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Abstract: In the Mallat algorithm, calculations are performed in the time domain. To speed up the
signal conversion at each level, the wavelet coefficients are sequentially halved. This paper presents
an algorithm for increasing the speed of multiscale signal analysis using fast Fourier transform. In
this algorithm, calculations are performed in the frequency domain, which is why the authors call
this algorithm multiscale analysis in the frequency domain. For each level of decomposition, the
wavelet coefficients are determined from the signal and can be calculated in parallel, which reduces
the conversion time. In addition, the zoom factor can be less than two. The Mallat algorithm uses
non-symmetric wavelets, and to increase the accuracy of the reconstruction, large-order wavelets are
obtained, which increases the transformation time. On the contrary, in our algorithm, depending on
the sample length, the wavelets are symmetric and the time of the inverse wavelet transform can be
faster by 6–7 orders of magnitude compared to the direct numerical calculation of the convolution.
At the same time, the quality of analysis and the accuracy of signal reconstruction increase because
the wavelet transform is strictly orthogonal.

Keywords: wavelet transform; Fourier transform; algorithm; decomposition; reconstruction;
multiscale analysis; Mallat algorithm; frequency response; filter

1. Introduction

Using fast Fourier transform (FFT), it is possible to develop fast algorithms for contin-
uous wavelet transform (WT). Using these algorithms, it is possible to develop a method
of multiple-scale signal analysis (MSA) in the frequency domain that is different from
the one developed earlier. Presently, for MSA signals, the Mallat algorithm [1] is used,
which calculates the discrete wavelet transform faster due to the decimation of the wavelet
coefficients. MSA is an m-step discrete WT.

The Mallat algorithm has some drawbacks:
1. The scaling function needs to be designed.
2. The multiplicity of the analysis is fixed and cannot be changed.
3. It is impossible to get antisymmetric or symmetric wavelets.
4. The amplitude–frequency characteristics of the wavelets are uneven.
5. The sample length decreases by a factor of two for subsequent decomposition levels.

As a result, the transition characteristic becomes flatter.
6. Only decomposition separable by rows and columns is used.
7. Large-order wavelets take a long time to compute.
To address these shortcomings, it is important to use MSA in the frequency domain.

The advantage of the algorithm in the frequency domain is in the method of calculation.
In the Mallat algorithm, it is impossible to calculate the wavelet coefficients in parallel [2],
but in the frequency domain, it is possible. At the hardware level, to reduce the MSA
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time, this can be implemented by connecting FFT devices in parallel. For example, if the
signal is decomposed into 10 levels (10 FFT devices), then with parallel computing, the
calculation speed increases by 10 times. Field programmable gate array (FPGA) is well
suited for solving this problem. To calculate the MSA in the frequency domain, the formula
of continuous WT signals is used:

W(a, b) =
1√
a

∞∫
−∞

S(t)Ψ
(

t− b
a

)
dt. (1)

For data analysis, fast wavelet transform (FWT) is widely used. In [3], the authors intro-
duced an open-source algorithm to calculate the past continuous wavelet transform (fCWT).
The parallel environment of fCWT separated scale-independent and scale-dependent opera-
tions, while using optimized FFT that exploited downsampled wavelets. fCWT was shown
to have the accuracy of CWT, to have 100 times higher spectral resolution than algorithms
equal in speed, and to be 122 times and 34 times faster, respectively, than the reference and
the fastest state-of-the-art implementations. The authors [3] also demonstrated its real-time
performance, as confirmed by the real-time analysis ratio. According to the authors [3],
fCWT provides an improved balance between speed and accuracy, which enables real-time,
wide-band, high-quality, time–frequency analysis of non-stationary noisy signals. In [4],
the authors proposed a multispectral image compression and encryption algorithm that
combines chaos, WT, and KL transform for solving the security problem of multispectral
image compression and transmission. In [5], a wavelet genetic (WAVEGEN) algorithm
was developed to edit fatigue loading spectra using wavelet analysis. In this process, an
optimization protocol using a genetic algorithm was included to automatically select the
best wavelet editing parameters. In [6], the authors developed a novel shift variance theo-
rem of the FWT suitable for the multiresolution analysis of streaming univariate datasets,
using compactly supported Daubechies wavelets. The theorem was used to reduce the
computational complexity of FWT and also to drastically reduce the number of wavelet
coefficients to be estimated in forecasting the discrete WT one step ahead. For this reason,
in [6], any FWT performed using the found shift variance properties was named reduced
FWT. In [7], a wavelet-based dynamic-state feedback control strategy was proposed. The
feedback gains were obtained through a linear quadratic regulator formulation, with cost
weights adjusted according to suitable performance metrics. In [8], the authors proposed
a new method based on a B-spline expansion of both the signal and the analysis wavelet
and that allowed CWT computation at arbitrary scales. Its complexity was O(N), where
N represents the size of the input signal; in other words, the cost is independent of the
scale factor. A fast, continuous WT was developed in [9] for use with continuous mother
wavelets and sampled datasets. The method differs in that, in [9], the wavelet was sampled
in the frequency domain. In [10], the frequency response of the presented wavelets was
uneven. In other words, for high and low frequencies, the gain differed by 2–3 times. With
such a difference, it is impossible to reconstruct the signal or to perform a multiple-scale
analysis of the signal. In [11], the authors presented the possibility of estimating surface
roughness with computer vision using a wavelet transform in the frequency domain.

