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Abstract: The noise robustness of voice activity detection (VAD) tasks, which are used to identify
the human speech portions of a continuous audio signal, is important for subsequent downstream
applications such as keyword spotting and automatic speech recognition. Although various aspects of
VAD have been recently studied by researchers, a proper training strategy for VAD has not received
sufficient attention. Thus, a training strategy for VAD using supervised contrastive learning is
proposed for the first time in this paper. The proposed method is used in conjunction with audio-
specific data augmentation methods. The proposed supervised contrastive learning-based VAD
(SCLVAD) method is trained using two common speech datasets and then evaluated using a third
dataset. The experimental results show that the SCLVAD method is particularly effective in improving
VAD performance in noisy environments. For clean environments, data augmentation improves
VAD accuracy by 8.0 to 8.6%, but there is no improvement due to the use of supervised contrastive
learning. On the other hand, for noisy environments, the SCLVAD method results in VAD accuracy
improvements of 2.9% and 4.6% for “speech with noise” and “speech with music”, respectively, with
only a negligible increase in processing overhead during training.Abstract has been revised.

Keywords: deep learning; convolutional neural networks; audio signal processing; voice activity
detection; supervised contrastive learning

1. Introduction

Voice activity detection (VAD) is an essential preprocessing stage for various audio-
signal-related downstream applications. It is a binary classification task that distinguishes
an audio signal into two classes consisting of “speech” and “non-speech”. VAD classifica-
tion of input audio signals is performed prior to various audio-related downstream tasks,
thereby possibly improving the performance and efficiency of those tasks.

Early VAD research works were conducted based on statistical models [1,2]. Recently,
deep learning-based VAD models leveraging various neural network models have been
actively explored, including convolutional neural networks (CNN) [3–7], recurrent neural
networks (RNN), and long short-term memory (LSTM) networks [8–11]. In particular,
Jia et al. and Kopuklu et al. [4,5] proposed compact VAD models suitable for use in a
limited hardware resource environment. In the case of [4], the model size was about
10 times smaller than that of other CNN-based models [3] using 1D time-channel separable
convolution but the VAD performance was similar. In the case of [5], a raw audio signal was
used as input and the model size was reduced by utilizing depthwise-separable convolution
and point-wise group convolution.

Since VAD is a fundamental initial task that is essential for processing audio signals in
all types of real environments, research on a noise-robust VAD model is an important topic
in its own right. In [12], a method utilizing data augmentation and knowledge distillation
was proposed for VAD with robust classification accuracy in a noisy environment.

Methods using contrastive learning have been proposed to further improve classifi-
cation performance and noise robustness in other audio-signal-related classification tasks
such as keyword spotting and environmental sound classification [13–15]. Contrastive
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learning is a method that is mainly used in self-supervised representation learning. It aims
to narrow the distance between positive pair samples, i.e., the samples in the same class,
and widen the distance between negative pair samples, i.e., the samples in different classes,
using a contrastive loss function. In [14], the authors improved the noise robustness of the
keyword spotting model by applying a new loss function, which was based on a contrastive
loss function, to the keyword spotting task.

Supervised contrastive learning [15], first proposed for use in image classification
tasks, was suggested as a modified contrastive loss function that allows contrastive learning
to be used in a supervised setting. For audio-signal-related tasks, Nasiri et al. [13] proposed
applying supervised contrastive learning with various data augmentation methods to
environmental sound classification.

Previous research works have been conducted to improve noise robustness in audio-
related tasks, such as keyword spotting and environmental sound classification, through the
utilization of contrastive learning [14] and supervised contrastive learning [13]. However,
there have been no publicly published works where these methods have been applied
and experimentally proven to be effective for VAD. Thus, this paper has implemented
and investigated the effectiveness of supervised contrastive learning for the VAD task.
The experimental results are very interesting in that supervised contrastive learning has
been found to improve the effectiveness of VAD in noisy environments but is essentially
ineffective in clean sound environments. In addition, for both clean and noisy environments,
data augmentation can improve VAD accuracy provided that effective sound-related data
augmentation methods are used. In this paper, a new supervised contrastive learning-based
voice activity detection (SCLVAD) model training strategy, which can improve the model’s
performance for noisy audio signals, is proposed.

In the proposed SCLVAD strategy, various new positive and negative pairs are gener-
ated using SpecAugment [16] and Cutout for spectrogram [4,17], which are data augmen-
tation methods that have been specifically developed for audio signal processing. These
new positive and negative pairs are added to an existing speech dataset during the neural
network training process. Then, for the loss function, the supervised contrastive loss is
combined with the cross-entropy loss in a weighted manner, as originally suggested in [13].

