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Abstract: Random number generators are a key element for various applications, such as computer
simulation, statistical sampling, and cryptography. They are used to generate/derive cryptographic
keys and non-repeating values, e.g., for symmetric or public key cyphers. The strength of a data
protection system against cyber attacks corresponds to the strength of the weakest point in the
security chain. Therefore, from a mathematical point of view, the security chain can be compromised
even if the strongest algorithm is implemented. In fact, if the system requires keys or other random
values and the generation process shows a certain vulnerability, the security of the system itself
can be compromised. In this article, we present the most reliable tools and methodologies and
the main standardisation efforts in the field of computer security to assess the quality of random
number generators and ensure that they can be applied to computer security applications by offering
adequate security strength. We offer a comprehensive guide that can be used as a quick and practical
reference by developers of random number generators of any type to evaluate the random bit streams
generated by implemented modules and determine whether or not they can be used in cybersecurity
applications. Finally, we also present some use cases to which we applied the presented approach.

Keywords: random number generator; RNG; entropy; CSPRNG; TRNG; PRNG; cryptographic key;
cryptography

1. Introduction

Random number generation is the process of generating a sequence of numbers
that are truly random and unpredictable. These numbers are essential for many modern
applications, including cryptography, which relies on random numbers to generate secure
keys and codes that can protect sensitive information [1]. In the field of cryptography,
random numbers are used to generate keys that can be used to encrypt and decrypt
messages and data. The security of these keys depends on their unpredictability, which
makes it difficult for attackers to guess or break them. To ensure the security of these
keys, it is important to use high-quality random number generators that can produce truly
random and unpredictable numbers. Random number generation is also important in
many other fields, including gaming, simulation, and scientific research. In these fields,
random numbers are used to simulate real-world events, test hypotheses, and analyse
data [2]. Overall, random number generation is a vital tool for many modern applications,
and the quality and security of these numbers are crucial for the reliability and integrity of
these systems.

The quality of a Random Number Generator (RNG) is important because weak or
predictable random numbers can compromise the security of a cryptographic system [3].
There are several ways to evaluate the quality of an RNG, including statistical tests and
hardware evaluations. Statistical tests involve analysing the output of the RNG to de-
termine whether it exhibits certain statistical properties that are characteristic of truly
random numbers. These tests can include measures of uniformity, independence, and un-
predictability. Hardware evaluations involve physically examining the hardware used to
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generate the random numbers to ensure that it is functioning properly and that there are
no vulnerabilities or weaknesses that could compromise the security of the RNG [4]. The
National Institute of Standards and Technologies (NIST) is a non-regulatory agency of the
United States Department of Commerce that is responsible for developing and promoting
standards, guidelines, and best practices in a wide range of fields, including cryptography
and random number generation.

In the field of cryptography, the NIST plays a key role in the development and pro-
motion of cryptographic standards, guidelines, and best practices. This includes the
development of standard algorithms and protocols, as well as the testing and evaluation
of cryptographic systems and products. The NIST also publishes guidelines and recom-
mendations on how to use cryptography effectively and securely. The Bundesamt für
Sicherheit in der Informationstechnik (BSI) is the German national cybersecurity agency.
Like the NIST, the BSI is responsible for developing and promoting standards, guidelines,
and best practices in the field of cybersecurity, including cryptography and random number
generation. The BSI also works with other government agencies, industry partners, and in-
ternational organisations to improve cybersecurity and protect critical infrastructure. Both
the NIST and the BSI play important roles in the field of cryptography and random number
generation by developing and promoting standards, guidelines, and best practices that help
ensure the security and reliability of cryptographic systems. Several other organisations
and research groups provide tools and documents that can be used to evaluate RNGs,
in addition to the NIST and BSI test suites. Some of these tools include:

• Dieharder [5]: This is a suite of statistical tests designed to evaluate the quality of
RNGs. It includes a wide range of tests that measure different aspects of the output,
including uniformity, independence, and unpredictability.

• PractRand [6]: This is another suite of statistical tests that are designed to evaluate
the quality of RNGs. It includes a range of tests that measure different aspects of the
output, including uniformity, independence, and unpredictability.

• ENT [7]: ENT (short for “Entropy”) is a command-line tool that can be used to test
the quality of Pseudo-Random Number Generators (PRNGs). ENT can be used to
evaluate the quality of a PRNG by comparing its output to the output of a True
Random Number Generator (TRNG).

• RaBiGeTe [8]: RaBiGeTe (short for “Random Bit Generators Tester”) is a tool for
evaluating the quality of PRNGs. It runs a series of statistical tests on their output.
The tests are designed to detect biases or patterns in the output of the PRNG that may
indicate poor quality.

However, the NIST and BSI test suites are usually preferred over these tools because
they have been widely adopted and are widely recognised as reliable and effective methods
for evaluating the quality of RNGs. They are also regularly updated to ensure that they are
relevant and effective in detecting vulnerabilities and weaknesses in RNGs.

The NIST Entropy Assessment (EA) test suite [9] and procedure B (tests T6–T8) of the
BSI suite [10] are sets of statistical tests that are used to evaluate the quality of RNGs. Both
test suites are used to assess the entropy of RNGs, which is a measure of the randomness
or unpredictability of the numbers generated by the RNG. The NIST EA test suite is a
set of statistical tests designed to evaluate the statistical properties of the output of an
RNG. The test suite includes a range of tests that measure different aspects of production,
including uniformity, independence, and unpredictability. The test suite is used to evaluate
the quality of RNGs used in cryptographic systems and other applications requiring high-
quality random numbers. The BSI T6–T8 test suite is a set of statistical tests used to evaluate
the quality of RNGs. The test suite includes a range of tests that measure different aspects
of the output, including uniformity, independence, and unpredictability. The test suite is
used to evaluate the quality of RNGs used in cryptographic systems and other applications
requiring high-quality random numbers. Both the NIST EA test suite and the BSI T6–T8
test suite are important tools for evaluating the quality of RNGs. These test suites help
ensure that the RNGs used in cryptographic systems and other applications are reliable
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and secure, and they help protect against potential vulnerabilities or weaknesses that could
compromise the security of the systems.