It takes a lot of time to calculate continuous WT by direct numerical integration for
large amounts of information. Even when modern computers with a frequency of several
GHz are used, it takes hundreds of seconds to decompose an image 512 × 512 pixels in
size. Considering that it is necessary to produce WT for three colors, a crucial point is the
implementation of fast algorithms for converting and reconstructing signals. Therefore,
the numerical calculation of a continuous WT is performed in the frequency domain. The
numerical calculation in the frequency domain is studied in articles [12–16]. In [12], the
authors considered methods for constructing orthogonal wavelets in the frequency domain
and synthesizing digital filters with a straight-angle frequency response by the method
of constructing wavelets. The FFT, the Proni transform, and the wavelet transform were
considered in [13]. The authors [13] considered forward and reverse WT algorithms, as
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well as their application for processing one-dimensional and two-dimensional signals.
In [14], the application of orthogonal wavelets for image processing was considered. In [15],
WT was considered in the Excel environment using the VBA programming language.
Methods of constructing orthogonal wavelets and their application for image filtering were
considered in [16]. The article suggested methods for the multiscale analysis of signals
not in the time domain (unlike the Mallat algorithm), which allow image decomposition,
reconstruction, and filtering. The design of wavelets with a rectangular frequency response
(FR) in the frequency domain allows one to reduce the time of continuous WT by several
orders of magnitude and to increase the resolution of the wavelets and the accuracy of
the analysis.

2. Mallat Algorithm

In his algorithm, Mallat [2] used the ideas of subband (pyramidal) encoding of the
speech signal, which is equivalent to passing a signal through high-pass and low-pass
filters (HP and LP filters), for example, quadrature mirror filters. The simplest way of WP is
to use the simplest scaling function and the Haar wavelet, when the quadrature mirror filter
is obtained by summing and the difference of neighboring signal samples. Summation is
equivalent to passing through an LP filter, and the difference is an HP filter. More complex
wavelets, such as the nth-order Daubechies wavelets, are used to calculate weighted sums
and weighted differences; that is, the convolution of the signal with the impulse response
of HP and LP filters, and detailed coefficients and approximation coefficients are obtained
after the decimation of each second sample. Due to decimation, the number of counts
decreases. As per the theory of digital filters, the smaller the number of samples, the wider
the transient response of filters. After the first decomposition, all calculations are performed
with detailing coefficients and approximation coefficients iteratively. The inverse WT is
calculated in reverse order with coefficient interpolation.

To construct large-order wavelets, it is necessary to spend more time, although such
wavelets are more symmetrical and thus the signal is reconstructed more accurately later.
The decomposition of the signal for a discrete WT is performed according to the follow-
ing formula:

x(t) = ∑
k

Cm,kϕm,k(t) + ∑
m,k

Dm,kΨm,k(t),

where Ψm,k(t) denotes the wavelet, ϕm,k(t) is the scaling function, and Dm,k and Cm,k are
detailing and approximating coefficients, respectively.

