y = S, and ∆Ht satisfy this
constraint for any t, we may assume that ∆Ht f = ∆H∗, where t f is the final iteration. Therefore,

εt f =

√
E
[∥∥∥St f − S∗

∥∥∥2

F

]
, and using Theorem A4, we conclude that:

εt f ≤
n√

mSNR
. (36)

Or, in other words, if the given error threshold is ε, then n√
mSNR

≤ ε will achieve the goal
εt f ≤ ε. In this case, the needed SNR is:

SNR ≥ n2

mε2 . (37)

Note that the monotone convergence of the AP algorithm implies that St is between St−1
and S∗, and ∆Ht is between ∆Ht−1 and ∆H∗. It follows that ‖St − St−1‖F ≤ ‖St−1 − S∗‖F and
‖∆Ht − ∆Ht−1‖F ≤ ‖∆Ht−1 − ∆H∗‖F, from which we conclude that:

E
[
‖St − St−1‖2

F + ‖∆Ht − ∆Ht−1‖2
F

]
≤ E

[
‖St−1 − S∗‖2

F + ‖∆Ht−1 − ∆H∗‖2
F

]
= ε2

t−1.

Therefore, if ε2
t−1 ≤ ε2, then ε2

t ≤ ε2 and we can break the whole loop (Algorithm 1 line 7) since

the AP algorithm has converged. On the other hand, if E
[
‖St − St−1‖2

F + ‖∆Ht − ∆Ht−1‖2
F

]
> ε2,

then ε2
t−1 > ε2 means that the AP algorithm has not converged yet. This explains the condition in

Algorithm 1 line 7.
Since we may assume that m, n, k are bounded, therefore the size of the matrices, and specifically

max(m, n, k)3, enter the complexity of the proposed AP-HSIC algorithm as a constant multiplicative
factor. Thus, in this case, the complexity would be dominated by the relation between ε and ε0,
which causes the algorithm to undergo several iterations that are shown in the following simulations
to be decreasing as a function of the SNR at a rate that is proportional to n√

mSNR
, thus assessing

Theorem A4 and specifically (A6). In the simulations, we have fixed the error threshold to be ε = 10−9,
where each simulation period was fixed to 200 · Ts = 3.2 msec and where the symbol-time was fixed
to Ts = 16 µsec, which are custom values for the problem. In each simulation, the algorithm is shown
to have no more than eight iterations (in the range −5 ≤ SNR ≤ 25 dB), where the convergence was
achieved within the simulation period for all simulations.
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If, in other scenarios or under different assumptions, the algorithm does not converge within
the expected time period, it only means that more computational power is needed at the receiver side
because, as noted earlier, the algorithm always converges (in a linear rate of convergence). Finally,
note that the algorithm can work with other modulation orders, e.g., 16,32-QAM, since it only needs
the definition of a relatively small closed convex set that contains all the possible symbol matrices
(i.e., the modulation set) and a projection onto the modulation set that projects a general point onto
the closest point in the modulation set.

4. Simulations and Numerical Results
To prove the superiority of the proposed AP-HSIC method, we present (not only on the MATLAB

platform but also on the SIMULINK platform) simulations of a communication environment under
all of the assumptions discussed in Section 2. Our experiments are based on developing two different
simulations, based on the two architectures described in Section 2, and operating under the same
conditions and in the same challenging scenarios. We compared the performance of these two
simulations in graphical and numerical aspects. Each simulation presents a specific design consisting
of several stages in which different disturbance scenarios are run.

To simplify the architectures, the MGSTC transmitter encoder, common to both architectures, in-
cludes three OSTBC components (in the transmitter and in the general interference). Each component
is equipped with two transmission antennas, meaning that the transmitter and the interference each
have six transmission antennas (Nt = 6). On the receiver side, we receive the signal Y through six
receiving antennas (Nr = 6). In addition to the estimated MIMO channel matrix, the received signal is
streamed to the MGSTC decoding algorithm in the first architecture and into the AP-HSIC algorithm
in the second architecture. The output of the algorithms comprises three Maximal-Ratio-Combiners
(MRC) in each receiver and in both architectures for the final decoding, as can be seen in Figure 1.