The NIST Statistical Test Suite (STS) [11] and procedure A (tests T0 and T1–T5) of
the BSI suite [10] are sets of statistical tests that are used to evaluate the quality of RNGs.
Both test suites are used to assess the randomness of RNGs, which is a measure of the
unpredictability or lack of bias in the numbers generated by the RNG. The NIST STS is a set
of statistical tests that are designed to evaluate the statistical properties of the output of an
RNG. The test suite includes a range of tests that measure different aspects of production,
including uniformity, independence, and unpredictability. The test suite is used to evaluate
the quality of RNGs that are used in cryptographic systems and other applications that
require high-quality random numbers. Procedure A of BSI suite is a set of statistical tests
used to evaluate the quality of RNGs. The test suite includes a range of tests that measure
different aspects of the output, including uniformity, independence, and unpredictability.
The test suite is used to evaluate the quality of RNGs used in cryptographic systems and
other applications requiring high-quality random numbers. Both the NIST STS and the
BSI T0–T1 test suites are important tools for evaluating the quality of RNGs. These test
suites help ensure that the RNGs used in cryptographic systems and other applications are
reliable and secure, and they help protect against potential vulnerabilities or weaknesses
that could compromise the security of the systems.

The objective of this contribution is to review the methodologies and the related metrics
for reviewing the quality of an RNG in order to provide system developers and evaluators
with a quick and practical reference for assessing the quality of their implementations
according to the most recognised standardisation agencies’ metrics. The rest of this paper
is organised as follows:

• In Section 2, we present and describe the taxonomy and the classification methods for
RNGs;

• In Section 3, we analyse and schematise the entropy validation procedure according
to the most important standardisation agency and provide a simplified workflow to
ease the setup of such procedures;

• In Section 4, the same is carried out for randomness evaluation procedures;
• In Section 5, we conclude our work.

2. RBG: Classification, Construction, and Functionality Classes

This section provides a detailed description and classification of Random Bit Genera-
tors (RBGs) while referring to the main standardisation organisations (i.e., NIST and BSI)
and covering two main points: Nomenclature, functionalities, and properties of RBGs and their
components, as well as methods for the construction of RBGs to accomplish specific goals, target
applications, and functionality classes.

2.1. NIST Classification and Construction

For what concerns the NIST, the Special Publication (SP) 800-90 series specifies the
guidelines for the construction of high-quality RBGs for both cryptographic and non-
cryptographic purposes. These guidelines state that an RBG must be composed of two
main components: an entropy source that generates true random values (by exploiting
physical and non-physical noise sources) and a Deterministic Random Bit Generator (DRBG)
that ensures the indistinguishability of the generated output from an ideal random number
generator. The SP 800-90 series includes three parts.

2.1.1. SP800-90A [12]

The first is the Recommendation for Random Number Generation Using Deterministic
Random Bit Generators, which specifies the construction of a DRBG. A DRBG uses an
approved cryptographic algorithm to produce a sequence of bits (from an initial value)
for cryptographic applications. Since the generation of random numbers by a DRBG is a
deterministic process, a DRBG is said to produce pseudorandom bits. To obtain an RBG
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from a DRBG, the initial value (seed) must be supplied by a source of entropy. A DRBG
must include the following functionalities:

• An instantiate function, which involves the acquisition of randomness to initialise the
DRBG and its internal state.

• A generate function, which produces the output bitstream and updates the internal
state of the DRBG.

• Health testing to determine whether the DRBG operates properly.

A DRBG may also include a reseeding function to introduce fresh entropy into the
internal state and an uninstantiate function to destroy all of the internal information that
it has previously stored. All of the approved DRBGs in [12] respect the backtracking
resistance property, which states that a compromise of the DRBG’s internal state does not
affect the security of prior outputs; it can be guaranteed by ensuring that the DRBG’s
generation algorithm is a one-way function. The prediction resistance property, which
states that a compromise of the DRBG’s internal state does not affect the security of future
DRBG outputs, can be obtained only if a DRBG is effectively reseeded with fresh entropy
between producing outputs for consecutive DRBG requests.

2.1.2. SP 800-90B [9]

The second is the Recommendation for the Entropy Sources Used for Random Bit
Generation, which specifies the construction and validation of physical or non-physical
noise sources used as input for a DRBG or an RBG. The main component of the entropy
source model defined by the NIST is the noise source; it contains the non-deterministic and
entropy-providing process responsible for the uncertainty associated with the output bit-
stream of the whole entropy source. The noise source can be a physical noise source, which
uses dedicated hardware for the generation of randomness, or a non-physical source, which
uses system data, such as human inputs or other system functions. The entropy source
model of the NIST includes health tests that are intended to ensure that the noise source
operates as expected and an optional conditioning component, which is a deterministic
function for reducing bias and/or operating on the output bits to increase the entropy rate.

2.1.3. SP 800-90C [13]

The third is the Recommendation for RBGs Construction, which specifies the construc-
tion of three classes of RBGs by using DRBGs that are compliant with [12] and an entropy
source that complies with [9].

Table 1 summarises the nomenclature and constructions of RBGs defined by the
NIST. The construction RBG.1 does not include an internal noise source (it belongs to the
category of DRBGs); the initial seed must be provided by an external RGB over a secure
channel. In addition, the reseeding procedure is not supported; thus, it cannot provide
prediction resistance. The RBG.1 implementation can be used in devices in which an
entropy source cannot be included or in any device that has no access to an entropy source
after instantiation.

The RBG.2 construction includes entropy sources that are used to instantiate and
reseed the DRBG included in the construction. The randomness source can be physical or
non-physical. The prediction resistance property can be guaranteed, since the reseeding
procedure can be supported. The RBG.3 construction concerning the RBG.2 requires a
physical noise source as an entropy source.
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Table 1. Nomenclature and taxonomy for RBGs put out by the NIST standardisation organ-
isation.