As a result of the conversion, the signal is decomposed into different frequency
domains, schematically shown in Figure 1. With an increase in the scale factor, each region
is two times narrower than the previous frequency domain. Since the FRs of the filters are
not rectangular, the spectra overlap.
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3. Calculation of Direct Continuous WT Signals Using FFT

Continuous WT is better than discrete WT, but direct convolution calculation se-
quences of continuous WT sequences according to Formula (1) take a long time. Direct
numerical calculation of WT requires N2 multiplication operations. In mathematics, the
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designation O
(

N2) is accepted. To increase the speed, in this paper, we developed algo-
rithms for direct continuous fast WT in the frequency domain using FFT. The number of
computing operations of WT using FFT grows proportionally to N log 2N(O(N log 2N)).
Using the harmonics of the signal and the wavelet, instead of calculating the convolution
directly, we calculated the product of harmonics and obtained the wavelet spectrum by
inverse Fourier transform. Such a transition to the frequency domain makes it possible to
considerably increase the time of the wavelet transform. To obtain the wavelet spectrum
of the signal by inverse Fourier transform of the complex conjugate spectra, the Fourier
harmonics of the signal and the wavelet must be identified and multiplied.

The steps for the decomposition of the signal S(t) according to Formula (1) using the
FFT are as follows:

1. Determine the harmonics a1(n) and b1(n) of the signal S(k):

a1(n) =
1
N

N−1

∑
k=0

S(k) cos
(

2πnk
N

)
; (2)

b1(n) =
1
N

N−1

∑
k=0

S(k) sin
(

2πnk
N

)
. (3)

2. Determine the harmonics a2(n) and b2(n) of the wavelet Ψ(k):

a2(n) =
1
N

N−1

∑
k=0

Ψ(k) cos
(

2πnk
N

)
; (4)

b2(n) =
1
N

N−1

∑
k=0

Ψ(k) sin
(

2πnk
N

)
. (5)

3. Multiply the harmonics:

c1(n) = a1(n)·a2(n) + b1(n)·b2(n); (6)

c2(n) = b1(n)·a2(n)− a1(n)·b2(n). (7)

If the wavelets are even, then b2(n) = 0 and

c1(n) = a1(n)·a2(n) (8)

c2(n) = b1(n)·a2(n) (9)

If the wavelets are odd, then a2(n) = 0 and

c1(n) = b1(n)·b2(n); (10)

c2(n) = −a1(n)·b2(n). (11)

The wavelet spectrum is determined by the formula

W(a, b) =
N−1

∑
k=0

(c1(k) + ic2(k))· exp
(

i
2πnk

N

)
(12)

4. The Principle and Method of Signal Reconstruction Using FFT

The inverse continuous WT:

S(t) = C−1
Ψ

∫ ∞

0

∞∫
−∞

Ψ
(

t− b
a

)
W(a, b)

dadb
a3+k (13)
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where CΨ is the normalizing coefficient and CΨ =
∫ ∞
−∞|FΨ(ω)|2·ω−1dω < ∞, where

FΨ(ω) is the Fourier spectrum of the basis function, ω stands for the cyclic frequency, and
parameter k indicates the degree of the scale multiplier.

Finding the convolution of the inverse WT by direct integration is inefficient. Therefore,
in this paper, we developed a method for the inverse continuous fast WT in the frequency
domain using FFT. The coefficient CΨ is calculated using Parseval’s theorem:∫

S(t)S∗(t)dt = C−1
x

W(a, b)W∗(a, b)
dadb

a2 (14)

In practice, it is easier to calculate C by comparing the maxima of the original and
reconstructed signals. The coefficient C is substituted into the formula:

S(t) = C−1
∫ ∞

0

∞∫
−∞

Ψ
(

t− b
a

)
W(a, b)

dadb
a2 (15)

Formulas (14) and (15) are used to calculate the inverse WT.
The following is the method for signal reconstruction according to Formula (15) using

the FFT:
1. Calculate the harmonics d1(n) of the W(a, b):

d1(n) =
1
N

N−1

∑
k=0

W(a, k) cos
(

2πnk
N

)
. (16)

2. Calculate the harmonics e1(n) of the W(a, b):

e1(n) =
1
N

N−1

∑
k=0

W(a, k) sin
(

2πnk
N

)
. (17)

3. Calculate the harmonics of the d2(n) of wavelet ψ(t):

d2(n) =
1
N

N−1

∑
k=0

Ψ(k) cos
(

2πnk
N

)
. (18)