The first simulation included an MGSTC transmitter based on an information generator block,
symbol modulation block, and OSTBC-encoder blocks. The blocking scheme was described in
Figure 1 and uses the SIMULINK blocks described in Figure 2. The MIMO channel is a quasi-
static Flat-Rayleigh-Fading, which can change the AWGN intensity parameter (variation). The
receiver blocks include an MGSTC decoding algorithm and MRC blocks. In addition, the scheme
includes an interference simulation block combining two kinds of interference—PBN and general
interference (same as the transmitter scheme we described)—each with a MIMO quasi-static Flat-
Rayleigh-Fading. Finally, we included a BER calculator to measure the practical effect derived from
the system’s performance.

Figure 2. Scheme blocks of the simulation of the MGSTC algorithm based on the
SIMULINK/MATLAB platform.

The second simulation was based on the same MGSTC transmitter and MIMO channel matrix
block with the same interference block. However, on the receiver side, instead of an MGSTC
decoding algorithm block, we changed the receiver front and strengthened the receiver ability with
our proposed AP-HSIC block, which operates in a parallel decoding communication mode. The
SIMULINK blocks of the second simulation are described in Figure 3.
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Figure 3. Scheme blocks of the simulation of the AP-HSIC based on the SIMULINK/MATLAB
platform.

We examined the architectures of the systems in terms of BER vs. SNR/SIR, by running
three interference scenarios separately—high-level AWGN, PBN, and general interference—under
three modulation orders—4-, 8-, and 16-PSK—at the transmitter (and at the general interference
transmitter).

The simulation performance parameters are based on [42]. As is well known, the systematic
BER of the MGSTC decoding algorithm is always the BER of the last iteration. The systematic BER
of the MGSTC decoding algorithm was compared with the average total BER of the AP-HSIC, as
illustrated in the following Figures.

4.1. MGSTC and AP-HSIC Simulations under High-Level AWGN
As described previously in this section, in the first scenario, we simulated the case of high-level

AWGN based on QPSK, 8–PSK, and 16–PSK modulations. In Figure 4a, we illustrate the performance
graph based on the QPSK modulation of BER vs. SNR. It should be noted that the performance
of the AP-HSIC (purple line) was significantly superior compared to that of the MGSTC decoding
algorithm (yellow line, which relates to its systematic performance). The superiority of the AP-HSIC
performance has also been proven when compared to the two iterations of the MGSTC decoding
algorithm (equivalent to a 2× 2 MIMO channel—the blue line; and equivalent to a 2× 4 MIMO
channel—the orange line) under the interference mentioned above. Note that the transmission power
in the 2× 2 and in the 2× 4 MGSTC decoding algorithm was higher than that in the 6× 6 AP-HSIC
scheme for the fairness of comparison considerations.

Probability of Error Performance

pe AP-HSIC-total

pe MGSTC Stild1

pe MGSTC Stild2

pe MGSTC Stild3 general

(a)

Probability of Error Performance

pe AP-HSIC total

pe MGSTC Stild1

pe MGSTC Stild2

pe MGSTC Stild3 general

(b)
Figure 4. BER vs. SNR of MGSTC and AP-HSIC. (a) Comparison under QPSK modulation in
the presence of high-level AWGN. (b) Comparison under 8-PSK modulation in the presence of
high-level AWGN.

The graphical analysis of BER vs. SNR consists of three main characteristics that quantify the
quality of the system’s performance. The first is the ability of the specific system to achieve the
lowest BER at a low SNR. The following illustrations show that the AP-HSIC achieved the lowest
BER in the low SNR range in all the test cases. The second is the difference in the transmission power
level, which must be invested to converge to a certain BER threshold. For example, comparing the
simulation of the MGSTC decoding algorithm to the AP-HSIC under high-leveled AWGN (Figure 4a)
at BER = 10−6 shows that the AP-HSIC achieved an advantage of ∼8 dB in terms of SNR. The
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third—and the most significant—difference is the level of diversity gain between the systems. It can
be seen from Figure 4a that the AP-HSIC achieved a much higher diversity gain. In the following
section, we mathematically prove this issue.