General
Term RBGs

Deterministic or
non-deterministic DRBGs Entropy

source
Noise

sources – Physical Non-physical

RBG.1
RBG.2Constructions

RBG.3

2.2. BSI Classification and Construction

Concerning the BSI, the standard [14] defines the nomenclature and taxonomy for
RBGs, as reported in Table 2. The general term used by the BSI to indicate a general random
number generator is RNG, unlike the NIST, which makes use of RBG to define a general
random number generator. The BSI defines a Deterministic Random Number Generator
(DRNG) as an RNG that produces random numbers by applying a deterministic algorithm
from a secret initial value called a seed, along with other possible additional inputs. It is
equivalent to the DRBG defined by the NIST in [12]. A TRNG is a device or mechanism for
which the output values depend on a noise source; both Physical True Random Number
Generators (PTRNGs) and Non-Physical True Random Number Generators (NPTRNGs)
belong to this category; the PTRNG class uses a noise source that exploits physical phenom-
ena (thermal noise, shot noise, jitter, metastability, etc.) from dedicated hardware designs,
while the NPTRNG class uses noise sources that typically exploit system data and user
interactions to produce digitised random data. The functionality classes defined by the BSI
can be briefly summarised and compared as follows.

Table 2. Nomenclature and taxonomy for RNGs put out by the BSI standardisation organi-
sation.

General Term RNGs
Deterministic

or
non-deterministic

DRNGs TRNGs

Noise
sources – PTRNGs NPTRNGs

Functionality
classes

DRG.2
DRG.3
DRG.4

PTG.2

PTG.3
NTG.1

2.2.1. DRG.2, DRG.3, and DRG.4

These constructions define the requirements for deterministic RNGs that are suitable
for cryptographic applications. The DRG.2 construction is suitable for applications for
which the disclosure of previous random numbers due to a compromise of the internal
state is not an issue (e.g., for challenges in challenge–response protocols). This means that
this class of RNGs does not support the prediction resistance property. The seed material
must be generated by RNGs belonging to the PTG.2, PTG.3, or NTG.1 classes. The DRG.3
construction is suitable for all cryptographic applications, except for those that require
guaranteed fresh entropy. Therefore, the underlying cryptographic function of this class of
RNG is a one-way function (backtracking resistance). The seed can be supplied by both
TRNGs and DRNGs. The DRG.4 course includes a reseeding procedure and a high-entropy
additional input; in this way, it can ensure the forwarding resistance property. In addition,
DRG.4 requires the output of a PTRNG for seeding and reseeding procedures and for the
additional input.
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2.2.2. PTG.2 and PTG.3

These define requirements for non-deterministic RNGs that use physical noise sources.
The PTG.2 class generates high-entropy random numbers that may be distinguishable
from ideal randomness when testing large amounts of data. This means that the post-
processing may not be cryptographic. The PTG.3 class is the most robust functionality,
and it is appropriate for any cryptographic application. The security of the PTG.3 class is
ensured by both the physical noise source and the computational security ensured by the
cryptographic post-processing. Concerning DRG.4, the cryptographic post-processing of
the PTG.3 class does not extend its input data.

2.2.3. NTG.1

The NTG.1 class generates true random bits by employing noise sources such as system
data or human interactions instead of dedicated hardware. In addition, cryptographic
post-processing is needed. The NTG.1 class is usually employed for devices that do not
have access to a physical RNG.

3. Procedures for Entropy Assessment

The procedure illustrated herein is aimed at the assessment of entropy sources or, from
a more general point of view, the evaluation of the outputs of modules whose purpose is to
generate entropy. Hence, the samples to be collected and used as inputs for the assessment
procedure must be extracted from raw data or the eventually conditioned and/or post-
processed output of such modules according to the taxonomy, features, and specifications
described in Section 2.

The output of this procedure is a numerical value indicating the level of entropy
expressed in bits. For example, a module designed to generate entropy with an output data
width of 1 bit will result in having an entropy in the range of 0 to 1 bits (theoretical upper
limit), while a similar module but with an output data width of 8 bits (1 byte) will result in
having an entropy in the range of 0 to 8 bits.

According to what was expressed in Section 1, the reference tools to be used for this
purpose are:

• procedure B of the BSI suite, i.e., the battery of tests T6 to T8;
• the NIST EA suite.

3.1. Entropy Assessment with Procedure B of the BSI Suite

Procedure B of the BSI suite is included in the unique BSI tool described in Section 1,
which can be downloaded at [10]. This a tool is a Java application with a GUI that allows
the user to choose between test T0 (procedure A), the battery of tests T1 to T5 (procedure
A), and the battery of tests T6 to T8 (procedure B). Once the tool is run, the latter option has
to be selected, and several other configuration settings have to be specified, as shown in
Figure 1.

Concerning Figure 1, in addition to the selection of procedure B (i.e., the check on
the box Proc. B: T6–T8), it is necessary to specify the path of the input file (i.e., the file
containing the samples of the entropy source module), the output format (if normal or
detailed), the input data format (Data Format tab), the type of test (i.e., Normal Test or Repeat
Test), and the bit width of the samples (Internal Random Numbers tab). Particular attention
has to be paid to these last three points.

First of all, the choices for the Data Format setting indicate if 1 byte of the input sample
file corresponds to 1 random bit (i.e., option 1 Byte = 1 RNDbit) or if 1 byte of the input
samples file corresponds to 8 random bits or 1 random byte (i.e., option 1 Byte = 8 RNDbit).
The former option has to be selected if the input file is a textual file; therefore, every random
bit is represented by the corresponding ASCII character. Since an ASCII character occupies
1 byte of disk storage, each byte of the input file (i.e., an ASCII character) represents the
value of 1 random bit. The latter option instead refers to the binary format (based on a
personal disk’s storage capabilities, one option or the other one can be chosen without



Electronics 2023, 12, 723 7 of 22

restrictions after having accordingly generated the input sample file; however, the usage
of the binary format allows for the generation of more compact input files and for saving
space on the disk; hence, if possible, this choice is suggested) of the input file (.bin) because,
in this case, each byte of the input file is a concatenation of eight single binary values, each
representing a different sample (1 random bit); hence, 1 byte of the input file corresponds
to 8 random bits to be analysed.

Figure 1. BSI tool for entropy assessment.