4. Calculate the harmonics of the e2(n) of wavelet ψ(t):

e2(n) =
1
N

N−1

∑
k=0

Ψ(k) sin
(

2πnk
N

)
. (19)

5. Multiply the harmonics:

f1(n) = d1(n)·d2(n) + e1(n)·e2(n); (20)

f2(n) = e1(n)·d2(n)− d1(n)·e2(n). (21)

For even wavelets, the series is made up of some cosines, and for odd ones, it consists
of some sines. For even wavelets, e2(n) = 0 and

f1(n) = d1(n)·d2(n); (22)

f2(n) = e1(n)·d2(n). (23)

For odd wavelets, d2(n) = 0 and

f1(n) = e1(n)·e2(n); (24)
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f2(n) = −d1(n)·e2(n). (25)

6. Calculate the function S′m(n) for an even wavelet. As per Formula (22), Formula (23)
is the function S′m(n) for an even wavelet:

S′m(n) =
N−1

∑
k=0

( f1(k) + i f2(k))· exp
(

i
2πnk

N

)
. (26)

7. Calculate the function S′m(n) for an odd wavelet. As per Formula (24), Formula (25)
is the function S′m(n) for an odd wavelet:

S′m(n) =
N−1

∑
k=0

( f1(k) + i f2(k))· exp
(

i
2πnk

N

)
. (27)

In this formula, the symbol ′ does not mean differentiation. In Formulas (26) and (27),
f1(k) and f2(k) are different because of Formulas (22)–(25).

8. Determine coefficient C using Formula (14).
9. Determine S(n) according to the formula

S(n) = C
m

∑
j=0

S′j(n) (28)

In Formula (28), all levels of S′m(n) are summed up.

5. Using the Developed Methods of Forward and Inverse WT for MSA

In MSA using discrete WT, the Hilbert space L2(R) is represented as a sequence of
nested closed subspaces Wm. Many references, for example, [17–21], describe the use of
MSA on discrete WT. The union of these subspaces form a space L2(R) ∪Wm = L2(R).
Subspaces are nested Wm ⊂Wm+1 .

In the case of multiscale analysis of signals using the forward and inverse WT methods,
we use levels ranging from m to 0 sequentially. We first use the m level; then the sum of m
and m− 1 levels; then the sum of m, m− 1, and m− 2 levels; and so on. Unlike discrete
WT, the numbering of subspaces is reversed. Subspaces are nested in reverse:

Wm ⊂ Wm−1 . . . Wo.

L2(R) is the union of subspaces. As m decreases, the subspaces expand. At the
maximum value of m, the signal is roughly approximated. The depth of decomposition
(decomposition) of the signal is called the maximum value of m. The accuracy of the
approximation increases with decreasing values of m. The signal can be represented as a
set of successive approximations. We obtain the functions Sm(t).

Sm(t) = S′m(t),

Sm−1(t) = Sm(t) + S′m−1(t), etc.

These functions can be easily obtained programmatically. Table 1 presents a listing of
the program for MSA in Visual Basic for Applications (VBA).

In the program, summation starts from m + 1 to 1, i.e., 11 levels are used. Even in
Formula (28), 11 levels are used, but indexing starts from 0 and ends with the number m.
In the program, c(k) plays the role of Sm(t) and x(k) plays the role of S′m−1(t). It is also
possible to say that S(n) = CS0(n).

Figure 2 shows some of the functions of Sm(t).
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Table 1. Listing of the program for MSA in VBA.

Sub St114()
Dim m, k, h As Integer
Dim n As Long
Dim x(0 To 7000), c(0 To 7000) As Double
With Worksheets(“sheet2”)
m = 10
n = 2ˆm ‘Number of counts
For k = 1 To n
c(k) = 0
Next k
For h = m + 1 To 1 Step -1 ‘The cycle of adding levels
For k = 1 To n ‘The cycle of calculating all counts
x(k) = .Cells(k, h + 20).Value
c(k) = c(k) + x(k)
.Cells(k, h).Value = c(k) ‘Result in cells
Next k
Next h
End With
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Figure 2. Multiple-scale analysis of the function: (a) the signal obtained by adding all the decomposi-
tion levels, (b) the approximation of the signal obtained by adding 10-2 levels, (c) the approximation
of the signal obtained by adding 10-4 levels, (d) the approximation of the signal obtained by adding
10-5 levels, and (e) the roughest approximation of the signal obtained by adding only 10 levels.
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Figure 2 shows that the more the functions with a lower value of m, the more accurate
the approximation. For the original signal with the reconstructed signal, the Pearson
correlation coefficient is 0.9992 when constructing wavelets based on Gaussian functions.
In this case, the number of counts is 1024. As the number of counts decreases, the correlation
coefficient decreases slightly because the uneven frequency response is more affected, as
shown in Figure 1.