Another aspect relates to the cumulative BER in the serial MIMO-mode decoding process based
on the MGSTC decoding algorithm. As we described in Section 2, the re-evaluation accuracy of a
current iteration totally depends on the previous iteration. From all of the BER vs. SNR graphs, it
can be seen that the BER threshold obtained in the first iteration of the MGSTC decoding algorithm
(blue line) was accumulated and dragged. This caused a more significant BER threshold in the
second iteration (orange line), which became the worst in the third iteration (yellow line), causing a
destructive chain reaction leading to the deterioration of the modulation order and increasing the
transmission power (which was not even effective in the 8-PSK-black dashed line or 16-PSK-green
dashed line cases, as can be seen from Figure 5b). In contrast, due to the parallel decoding process that
the AP-HSIC is based on, the BER of the AP-HSIC in all the decoding processes remained consistent
and robust. In Figure 4b, we can see other experimental results under the same conditions as those
depicted in Figure 4a, but with a different modulation order (8-PSK) at the MGSTC transmitter. The
insights from the results of these simulations prove that the AP-HSIC had a better performance when
compared to all three MGSTC iterations.

Probability of Error Performance

pe AP-HSIC total

pe MGSTC Stild1

pe MGSTC Stild2

pe MGSTC Stild3 general

(a)

Probability of Error Performance

pe MGSTC QPSK Stild3 general

pe AP-HSIC total - QPSK

pe AP-HSIC total - 16-PSK

pe AP-HSIC total - 8-PSK

pe MGSTC 8-PSK Stild3 general

pe MGSTC 16-PSK Stild3 general

(b)
Figure 5. BER vs. SNR of MGSTC and AP-HSIC. (a) Comparison under 16-PSK in the presence of high-
leveled AWGN. (b) Comparisons using QPSK, 8-PSK,16-PSK, in the presence of high-level AWGN.

Moreover, we can see that, in noisy environments, the reduction in the MGSTC transmission
power in the spatial paths of the third sub-system is reflected in Figure 4b, which is the systematic
graph of the BER of the whole MGSTC system. Note that the system has a reciprocal relationship
between the diversity gain and the transmission power per symbol for every antenna in the transmitter
( ES

4 ). This weakness is reflected in the fact that, under the simulation with 8-PSK, the graph (Figure 4b)
does not converge to any value that can be considered as a threshold value for producing any
reliable information.

Figure 5a presents the simulation results with the 16-PSK modulation order under high-leveled
AWGN. In this situation, the performance graph of the MGSTC decoding algorithm was even worse
than in the previous scenarios. In addition to the graph of the third iteration (yellow dashed line), the
graph of the second iteration (orange line) also did not converge towards a BER production threshold
value. Thus, in this situation, only the first iteration of the MGSTC decoding algorithm (blue line)
produced effective links (i.e., effectively, the system became a 2× 2 MIMO); while in the AP-HSIC
(purple line), the full potential of the MIMO-parallel communication-mode (6× 6 MIMO) is reflected.
The illustrations summarizing all the BER vs. SNR graphs of the MGSTC decoding and the AP-HSIC
on QPSK, 8-PSK, and 16-PSK modulations in the presence of high-leveled AWGN are presented in
Figure 5b. This figure shows that the systems reinforced with the AP-HSIC are the only systems
to converge to low values of BER at a given rate of information and a given SNR, under the above
modulation orders, in this challenging scenario. In Figure 6a, under the QPSK case, we show the
number of internal iterations required by the AP-HSIC to converge. We can also see how the rate of
convergence depends on the SNR.
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(a)

Probability of Error Performance

pe AP-HSIC - Measured BER QPSK

pe AP-HSIC - Theoretical BER QPSK

(b)
Figure 6. Number of iterations of the AP-HSIC and measured-theoretical AP-HSIC QPSK BER:
(a) Number of iterations of the AP-HSIC vs. SNR under QPSK modulation; and (b) Comparisons
between the measured-theoretical AP-HSIC QPSK BER.

4.2. MGSTC Algorithm and AP-HSIC under PBN Simulation
As was presented at the beginning of this section, the PBN interference is characterized by a

noise energy concentration located in the bandwidth part of the received signal. In our simulations,
the ratio between the interference bandwidth and the received signal bandwidth was 0.5. In Figure 7a,
we present a performance comparison of the two considered architectures under PBN interference
and QPSK modulation order at the transmitter. Note that the performance of the AP-HSIC indicated
that for SNR below ≈4 dB, it achieved BER = 10−6, while the MGSTC decoding algorithm obtained
the same BER with SNR below≈14 dB, demonstrating the efficacy of≈10 dB in favor of the AP-HSIC.