Concerning the Test type configuration, it allows an indication of if the test to be
run is the first attempt (literally, the first time the test is executed on a specific input
file) or not. Indeed, the reference document of the BSI suite specifies that in the case of
specific unsuccessful outcomes, procedure B can be repeated for a second and last time.
In particular, because procedure B consists of several internal tests, if, at the first attempt,
only one internal test fails, the procedure can be applied again, but to a new set of samples.
For this reason, when applying procedure B for the first time (i.e., Normal Test), the BSI
tool only loads the required N samples into the RAM of the host PC, while it separates
and stores the residual samples in a dedicated file that it creates automatically (by default,
this file is automatically generated by the BSI tool in the same folder of the input file, and
the word _rest is appended to the name of the input file). If the first attempt fails with at
most one failing internal test, procedure B can be applied for a second (and final) time to
the residual samples by setting the test type to the value Repeat Test. If the second attempt
also fails (i.e., at least one internal test fails), the procedure has to be considered as failed;
in other words, this means that the measured value of entropy is not reliable. In any other
case (i.e., the first or second attempt succeeds without any failures), procedure B is passed,
and the measured entropy level is reliable.

The third and last main configuration option (Internal Random Numbers) has to be used
to indicate the bit width of the samples (by typing in the corresponding entry). For instance,
the entropy source module that we developed for the European Processor Initiative (EPI)
project and that we illustrated in [15,16] generates eight independent random bits in parallel
as a unique output byte per time; hence, the bit width of input samples to be specified is 8.

Once all of the configuration parameters are set, the test can be run by pressing
the START button; during its execution, the logs are displayed in the text box under the
progress bar, which is filled accordingly. At the end of the test, the logs that contain both the
intermediate results and the final ones are also stored in a dedicated file that constitutes the
main and most significant output of procedure B of the BSI tool. As an example, the content
of the output file is reported in Listing 1 to show the main results that we obtained when
we tested our entropy source module [15,16].



Electronics 2023, 12, 723 8 of 22

Listing 1. Output of procedure B of BSI suite.
TEST STARTED .
TEST−SUITE : Procedure B/T6−−T8
FILE NAME: entropy_src_samples . bin
OUTPUT DETAILS : Enabled .
DATA FORMAT: 1 f i l e byte = 8 random b i t (1 random byte ) .
TEST TYPE : Normal Test .
RND− B i t Width : 8 b i t .

Reading f i l e .
entropy_src_samples . bin
Copying b i t stream f i l e to RAM. . .
Converting data f i l e to byte stream . . .
Writing r e s i d u a l f i l e : entropy_src_samples . b i n _ r e s t
7200000 elements copied i n t o RAM.

F i l e reading completed .
Test procedure T6a for the v e r i f i c a t i o n of Procedure B . i ) ( v i i . a ) s t a r t e d

.
|P ( 1 ) − 0.5| = 0.0027800000000000047
Last Element : 100000

Test procedure T6a passed .
Test procedure T6b for the v e r i f i c a t i o n of Procedure B . i ) ( v i i . b ) s t a r t e d .

p ( 0 1 ) = 0 .49988
p ( 1 1 ) = 0 .49901
|p_ ( 0 1 ) − p_ ( 1 1 ) | = 8.699999999999819E−4
Last Element : 500136

Test procedure T6b passed .
Test procedure T7a for the v e r i f i c a t i o n of Procedure B . i ) ( v i i . c ) s t a r t e d .

Test S t a t i s t i c [ 0 ] = 0.015680013271563233
Test S t a t i s t i c [ 1 ] = 0.13448132593208115
Last Element : 1705488

Test procedure T7a passed .
Test procedure T7b for the v e r i f i c a t i o n of Procedure B . i ) ( v i i . d ) s t a r t e d .

Test S t a t i s t i c [ 0 ] = 0.7920246001580802
Test S t a t i s t i c [ 1 ] = 1.6245080785162238
Test S t a t i s t i c [ 2 ] = 0.706880000282752
Test S t a t i s t i c [ 3 ] = 0.5056204187042688
Last Element : 4927816

Test procedure T7b passed .
Test T8 for the v e r i f i c a t i o n of Procedure B . i ) ( v i i . e ) s t a r t e d .

Test S t a t i s t i c : Entropy = 7.999997762809403
Last Element : 6996296

Test T8 passed .
Step s u c c e s s f u l l y completed .

Several elements in Listing 1 can be individuated as further confirmation of how much
is expressed in this section. For instance, the values set for the configuration parameters in
the first rows of the output file, such as the data format for binary files (row 5) associated
with the usage of an input binary file (row 3), the type of test (Normal, row 6), the bit width
of random samples (8 bits at row 7, according to our implementation in [15,16]), the number
of samples used for testing (7,200,000, row 13), and the generation of the file containing the
residual samples, can be noted. In addition, the main and most significant elements are the
outcomes of the intermediate tests (which are nine in total, i.e., T6a, T6b, two statistics for
T7a, and four statistics for T7b and T8), respectively, at rows 18, 23, 26, 27, 31, 32, 33, 34, and
40, and the measure of entropy, which is a direct result of test T8. In the former case, all
of the tests passed; in the latter one, the measured value of entropy is reported in row 38
(entry Test Statistic: Entropy), and it corresponds to 7.999.

According to the BSI specifications in [17], the final entropy value calculated by proce-
dure B and the correlated results can be considered valid with a confidence of the 99.98%.

As a final summary of this section, Figure 2 reports a flow diagram for the entropy
assessment when using the BSI suite.
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Figure 2. Flow diagram for entropy assessment when using the BSI suite (procedure B).

Concerning the number N of random samples to be acquired, a specific value cannot
be defined because it depends on the value of acquired bits that are partitioned based on
specific patterns. In any case, the minimum amount of bits to be collected can be extracted
from the documentation of the BSI suite [17], and it is 6,968,480 bits (≈7 Mb). Considering
that the testing procedure can also be applied a second time if the first attempt fails, when
collecting the output samples for the entropy module, we suggest collecting at least double
the amount of data, i.e., at least almost 14 Mb.