If for the Mallat algorithm, the MSA of signals can be performed with a coefficient of
variation of the scale factor of 2 degrees of an integer m, then for the developed algorithms
in the frequency domain, the multiplicity of analysis can be less than 2.

To investigate the fine details of the signal, it is possible to plot the function
S′m(n) or their sums in reverse order. By adopting the designation S′′0 (t) = S′0(t),
S′′m+1(t) = S′′m(t) + S′m+1(t), etc., it is possible to consider these graphs. Figure 3 shows
approximately a tenth of the S′′2 (t) function.
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We obtained the MSA of images similarly. To do this, all pixels of three colors were
read from the image by progressive horizontal and vertical scanning; that is, the image was
converted into a one-dimensional signal. Each color was decomposed into different levels.
After that, the signal was converted back from one-dimensional to two-dimensional. Then,
the pixels (N, M) of the horizontal scan were added to the pixels (N, M) of the vertical scan
for each level and color. That is, a pixel with coordinates (1, 1) of the horizontal sweep was
folded with a pixel with coordinates (1, 1) of the vertical sweep, a pixel with coordinates
(1, 2) of the horizontal sweep was folded with a pixel with coordinates (1, 2), and so on.

6. Construction of Wavelets in the Frequency Domain

According to the authors of [22], it is impossible to reconstruct the signal using contin-
uous WT and the transformation is non-orthogonal. However, in this study, after numerous
studies, we managed to construct orthogonal antisymmetric and symmetric wavelets in
the frequency domain. We also managed to reduce the conversion time compared to the
Mallat algorithm and reconstruct the signal more accurately than in the time domain. Some
researchers have presented orthogonal polynomials with high-energy compaction, for
example, in [23]. The FR of these polynomials is similar to that of wavelets based on Gauss
functions. However, in this study, we worked with wavelets with a rectangular FR.

The theory of digital filters and the construction of wavelets are presented from
different points of view. In the frequency domain, there is no difference between the pulse
characteristics of filters and wavelets. Low-pass filters are equivalent to wavelets with the
largest scale factor, bandpass filters are equivalent to wavelets with an average scale factor,
and high-pass filters are equivalent to wavelets with the smallest scale factor. The synthesis
of digital filters with a rectangular FR and a linear-phase response is arguably the same
as the construction of orthogonal antisymmetric and symmetric wavelets. The theory of
digital filters based on the Paley–Wiener criterion proves that it is not possible to obtain
filters with a rectangular FR. In addition, a rectangular FR leads to the Gibbs phenomenon.
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However, in this study, we found that it is possible to avoid the Gibbs phenomenon and
obtain filters and wavelets with a rectangular FR.

For accurate reconstruction of the signal, the frequency regions (spectra) of the
wavelets should not overlap each other, as shown in Figure 1. They should be posi-
tioned as in Figure 4. This arrangement of the spectra indicates that the wavelets are
strictly orthogonal.
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The scientific literature on WT states that discrete wavelets are orthogonal, which is
not quite true because the frequency characteristics of all such wavelets overlap (Figure 1).
We can say that all wavelets designed for discrete WT are not strictly orthogonal. This
and a nonlinear frequency response distort the reconstructed signal. Using the method
of calculating continuous WT in the time domain, it is possible to produce MSA with a
multiplicity of less than two, which allows us to increase the number of decomposition
levels and examine the signal in more detail. During the research, strictly orthogonal
symmetric and antisymmetric wavelets were constructed. The frequency characteristics
did not overlap (Figure 4). Studies show that the smaller the overlap, the smaller the scalar
product of wavelets with different scale coefficients. If the scalar product tends to zero,
then the wavelets are more orthogonal.

7. Ways to Increase the Speed of Continuous WT

To reduce the calculation time, it is necessary to make some changes in the algorithms
of forward and inverse WT in the frequency domain.