Probability of Error Performance

pe AP-HSIC total

pe MGSTC Stilde1

pe MGSTC Stilde2

pe MGSTC Stilde3 general

(a)

Probability of Error Performance

pe AP-HSIC total

pe MGSTC Stilde1

pe MGSTC Stilde2

pe MGSTC Stilde3 general

(b)
Figure 7. BER vs. SNR of MGSTC and AP-HSIC. (a) Comparison under QPSK modulation in
the presence of PBN interference. (b) Comparison under QPSK modulation in the presence of
general interference.

4.3. MGSTC Algorithm and AP-HSIC under General Interference Scenarios
The most destructive of the three scenarios is the general interference one. From Figure 7b, we

can draw several important conclusions. The first is based on analyzing the system performance
graph in its negative and lower-positive regions of SIR. This analysis leads to the conclusion that, in
the case of the AP-HSIC, there was a decrease in the BER, depending on the SIR, compared to the
MGSTC decoding algorithm, while the graph of the MGSTC decoding algorithm remained almost
constant until a relatively high SIR. Another insight is the system’s ability to overcome an interference
while maintaining maximum energy efficiency. Thus, from Figure 7b, we can see that with the
reinforcement of the AP-HSIC-self-computational feedback—compared to methods based on spatial
selectivities, such as the MGSTC decoding algorithm—it is possible to save up to SIR ≈ 17 dB at
BER = 10−6.

5. Discussion, Conclusions, and Future Directions
It is undisputed that resolving interfering offset must be based on spatial selectivity, accuracy

in the channel estimation process, and channel sharing with creating feedback between the receiver
and the transmitter (and vice versa). However, to produce high-interference cancellation capabilities
and enable cognitive and collaborative radio communications, the completion of an intelligent and
efficient algorithm reinforcing the receiver is required. Such computational feedback can handle a
variety of interference scenarios, as reflected in the simulation results, and improve the decoding
process and receiver capabilities. The creation of advanced self-computational feedback capabilities
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on the receiver is critical for developing the expected MIMO modern wireless communications and
advancing the development of MIMO techniques. These technologies require the existence of Ultra-
Reliable Low-Latency Communication Coding (URLLC) [43], some of which must be able to respond
immediately, such as robots, autonomous tools, vehicles, and medical equipment. Moreover, some
technologies physically do not allow feedback between the receiver and the transmitter (e.g., satellite
communications), so self-computational feedback is critical when applying these technologies.

The simulation results presented herein demonstrated the required trade-off between energy
efficiency and computational capabilities. The results obtained showed that, in cases where there
is the requirement to increase the volume of information and transmit at a higher data rate (i.e.,
in situations where a higher modulation order is required), in addition to the system being under
different interference scenarios or jamming attacks, investing in transmission power only does not
necessarily lower the BER. Equally important, another insight in analyzing these results was found
in the analysis of negative or relatively low-positive SIR regions, where the AP-HSIC significantly
lowered the BER compared to the MGSTC technique.

In future research, we plan to expand the concept of computational feedback, deal with the
assumptions of selective channels in frequency and time–space, and deal with non-stationary channels
in the broadest sense.
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Appendix A. Theorems Proofs

Theorem A1. The set of full-rank matrices is dense in the set of all matrices, i.e., for any A ∈ Cm×n and any
ε > 0, there exists a full-rank matrix Aε such that ‖A− Aε‖F ≤ ε.

Proof. Assume w.l.o.g. that n ≤ m and that ` = rank(A) ≤ n. If ` = n, there is nothing to prove.
Otherwise, let an S.V.D. of A be given by A = UΣV∗, where U is an m×m unitary matrix, V is an n×n
unitary matrix, and Σ is an m× n rectangular diagonal matrix with entries σ1 ≥ σ2 ≥ . . . ≥ σ` > 0. Let
σk = ε√

n−` for k = `+ 1, . . . , n, let Σε be the m× n rectangular diagonal matrix with main-diagonal

entries σ1, . . . , σn in this order. Finally, let Aε = UΣεV∗. Then, rank(Aε) = n and

‖A− Aε‖2
F = ‖U(Σ− Σε)V∗‖2

F

= ‖Σ− Σε‖2
F

=
n

∑
k=`+1

σ2
k = ε2.

This completes the proof.