3.2. Entropy Assessment with the NIST EA Suite

Similarly to procedure B of the BSI tool, the NIST EA suite takes as input the collection
of samples acquired from the entropy source, performs tests that need to be configured
according to the characteristics of the implementation, and provides as its final and main
output a measure of the entropy. Released as C source files in [18], it can be easily compiled
on a host platform to generate the corresponding executable to be used for the assessment of
entropy. This suite relies on an overall implementation model that is illustrated in Figure 3
and consists of:

• an analogue source of noise (i.e., the analogue entropy source);
• a block for the digitisation of the analogue source of noise;
• an optional conditioning block (for post-processing of the digitised source of noise);
• an optional (parallel) unit for online health tests.
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Figure 3. Overall implementation model for the application of the NIST EA.

According to the model in Figure 3, the NIST EA suite provides the following four
distinct tools (i.e., executables) for testing the different sections and data of an entropy
source module:

1. EA Independent and Identically Distributed (IID) (ea_iid executable);
2. EA non-IID (ea_non_iid executable);
3. EA Restart (ea_restart executable);
4. EA Conditioning (ea_conditioning executable),

The first two executables are mutually exclusive and must be applied to the raw
data generated by the digitisation block as the first step of the assessment procedure to
determine which of them best fits the acquired samples; then, the other executables have to
be applied in that order while also using the output of the previous step that was updated
as input. In other words, it is expected that after the first step, the other steps of the
entropy measurement process progressively update the entropy value determined by the
previous step.

To determine if the IID or the non-IID tool must be used, as a preliminary step,
the IID assumption is made by applying the IID track, i.e., the sequence of executables
ea_iid, ea_restart, and ea_conditioning. Each of these programs provides not only an entropy
estimation, but also a result based on a pass/fail criterium; if all of the programs return the
result passed, the IID assumption is verified, and the last entropy estimation corresponds
to the entropy measure. The ea_conditioning executable has to be used only if the optional
conditioning block is included within the implementation of the entropy source module.
In the opposite case, i.e., if any of the programs of the IID track produce the result failed,
the non-IID track has to be used; therefore, the sequence of executables to be applied is
ea_non_iid, ea_restart, and (eventually) ea_conditioning. Figure 4 illustrates a flow diagram
for the usage of the NIST EA suite that was described.
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Figure 4. Flow diagram for entropy assessment when using the NIST EA suite.

Regardless of which track is used—IID or non-IID—the same constraints and config-
urations have to be used for the measurement of the entropy, and similar processes are
performed according to the following steps:

1. first entropy (HI) estimation by using the ea_iid executable (or ea_non_iid);
2. second entropy (Hmin1 ) estimation by using the ea_restart executable to update HI ;
3. third entropy (Hmin2) estimation by using the ea_conditioning executable to update

Hmin1 .

For the first entropy estimation, a sequence of 1,000,000 random samples has to be
collected and provided as input to the ea_iid executable (or ea_non_iid) by also specifying
the bit width b of the random samples. If b = 1, only the entropy value (Horiginal) is
calculated, returning HI = Horiginal ; if b > 1, the entropy value Hbitstring is also computed
by using the first 1,000,000 bits and the output value if HI = min(Hbitstring, b · Hbitstring),
i.e., the minimum value between Hbitstring and b · Hbitstring. If the implemented entropy
module is not able to generate 1,000,000 consecutive samples, smaller sets from the same
entropy source can be concatenated to form an overall dataset of at least 1,000,000 samples,
for which each smaller set contains at least 1000 samples.

For the second entropy estimation, the input data to be provided to the ea_restart exe-
cutable have to be formatted as a 1000× 1000 matrix. Each row of this matrix corresponds
to a different realisation of 1000 samples after the reset (or system power-on). In addition,
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in this case, the bit width b of the random samples must be specified, and the entropy esti-
mation from the previous step (Hmin1 ) has to be provided as input. The ea_restart executable
calculates an entropy estimation per row (Hr) and an entropy estimation per column (Hc),
and finally, it returns Hmin1 = min(HI , Hr, Hc).

For the third (optional) entropy estimation, no file must be provided as input to
the ea_conditioning executable, but its usage (necessary only if the conditioning block is
integrated within the implementation of the entropy module) requires as input only the
entropy estimation from the previous step (i.e., Hmin1) and the configuration of some
parameters indicating the bit width of the input data of the conditioning block and the
bit width of the output data of the conditioning block. Based on these values, the entropy
estimation Hmin2 is automatically calculated.

Hence, the final entropy estimation is the value called min-entropy, which is Hmin = Hmin1
in the case of no conditioning or Hmin = Hmin2 in the case of conditioning.

As an example, in Listings 2 and 3, the output of the ea_iid executable and the output of
the ea_restart executable are, respectively, reported, with both being applied to our entropy
source module [15,16] according to the illustrated procedure for the IID track. Both outputs
show the results of the tests dedicated to the verification of the IID assumption, which is
confirmed. In addition, in Listing 2, one can note, for instance, the calculation of the values
of Horiginal and Hbitstring, which determine HI (in Listing 3), according to the analysis of
random samples with a bit width of 8 bits, while Listing 3 also shows the values of Hr
and Hc, for which a final entropy value of 7.888 (bits per byte) was obtained. This value,
i.e., the output of the ea_restart test, is the final entropy value for our implementation [15,16]
because we did not include a conditioning block at the output of the digitisation one and,
thus, directly used the raw data on the output of this last block as the output of the whole
entropy source module.

Listing 2. Output of the ea_iid test of the NIST EA suite. The elements H_original and
H_bitstring correspond, respectively, to the values of Horiginal and Hbitstring in the text.

C al cu la t in g b a s e l i n e s t a t i s t i c s . . .
H_original : 7 .892085
H _ b i t s t r i n g : 0 .997924
min ( H_original , 8 X H _ b i t s t r i n g ) : 7 .892085

* * Passed chi square~ t e s t s

* * Passed length of longes t repeated subs t r ing~ t e s t

Beginning i n i t i a l t e s t s . . .
Beginning permutation t e s t s . . . these may take some time
* * Passed IID permutation t e s t s

Listing 3. Output ea_restart test of the NIST EA suite. The elements H_I, H_r, and H_c
correspond, respectively, to the values of HI , Hr, and Hc in the text.

H_I : 7 .892085
ALPHA: 5.0251553006530614 e −06 , X_cutof f : 20
X_max : 16

Running IID~ t e s t s . . .

Running Most Common Value~Est imate . . .