The first way is to obtain wavelets in the frequency domain so as not to find harmonics
a2(n), b2(n) by the second stage.

The second way is to use the parity or odd property of wavelets, that is, symmetry
and antisymmetry. For even wavelets, harmonics are made up of some cosines, and for
odd ones, they are made up of some sines.

The third way is to calculate the inverse Fourier transforms from the complex conjugate
spectrum for small-scale coefficients through a smaller interval M and for large-scale
coefficients through a larger interval. Table 2 presents the listing of the program in VBA.

Table 2. Listing of the program in VBA.

g = 1
For a11 = 1 To m Step 1 ‘Number of levels
For i = 1 To n
x(i − 1) = xx(a11, i − 1)
Next i
e4 = 2 ˆ (a11 − 3) ‘Choose e4
‘ e4 − interval
If e4 <= 1 Then
e4 = 2
End If
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Table 2. Cont.

‘Call OBPF2(m, g) Inverse FFT
x(0) = 0.5 * x(0)
x(nv) = 0.5 * x(nv)
For l = m To 1 Step -1
le = 2 ˆ l
le1 = le/2
For i = 0 To n − 1 Step le
ip = i + le1
t1 = x(i)
t3 = x(ip)
x(i) = t1 + t3
x(ip) = t1 − t3
Next i
If (l > 2) Then
le2 = le/4
k = n/le1
ki = 0
kd = nv
For j = 1 To le2 − 1
ki = ki + k
kd = kd − k
u1 = c(ki)
u2 = c(kd)
ir = le1 − j
For i = j To (n − 1)/e4 Step le ‘The number of cycles is reduced
ip = i + le1
ia = ir + le1
t1 = x(i) + x(ir)
t2 = x(ia) − x(ip)
t3 = x(i) − x(ir)
t4 = x(ia) + x(ip)
x(i) = t1
x(ir) = t2
x(ip) = t3 * u1 + t4 * u2
x(ia) = t4 * u1 − t3 * u2
ir = ir + le
Next i
Next j
End If
Next l
For i = 0 To n − 1
j = h(i)
If (i< j) Then
t1 = x(i)
x(i) = x(j)
x(j) = t1
End If
Next i
For i = 1 To n
If ((i − 1)/e4 − Fix((i − 1)/e4) = 0) Then ‘Is selected only after a certain interval
.Cells(i, g).Value = .Cells(i, g).Value
Else
.Cells(i, g).Value = 0
End If
Next i
g = g + 1
Next a11

The fourth method is to calculate the wavelet spectrum for one color, since the wavelet
coefficients of the three primary colors of the additive RGB model have the same value. This
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can be used for compression because for small wavelet coefficients, threefold compression
is obtained without encoding. In the human eye, 130 million rods are responsible for
twilight vision and 7 million cones are responsible for color vision. Since colors appear
only at large scales, the cones are located farther apart than the rods and the intensity of
the wavelet coefficients for small-scale coefficients is less than that for large ones, which
means that the radiation sources should be more sensitive for small scales. The sensitivity
of the rods should be higher than that of the cones. Indeed, the rods sense a weaker light
than the cones.

The fifth method is to calculate wavelets in the frequency domain, which excludes the
defining of the normalizing coefficient.

The sixth way is to use the fourth way in reconstruction so that the wavelet coefficients
of the same color can be used for all colors in the inverse WT algorithm and multiscale
signal analysis.

The seventh way is to not calculate the Fourier transform for the largest-scale factor
since it is enough to calculate the average value of the signal.