Theorem A2. Assume that the communication is made with some modulation not containing 0 and let
r0 be the radius of the modulation point with minimal radius. Assume that k ≥ max(m, n) and let S =[

S1 S2 · · · S` S`+1
]

be an OSTBC symbol matrix of signals, where k = n`+ q, each Sj is n× n,
chosen such that SjS∗j ≥ r2

0 In for j = 1, . . . , `, and S`+1 is an arbitrary n× q matrix. In addition, also assume
that S is known to the receiver. Let H0 = YS+. Then, H0 is a random matrix such that:

E
[
‖H − H0‖2

F

]
=

σ2

k
∥∥S+

∥∥2
F. (A1)

Moreover, since
∥∥S+

∥∥
F is bounded above, by taking k→ +∞, it follows that E

[
‖H − H0‖2

F

]
= 0, implying

that H0 = H A.S. holds.

Proof. Note that S has rank(S) = n. Therefore S+ = S∗(SS∗)−1 and RS = In − SS+ = 0. Now,
SS∗ = ∑`+1

j=1 SjS∗j ≥ ∑`
j=1 SjS∗j ≥ `r2

0 In, implying that (SS∗)−1 ≤ 1
`r2

0
In. Therefore, S+∗S+ =

(SS∗)−1SS∗(SS∗)−1 = (SS∗)−1 ≤ 1
`r2

0
In, from which we conclude that

∥∥S+
∥∥2

F = trace
(
S+∗S+

)
≤
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n
`r2

0
= n2

(k−q)r2
0
. Now, we decompose H = HSS+ + HRS = (Y− Z)S+ + HRS = H0 − ZS+ + HRS =

H0 − ZS+ and obtain ‖H − H0‖2
F =

∥∥−ZS+
∥∥2

F. Therefore,

E
[
‖H − H0‖2

F

]
= E

[∥∥−ZS+
∥∥2

F

]
= E

[
trace

(
S+∗Z∗ZS+)]

= trace
(
S+∗E[Z∗Z]S+) = trace

(
S+∗

(σ

k
Ik

)
trace

( σ

m
Im

)
S+
)

=
σ2

k
trace

(
S+∗S+) = σ2

k
trace

(
S+∗S+) = σ2

k
∥∥S+

∥∥2
F

≤ σ2n2

k(k− q)r2
0

.

Now, letting k→ +∞, we conclude that E
[
‖H − H0‖2

F

]
= 0, implying that H0 = H A.S. Note also

that H0 = H A.S. immediately implies that E[H] = E[H0].

Theorem A3. Let H0 be an m× n matrix as in Theorem A2, and further assume that m ≥ n and that E[H0]
is full-rank. Let S denote an unknown signal matrix sent by the transmitter, and let Y = HS + Z be the signal
measured by the receiver. Let S̃ = E[H0]

+Y = E[H0]
+(HS + Z) (note that S̃ is a random variable matrix,

while S is not random). Then,
E
[
S̃
]
= S. (A2)

Proof. Using the proof of Theorem A2, we have E[H] = E[H0]. Since m ≥ n and E[H0] is full-rank,
we obtain that E[H0]

+E[H0] = In. Now, we compute:

E
[
S̃
]
= E

[
E[H0]

+Y
]

= E[H0]
+E[HS + Z]

= E[H0]
+(E[H]S +E[Z])

= E[H0]
+(E[H]S + 0m×k)

= E[H0]
+E[H0]S = S.

Theorem A4. Let Y = HS + Z, where H can be the ideal channel matrix or H + ∆H, the resulting channel
matrix of the disrupted channel. Assume that the exact H (or the exact H + ∆H, respectively) is known to
the receiver and assume that H (or H + ∆H, respectively) is constant for the current session. Let S be the
true symbol matrix for the current session, and let S̃ = H+Y be the approximated symbol matrix. Then, the
distribution of S̃− S (given the constant matrix H or H + ∆H, respectively) is:

S̃− S ∼ CMN n×k

(
0n×k,

σ

m
H+H+∗,

σ

k
I
)

. (A3)

Moreover, the expectation of the square error satisfies:

E
[∥∥∥S̃− S

∥∥∥2

F

]
=
‖H‖2

F
∥∥H+

∥∥2
F

mSNR
=

P
∥∥H+

∥∥2
F

mSNR
. (A4)