H_r : 7 .888291
H_c : 7 .888291
H_I : 7 .892085

Val idat ion Test~Passed . . .

min ( H_r , H_c , H_I ) : 7 .888291
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3.3. Shannon Entropy

The entropy values produced by both procedure B of the BSI suite and the NIST EA
suite are estimations of the min-entropy Hmin, which is the most conservative measure of
the unpredictability of a set of outcomes, as the negative logarithm of the probability of
the most likely outcome. However, based on the application of the implemented entropy
source module, it can be necessary to extract another metric that is related to this one. The
second metric that we are referring to is the Shannon entropy HS, which can be calculated
from the min-entropy by using Equation (1):

HS = −2−Hmin · log2

(
2−Hmin

)
−
(

1− 2−Hmin
)
· log2

(
1− 2−Hmin

)
(1)

For instance, the BSI also specifies for the RNG classes defined in its standard [17] a
minimum requirement in terms of the Shannon entropy to be met to claim the validity of
the realised module.

The formula for deriving the Shannon entropy must be applied to the min-entropy
normalised to the bit unit, i.e., if the Hmin value from the BSI suite or the NIST EA suite
gives a measure of entropy samples with a bit width higher than 1 bit, this Hmin value must
be normalised by dividing it by the bit width of the entropy samples. For instance, in our
case study, we obtained the values 7.999 and 7.888, which correspond, respectively, to a
normalised min-entropy of 7.999/8 = 0.999 and 7.888/8 = 0.986. Applying the formula for
the Shannon entropy, the corresponding HS value (the effective values of HS are 0.99993141
and 0.99999965, respectively, for the Hmin values of 0.999 (procedure B of the BSI suite) and
0.986 (NIST EA), and both can be rounded to the value of 1.000 when using four significant
digits for representing those numbers) is 1 in both cases. Ref. [17] specified the minimum
value of 0.997 for the class PTG.2 in terms of the Shannon entropy (which corresponds to
the value of 0.910 in terms of the min-entropy). Therefore, our implementation in [15,16] can
be claimed to be a suitable candidate for the PTG.2 class of the BSI.

4. Procedure for Randomness Assessment

The procedure illustrated herein is aimed at the assessment of randomness or, in other
words, giving a measure of how much the output bitstream generated by the implemented
module is distinguishable concerning an ideal RNG. Therefore, the samples to be collected
and used as input for the assessment procedure must be extracted from the final output of
the modules whose purpose is the generation of random numbers, not the provision of bits
of entropy.

According to what was expressed in Section 1, to evaluate the output bitstreams
of RNGs, the reference tools to be used are procedure A of the BSI suite and the NIST
STS put out by the corresponding standardisation organisations. Similarly to the process
for the assessment of entropy, these tools require the collection of the output samples
from the implemented RNG, which must be provided as an input file; consequently, they
generate an output report that gives measures about the quality of the random sequences.
Without entering into the mathematical background of the statistical tests that these suites
rely on, it is sufficient to focus on the fact that the procedure essentially compares the results
obtained by applying a battery of tests on the random sequences concerning the results
that an ideal RNG would show. If the results of the tested RNG are equal to or better than
those of an ideal RNG, the implemented RNG can be claimed to be able to generate random
numbers that can be employed in cryptographic applications with a certain confidence level.
In particular, both the BSI suite and the NIST STS rely on the following two parameters:

• the p-value , which is defined as the probability that a perfect random number generator
would have produced a sequence that is less random than the tested sequence;

• the significance (or confidence) level, which is denoted by α.

A claim on the randomness of a sequence can be determined based on the relation
between the p-value and α; if p-value ≥ α, then the sequence can be considered random with
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a confidence of (1− α) · 100%; otherwise, if p-value < α, the sequence can be considered
as non-random with a confidence of (1− α) · 100%. For cryptographic applications, α is
typically chosen in the range of [0.001− 0.01]; hence, for example, assuming α = 0.01, if p-
value≥ α, then the sequence can be considered random with a confidence of 99%; otherwise
(p-value < α), the tested sequence can be considered non-random with a confidence of
99%. In the case of α = 0.001, the confidence that the tested sequence is random rises to
99.9%; if p-value ≥ α and, accordingly, if p-value < α, 99.9% is the confidence that the tested
sequence can be considered non-random.

4.1. Randomness Assessment with Procedure A of the BSI Suite

Procedure A of the BSI suite for the evaluation of randomness operates similarly to
procedure B that is included in the same suite, but it is applied to the output sequences
of RNGs whose purpose is to generate random numbers (not to provide bits of entropy).
The same tool as that shown in Section 3.1 and Figure 1 has to be used—hence, with the
same configuration options—but in this case, the tests to be selected are not T6 to T8, but
test T0 and the group of tests T1 to T5. Then, the tool works as in the case of entropy
assessment by loading the required samples into RAM, saving the residual samples in a
dedicated file, and providing an output report both in the text box under the progress bar
and as a textual file.

The first difference concerning the entropy evaluation case is that this procedure
(denoted as procedure A) consists of two different steps, with each one requiring a different
number of random input bits that need to be run manually:

1. execution of test T0;
2. execution of the group of tests T1–T5.

The first step (test T0) takes 3,145,728 bits as input and saves the remaining bits in a
dedicated file for successive usage with tests T1 to T5. The second step takes an input of
5,160,000 bits. Similarly to procedure B, if the first attempt (Normal Test type) does not report
any failing tests, the procedure can be considered completed and successful. In addition,
the BSI also specifies that the confidence level of the results is 99.87%, that is, the tested
RNG cannot be distinguished from an ideal RNG with a confidence of 99.87%. Otherwise,
if only one intermediate test of the entirety of procedure A fails, the same procedure can
be applied for a second and last time, but on different samples with respect to those used
in the first attempt, and with the application of the same considerations for the results
that were applied to those of the first run. Instead, if more than one intermediate tests fail,
the procedure has to be considered failed. Based on this, a flow diagram for the randomness
assessment by using procedure A of the BSI suite can be derived, and it is illustrated in
Figure 5.