The eighth way is to obtain wavelets so that it is possible to reconstruct the signal with
the order of computational operations O(N). Thus, to sample a signal from 32,768 samples,
it is possible to reduce the signal reconstruction time by 1000 times compared with the
algorithm using FFT. The reconstruction time compared to the direct numerical integration
of convolution is more than 10,000,000 times. In this study, the results of the WT signals were
compared for direct calculation and calculation using FFT. The calculation time by direct
numerical integration and the calculation of WT using FFT were compared in Visual C++.
To measure small intervals in Visual C++, a real-time tag counter was used, access to which
was implemented using the RDTSC (ReaD from Time Stamp Counter) assembly command.
The TSC (Time Stamp Counter) is a 64-bit register whose contents are incremented with
each clock cycle of the processor core. Each time, a hardware reset (RESET signal) starts
counting in the TSC counter from zero. The bit depth of the register provides a countdown
without overflow for hundreds of years. The processor clock frequency determines the
resolution of the counter. The minimum time interval between two measurements is equal
to the inverse value of the clock frequency. For a used processor with a clock frequency of
2.54 GHz, the resolution is 0.39 ns. The clock frequency is determined using a real-time TSC
counter. The RDTSC command returns the number of clock cycles since the processor was
started, placing the result in a pair of general-purpose registers EDX:EAX. To measure the
calculation time of the WT, a program was written using the built-in C++ assembler. The
counter was graded using the standard OS function Sleep. The Sleep function suspends
the execution of the stream for 1000 ms if the function parameter is 1000. The TSC counter
readings are read before calling the Sleep function and after returning from it. The difference
of these readings is stored in the t_time variable. The number of machine clock cycles that
have passed in 1 s of t_time are divided by 1,000,000 and stored in the n_count coefficient,
which determines the number of clock cycles in 1 microsecond. Since the t_time variable is
not zero even in the absence of the Sleep function, it is necessary to make corrections to the
t_time variable. After calculating the calibration coefficient n_count, the WT is profiled as
follows: The TSC counter readings are read before calculating the WT. After the conversion
is completed, they are stored in the t_time variable. The resulting t_time value is divided
by the calibration coefficient n_count and stored in a variable that shows the execution time
of the WT in microseconds.

Such an increase in the calculation speed of WT can be explained by the fact that when
calculating in the frequency domain, the computed wavelets are not only strictly orthogonal
but also normalized, that is, orthonormalized. In addition, the wavelets have a rectangular
FR, which cannot be obtained in the time domain due to the Gibbs phenomenon. Figure 5
shows one of the waveforms constructed in the frequency domain. Figure 6 shows the
FR of this wavelet in decibels. In the case of a delay, the attenuation is about −300 dB. It
can be argued that such wavelets are strictly orthogonal. Figure 7 shows the FR of this
wavelet. There are no ripples in the bandwidth on the FR, no transition strip, and no Gibbs
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phenomenon. Figure 8 shows the FR of high-frequency filters synthesized in the time and
frequency domains (in dB). The FR of a filter synthesized in the time domain is represented
up to a frequency of 128 units, and the FR of a filter not synthesized in the time domain
is represented from 129 to 256. In Figure 8, it is possible to see how the FR of the filters is
considerably different.
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The parameters of the impulse response of the filter are determined as follows:

bN+k =
1

N + 1

N

∑
j= N+1

2

cos
(

πk(j + 0.5)
N + 1

)
. (29)

Several examples for multiscale image analysis and image reconstructions can be
found in [13].

8. Conclusions

When using wavelets based on derivatives of the Gaussian function, for the original
signal with the reconstructed signal, the Pearson correlation coefficient is 0.9992. Wavelets
or digital filters that are not obtained in the time domain have a rectangular FR, and
there is no Gibbs phenomenon. Such wavelets make it possible to accurately restore
the signal, and the Pearson correlation coefficient for such wavelets is 0.99999998. The
calculation time of the inverse WT signal with a sample size of 262,144 samples decreased by
5000 times compared to the algorithm using FFT and by at least 10,000,000 times compared
to direct numerical integration. Images with a size of 512 × 512 pixels are reconstructed in
milliseconds. Thus, the algorithm can be implemented in near-real time.
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Notation
m The step of discrete WT
W(a, b) Wavelet spectrum
S(t) The signal for decomposition

Ψ
(

t−b
a

)
The wavelet shifted by b by the scale factor a

Ψm,k(t) The wavelet for discrete wavelet transform
ϕm,k(t) Scaling function
Dm,k, Cm,k Detailing and approximating coefficients
N The number of multiplication operations
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a1(n), b1(n) The harmonics of the signal S(k)
S(k) Digitized signal
a2(n), b2(n) The harmonics of the wavelet Ψ(k)
k The indicator of the degree of the scale multiplier
CΨ Normalizing coefficient
FΨ(ω) Fourier spectrum of the basis function
d1(n), e1(n) The harmonics of the W(a, b)
S(n) Digitized signal
S′m(n) Inverse transformation of the m-th level
L2(R) Hilbert space
Wm Hilbert subspaces
S′′0 (t) Reverse signal approximation
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