Proof. Let us write Y = HS + Z as Y =
[

H Im
][ S

Z

]
. This implies that the minimal Frobenius-

norm solution for S and Z is given by:[
H Im

]+Y =

[
S
Z

]
, that is, S = H∗(Im + HH∗)−1Y, Z = (Im + HH∗)−1Y. The substitu-

tion of Y = (Im + HH∗)Z into S̃ = H+Y yields S̃ = H+(Im + HH∗)Z.
Now, H+ = limε→0+ H∗(εIm + HH∗)−1. Let S̃ε = H∗(εIm + HH∗)−1(Im + HH∗)Z. Then,

S̃ε = H∗(εIm + HH∗)−1(Im + HH∗)Z = H∗(εIm + HH∗)−1(εIm + HH∗ + (1− ε)Im)Z

= H∗Z + (1− ε)H∗(εIm + HH∗)−1Z = S + (1− ε)H∗(εIm + HH∗)−1Z,
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implying that: S̃ = limε→0+ S̃ε = S + H+Z. Assuming that Z ∼ CMN n×k
(
0n×k, σ

m Im, σ
k I
)
, we

conclude (A3). The latter implies that E
[∥∥∥S̃− S

∥∥∥2

F

]
= trace

(
σ
m H+H+∗)trace

(
σ
k Ik
)
=

= σ2

m
∥∥H+

∥∥2
F.

Let r = rank(H), and let H = ∑r
`=1 σ`u`v∗` be an SVD of H. Then, H+ = ∑r

`=1
1
σ`

v`u∗` . We also

have ‖H‖2
F = ∑r

`=1 σ2
` and

∥∥H+
∥∥2

F = ∑r
`=1

1
σ2
`

. Finally, as SNR = ρ =
‖H‖2

F
σ2 = P

σ2 , we conclude that

E
[∥∥∥S̃− S

∥∥∥2

F

]
=

P‖H+‖2
F

mSNR =
‖H‖2

F‖H+‖2
F

mSNR =
(∑r

`=1 σ2
` )
(

∑r
`=1

1
σ2
`

)
mSNR , proving (A4).

Note that, in full-capacity mode, i.e., σ1 = · · · = σ`, we have

E
[∥∥∥S̃− S

∥∥∥2

F

]
=

r2

mSNR
≤ n2

mSNR
, (A5)

where r = rank(H) ≤ n, since n ≤ m. Furthermore, under the assumption that H is full-rank, we
have r = rank(H) = n. In that case,

E
[∥∥∥S̃− S

∥∥∥2

F

]
=

n2

mSNR
. (A6)

Appendix B. Comparison between Theoretical Results and Simulations

Given Theorem A4, and specifically given (A6), let us relate the expected number of defected

bits to the expected decoding error

√
E
[∥∥∥S̃− S

∥∥∥2

F

]
as:

γ
n√

mSNR
, (A7)

where γ is an assumed universal correction factor that depends on the modulation only.
Then,

BER =
γ n√

mSNR
2nk

=
γ

2k
√

mSNR
. (A8)

Therefore, for the MGSTC simulated system, where k = 402 symbols, we have:

BERMGSTC =
γ

2 · 402 ·
√

2 · SNR
+

γ

2 · 402 ·
√

4 · SNR
2

+
γ

2 · 402 ·
√

6 · SNR
4

=
γ

804
√

SNR
·
(√

2 +
√

2/3
)

.
(A9)

For the AP-HSIC, for fairness of comparison, we took its SNR per-antenna to be 2(1+1/2+1/4)
6 SNR,

relative to the MGSTC-decoding algorithm. Therefore, we have:

BERPA−HSIC =
γ

2 · 402 ·
√

6 · 7SNR
12

=
γ

804
√

SNR
·
√

2
7

(A10)

Taking the ratio, we obtain the following:

BERPA−HSIC
BERMGSTC

=

√
2
7√

2 +
√

2/3
≈ 0.2396. (A11)

To theoretically establish the simulation results, two approaches are represented, based on
Formula (A8). The first approach is as follows. Taking the logarithm of (A8), we obtain:

10 log10(BER) = 10 log10(γ) + 10 log10(n)− 5 log10(m)− 5 log10(SNR)

∼SNR→∞ 10 log10(γ)− 5 log10(SNR).
(A12)
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From this, we can conclude that

10 log10

(
BERPA−HSIC
BERMGSTC

)
∼SNR→∞ −5 log10(SNRPA−HSIC) + 5 log10(SNRMGSTC), (A13)

which, in view of (A7), should give us:

− 5 log10(SNRPA−HSIC) + 5 log10(SNRMGSTC) ≈ 10 log10(0.2396) ≈ −6.2051 dB. (A14)