As an example, we applied the procedure described herein to the DRBG mechanism
that we implemented for the realisation of the Cryptographically Secure Pseudo-Random
Generator (CSPRNG), which we illustrated in [19,20] and exploited in [21]. The correspond-
ing outcomes of the two steps of procedure A are reported in Listings 4 and 5. Concerning
the first one, which is related to test T0, the whole output is reported, while in the second
one, which is related to the group of tests T1 to T5, we transcribed only the initial part of the
output report, and the final row reports the overall outcome of the test. This is because each
of the tests from T1 to T5 was repeated 257 times, and the whole report would require a
huge number of pages (indeed, it occupies 8000 rows, more or less). However, both listings
show that the results of these case studies are all positive.

With reference to Listings 4 and 5, similar remarks can be made to those made for
procedure B of the BSI. For instance, a way to count the number of failing (intermediate)
tests is to count all of the passed ones (by searching for the matches of the keyword passed
within the log) and to check the difference between this number and 1543. This is because,
in the case of a successful outcome, the total number of occurrences of a passed keyword is
1 + (5 · 257) + 257 = 1543, respectively, for test T0 (single test, performed only one time),
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the 257 repetitions of the five tests (T1 to T5), and an additional 257 due to the overall result
reported for each repetition (e.g., row 29 and row 35 in Listing 5).

A final consideration can be made concerning the number of random samples to be
collected. In the examples reported in Listings 4 and 5, we used different sample data for
T0 and T1–T5, but the same dataset could be used for both steps because they performed
independent tests. Therefore, the minimum amount of data required to run procedure A of
the BSI suite can be calculated as the maximum between the number of bits required by
the first step, i.e., 3,145,728, and those required by the second step, i.e., 5,160,000, which is,
indeed, 5,160,000. By also including the possibility of an eventual repetition of procedure A
(in case only one intermediate test fails in the first attempt), this number should be doubled;
hence, we suggest collecting at least 10 million samples, which, in our case, was about
10 Mb, with each sample being 1 bit.

Figure 5. Flow diagram for randomness assessment when using the BSI suite (procedure A).

Listing 4. Output of procedure A (test T0) of the BSI suite.
TEST STARTED .
TEST−SUITE : Procedure A/T0
FILE NAME: drbg_samples . bin
OUTPUT DETAILS : Enabled .
DATA FORMAT: 1 f i l e byte = 8 random b i t s (1 random byte ) .
TEST TYPE : Normal Test .
RND− B i t Width : 1 b i t .

Reading f i l e .
drbg_samples . bin
Copying b i t stream f i l e to RAM. . .
Converting data f i l e to byte stream . . .
Writing r e s i d u a l f i l e : drbg_samples . b i n _ r e s t
3 ,145 ,728 elements copied i n t o RAM.

F i l e reading completed .
Run Test T0 ( Dis juncture Test ) ; C r i t e r i o n Procedure A. i ( i )
Test T0 passed .

Step s u c c e s s f u l l y completed ; remaining f i l e s e l e c t e d for t e s t
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Listing 5. Output of procedure A (tests T1–T5) of the BSI suite.
TEST STARTED .
TEST−SUITE : Procedure A/T1−T5
FILE NAME: drbg_samples . b i n _ r e s t
OUTPUT DETAILS : Enabled .
DATA FORMAT: 1 f i l e byte = 8 random b i t s (1 random byte ) .
TEST TYPE : Normal Test .
RND− B i t Width : 1 b i t .

Reading f i l e .
drbg_samples . b i n _ r e s t
Copying b i t stream f i l e to RAM. . .
Converting data f i l e to byte stream . . .
Writing r e s i d u a l f i l e : drbg_samples . b i n _ r e s t _ r e s t
5 ,160 ,000 elements copied i n t o RAM.

F i l e reading completed .
Step 1 from 257 begins .
Test within block .

Run Test T1 ( Monobit Test ) ; C r i t e r i o n Procedure A. i ( i i )
1 s number : 10030

Permitted range : [ 9 6 5 5 ; 10345]
Test T1 passed .
Run Test T2 ( Poker Test ) ; C r i t e r i o n Procedure A. i ( i i )

Test S t a t i s t i c = 10.400000000000546
Test T2 passed .
Run Test T3 (Run Test ) ; C r i t e r i o n Procedure A. i ( i i )
. . .
. . .
. . .
Test T5 passed .

Step 1 passed .
Step 2 from 257 begins .

. . .

. . .

. . .
Test T5 passed .

Step 257 passed .
Step s u c c e s s f u l l y completed ; remaining f i l e s e l e c t e d for t e s t

4.2. Randomness Assessment with the (Fast) NIST STS Suite

For the evaluation of randomness with the NIST STS suite, an additional parameter
must be defined: the number of sequences to be tested. Indicating this with k, this parameter
must satisfy the constraint k ≥ 1/α; in other words, if α = 0.01 is set, at least 100 sequences
have to be tested, while for α = 0.001, at least 1000 have to be tested, and so on. Hence,
based on the p-value, α, and k, the NIST STS computes the metrics PRoportion (PR) and
p-value of p-values (PoP) according to the following steps:

• The p-value of each sequence is calculated, and the sequences for which p-value < α
are discarded;

• The PR value is calculated as the ratio between the number of sequences that passed
the test (p-value ≥ α) and the total number of tested sequences (k);

• The p-values of sequences that passed the test are distributed in the range [0, 1) by split-
ting it into 10 equal sub-intervals named C1, C2, C3, and so on, up to C10, respectively,
for ranges [0, 0.1), [0.1, 0.2), [0.3, 0.4), . . . , up to [0.9, 1.0), and the uniformity of the
p-values’ distribution is calculated by exploiting the chi-square (other notations of this
function are chi-squared or χ2) function. This measure of uniformity corresponds to
the PoP value.