Indeed, looking at Figure 4a at BER = 1 · 10−5, we can see that the difference between the
SNR values was approximately 6 dB. The second approach is based on the following stages. First,
we measure several different samples, with the AP-HSIC simulator (for the high-leveled AWGN,

QPSK modulation order scenario), of
√
E
[∥∥S̃− S

∥∥2
F

]
and the number of incorrect bits per-frame. The

sampled values of
√
E
[∥∥S̃− S

∥∥2
F

]
are defined as a vector x, and the number of incorrect bits per-

frame as another vector y. In the second stage, we perform the calculation for the assumed universal
correction factor γ, as γ =

2nk ∑i xiyi

∑i x2
i

, to minimize the mean-square-error of the linear approximation

for it. In our calculation, we found γQPSK = 2.53 · 10−3. The last stage involves calculating the

theoretical ith BER as BERi = γQPSK
xi

2nk . In our simulations, we had
√
E
[∥∥S̃− S

∥∥2
F

]
= 19 under

SNR ≈ 10.5 dB. Thus, with γQPSK = 2.53 · 10−3, the theoretical BER was≈ 1 · 10−5, which is identical
to the BER value shown in Figure 4a. A comparison between the measured AP-HSIC QPSK BER and
the theoretical AP-HSIC QPSK BER is in Figure 4b.

Under the same simulation conditions but with an 8-PSK modulation order, the same theoretical
calculation of the BER was carried out. In this case, we found γ8−PSK = 1.2, and the theoretical BER
under SNR ≈ 10.5 dB was 1.04 · 10−4. In comparison, the BER under the value of SNR ≈ 10.5 dB in
Figure 4b was ≈1 · 10−4.

For the 16-PSK case, we again carried out the same calculation processes and found γ16−PSK = 6.1,
while the theoretical BER under SNR ≈ 10.5 dB was 8.3 · 10−3. The BER under the value of
SNR ≈ 10.5 dB in Figure 5a was ≈9 · 10−3.

Table A1. Units and parameters used in the conducted simulations.

Symbol Parameter Value/Description

ci
Number of OSTBC component encoders in the
MGSTC transmitter i = 1, 2, 3

ni
Number of transmission antennas for every
OSTBC component

n1 = 2, n2 = 2
n3 = 2

Nt
Total number of transmission antennas in the
MGSTC transmitter 6

Nr
Sum of the total receiver antennas in the
receiver 6

Sci

=

[
~sci,1
~sci,2

] Row vectors of block transmission symbol
matrix ~sci,1, ~sci,2 i = 1, 2, 3

~sci,1
Transmission Alamouti coding operation in the
first antenna of the OSTBC encoder

t→ s1(2j− 1) = a
t + Ts → s1(2j) = −b∗

j = 1, . . . , 201

~sci,2
Transmission Alamouti coding operation in the
second antenna of the OSTBC encoder

t→ s2(2j− 1) = b
t + Ts → s2(2j) = a∗

j = 1, . . . , 201

TSci Sample time per frame 16 · 10−6 (s)

Rb Transmission bit rate 174.825 · 10−6 (bps)

HTR
Channel matrix response between the
transmitter and the receiver [6× 6]
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Table A2. Units and parameters used in the conducted simulations.

Symbol Parameter Value/Description

HJR
Channel matrix response between the general
interference/jammer to the receiver [6× 6]

Nj
Sum of the total transmission antennas in the
MGSTC general interference 6

SJ The OSTBC matrix of the interferer

Jci

=

[
~jci,1
~jci,2

] Row vectors of block transmission of the
general interference/jammer

~jci,1, ~jci,2 i = 1, 2, 3

~jci,1
Transmission Alamouti coding operation in the
first antenna of the OSTBC encoder

t→ j1(2j− 1) = a
t + Ts → j1(2j) = −b∗

j = 1, . . . , 201

~jci,2
Transmission Alamouti coding operation in the
second antenna of the OSTBC encoder

t→ j2(2j− 1) = b
t + Ts → j2(2j) = a∗

j = 1, . . . , 201

Modulation 4-, 8-, or 16-PSK

SNR Signal-to-Noise Ratio 0–25 dB

SIR Signal-to-Interference Ratio −7–25 dB

Es Energy-to-symbol 1 (Watt)

S The OSTBC matrix of the transmitter
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