This procedure is performed for each statistical test included within the NIST suite,
and all results are collected in the report file finalAnalysisReport.txt. A test is considered
passed (with a confidence of (1− α) · 100%) if both of the following conditions are satisfied:

• The PR value lies in the confidence interval defined as (1− α)± 3
√

α(1−α)
k ;

• PoP ≥ 0.0001.
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Any failing test is highlighted in the report file with a “*” symbol near the test results.
The NIST indicates that tested sequences should be considered random if all tests are
passed and that additional tests should be performed on different sets of data, similarly
to the repetition of procedure A or B of the BSI suite. Anyway, this specification is too
stringent, as analysed by the authors of [22]. They investigated the NIST STS in depth by
analysing more than 100 GB of data produced by a physical quantum random number
generator, and they concluded that an ideal random number generator also has a high
probability (about 80%) of failing at least one test of that statistical suite. To overcome this
issue, they defined several tolerated failing tests, in addition to a more accurate confidence
interval (using the new constant value, the formula for the calculation of the confidence

interval for the PR metric becomes (1− α)± 2.6
√

α(1−α)
k ) for the PR metric, by substituting

the constant 3 with the value 2.6. For instance, when testing k = 1000 sequences with a
significance level of 1% (α = 0.01), three (six) failing tests are admitted for the PR metric
when using the NIST’s (proposed) confidence interval that includes the constant 3 (2.6) in
its formula. The authors of [22] also proposed an alternative optimised implementation
of the NIST STS called Fast NIST STS, which promises an overall speedup of 30 times
with respect to the original NIST version, and they released it in a git repository at [23].
After conducting some comparison tests by using the reference vectors included in both of
the STS implementations, we found that the speedup claimed by the authors for Fast NIST
STS is effective and significant, in addition to being reliable because it generates the same
numerical results as those calculated by the original version. For this reason, we strongly
suggest using this optimised version of the NIST STS.

Both the original and the optimised version of the NIST STS were released as C source
files, similarly to the NIST EA presented in Section 3.2, and they can be downloaded at [24]
and [23], respectively. Once compiled, the program can be run as any other executable by
using the command line of the host platform, and before starting the execution of tests, it
asks for some parameters, which are:

• the input file containing the samples;
• the number of sequences (k);
• the bit length of input sequences (n);
• the block length (M) for the Block Frequency Test;
• the block length (m) for the NonOverlapping Template Test;
• the block length (m) for the Overlapping Template Test;
• the block length (m) for the Approximate Entropy Test;
• the block length (m) for the Serial Test;
• the block length (M) for the Linear Complexity Test.

For the definition of the values to apply to such parameters, it is useful to refer to the
indications provided by the BSI in [25], which recommended a set of values for reliable
results. These values are:

• k = 1073 (for α = 0.01);
• n = 1,000,000;
• M (Block Frequency Test) = 20,000;
• m (NonOverlapping Template Test) = 10;
• m (Overlapping Template Test) = 10;
• m (Approximate Entropy Test) = 8;
• m (Serial Test) = 16;
• M (Linear Complexity Test) = 1000.

Therefore, the flow diagram for the usage of the (Fast) NIST STS can be drawn,
as illustrated in Figure 6.
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Figure 6. Flow diagram for randomness assessment when using the Fast NIST STS suite
for a significance level of α = 0.01.

In Figure 6, a flow diagram for the randomness assessment of RNGs when using
the (Fast) NIST STS is shown for the case in which α = 0.01. The use cases for different
significance levels α can be derived by referring to [22,25] and using the collection of several
sequences k = 10.73 · (1/α), each with 106 bits, as a rule of thumb.

We applied the presented procedure to the DRBG implemented in [19,20] and obtained,
respectively, zero and five failing tests for the PR metric when using the original NIST STS
confidence interval and the more stringent one proposed by the authors of [22], as shown in
Figure 7. For that graph, the former confidence interval corresponds to the widest one (dark
blue dashed lines), while the latter corresponds to the narrowest one (light-blue dashed
lines). In addition, for some tests, a different confidence interval is depicted. This depends
on the fact that those tests (automatically) used a different number of sequences (k′) that
was derived from the specified one (k). However, the test passed in both cases, and 6 was
the number of tolerated failing tests for the PRs metric when using the more stringent
confidence interval. In addition, for the PoP metric, the test passed, and zero failing tests
were reported, as shown in Figure 8.
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Figure 7. Graph of the results for the PR metric for the tested DRBG [19,20]. The dark
golden points represent the PR values for each test or sub-test, and the blue dashed lines
represent the boundaries of the confidence interval(s). The widest confidence interval is
that of the original NIST STS suite, while the narrowest one is that proposed by the authors
of the Fast NIST STS.

Figure 8. Graph of the results for the PoP metric for the tested DRBG [19,20]. The dark
golden points represent the PoP values for each test, and the light-blue dashed line traces
the threshold for the pass/fail criterion. The vertical axis is on a logarithmic scale.

As a further element for testifying the outcome of the PoP metric’s outcome, in Figure 9,
we illustrate the distribution of the tested sequences for the single-experiment tests only,
i.e., those that were not composed of multiple sub-tests. In addition, with a rapid and
visual inspection, it can be noted that these distributions are uniform.
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Figure 9. Histograms of the p-values’ distributions. The (three-dimensional) histograms of
the distributions are reported only for the single-experiment tests according to the results
for the PoP metric (in Figure 8).

5. Conclusions

This work presents a brief but comprehensive review of the main tools and method-
ologies for constructing and evaluating RNGs according to the most stringent metrics for
cybersecurity purposes that have been released by the most reliable reference standardisa-
tion organisations. We illustrated all of the required terms and methods for identifying,
organising, and classifying the architecture of a RNG that is intended to be implemented
and, correspondingly, the assessment procedures to be used according to the scope of
the implemented RNG, i.e., for the generation of bits of entropy for the generation of
random numbers. We also included the reference links that can be used to download the
assessment suites from the corresponding reference organisations (NIST and BSI) and all of
the required indications for a quick but exhaustive evaluation of the results obtained when
evaluating the output of the implemented RNG. The presented contribution is expected to
help designers in assessing the quality of their RNGs in detail so that they will be facilitated
in ensuring quality, avoiding biases, improving the design, meeting industry standards,
and enhancing their reputations. Any RNGs developer can use this work as a guideline for
properly characterising a module that is implemented for random number applications
and to determine the quality of their work. Following the presented procedure, a developer
can claim compliance with the most qualified high-security requirements specified by the
corresponding reference cybersecurity standards without the necessity of investigating and
analysing the mathematical background and the statistical formulas used for the evaluation
of the output of the implemented module.
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