MarbleNet, proposed in [4], was used as the baseline model and experiments were
conducted to evaluate the performance of the proposed method. Based on the model
evaluation method used in [4], the performance of the baseline MarbleNet model and
the MarbleNet model trained with the proposed SCLVAD strategy were evaluated and
compared. The AVA-Speech dataset [18] was used as the test dataset and the true-positive
rate (TPR) and the area under the receiver operating characteristic (AUROC) curve were used as
the main evaluation metrics.

2. Background and Related Work

In this section, the background knowledge and related works on VAD and supervised
contrastive learning are explained. The main features of the related works and their pros
and cons are summarized in Table 1.

2.1. Voice Activity Detection

VAD is a binary classification task that distinguishes a given audio signal into speech
and non-speech classes. VAD is an essential and fundamental preprocessing step for audio-
signal-related downstream applications such as keyword spotting and automatic speech
recognition. Therefore, by performing accurate VAD on the input audio signal before the
various downstream tasks, the efficiency of the subsequent tasks can be improved. In other
words, if VAD is not performed properly, the performance of the subsequent tasks can be
degraded, making the classification performance of VAD very important.
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Table 1. A list of related methods and their key features, pros, and cons.

Method Pros Cons Features

MarbleNet [4] Compact
model size

Lack of
noise robustness

1D time-channel
separable convolution

CNN-TD [3] High classification
accuracy

Large
model size

VGG-16-based
neural network

Supervised contrastive learning [15] Highly improves
classification accuracy

Additional
neural network

Modified contrastive learning
to use labeled dataset

SoundCLR [13] High classification
accuracy

Additional
neural network

Supervised contrastive learning
for environmental sound
classification task

Recently, research on deep learning-based VAD models using various neural networks
has been actively conducted. In [4], the authors suggested a compact, yet high-performance
VAD model named MarbleNet, considering the use of the VAD model in a limited hardware
resource environment. Using 1D time-channel separable convolution, MarbleNet has
approximately 10 times fewer parameters than other CNN-based models such as CNN-
TD [3] but the performance was comparable.

2.2. Supervised Contrastive Learning

As shown in Figure 1, supervised contrastive learning is a modified method that
allows self-supervised contrastive learning to be used in fully supervised settings. Here,
an anchor refers to the sample that is used as the basis for that class. Given a specific
anchor, a positive pair refers to another sample belonging to the same class as the anchor
and a negative pair refers to a sample belonging to a class that is different from that of
the anchor. Self-supervised contrastive learning utilizes only one positive pair. However,
supervised contrastive learning leverages all data belonging to the same class as an anchor
within a given batch as positive pairs. Since the label information of the dataset can be
utilized, false negatives do not occur. Supervised contrastive learning was first applied to
the existing supervised learning-based image classification task to improve classification
performance [15]. In the case of audio-signal-related tasks, a supervised contrastive loss
function combined with a cross-entropy loss function was applied to environmental sound
classification [13]. Classification performance was improved by applying a combined loss
function, along with various data augmentation methods.

Similar to contrastive learning, supervised contrastive learning pulls an anchor and
positive pairs closer together and pushes negative pairs farther away from an anchor
in the embedding space. In contrastive learning, since there is no label information for
the dataset in the self-supervised setting, only one positive pair is generated using data
augmentation and negative pairs are randomly selected within the minibatch. Therefore,
a false-negative problem may occur in which the selected negative pairs belong to the
same class as the anchor. However, the supervised contrastive learning method has the
advantage of selecting negative pairs without a false-negative problem by leveraging the
label information. In addition, since all samples belonging to the same class as the anchor
within the minibatch can be used as positive pairs, the relationships between more sample
pairs can be reflected in the loss function.
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Figure 1. Comparison of self-supervised contrastive learning and supervised contrastive learning:
Supervised contrastive learning uses all data belonging to the same class as an anchor for positive
pairs within a given batch.

3. Proposed Method

In the proposed SCLVAD model training strategy, the VAD model is trained using a
supervised contrastive loss function combined with a cross-entropy loss function, as origi-
nally suggested in [13], along with various data augmentation methods. The structure of
the proposed SCLVAD training strategy is illustrated in Figure 2.

Figure 2. Structure of the proposed SCLVAD strategy: a supervised contrastive loss and a cross-
entropy loss are both used for training.

A batch of input data is augmented using data augmentation methods, such as
SpecAugment [16] and Cutout for spectrogram [4,17], which are specialized for audio
signal data. During the training process, since both the projection layer and classification
layer are used, the supervised contrastive loss and cross-entropy loss can be calculated
simultaneously as the batch of input data propagates.

3.1. Proposed Supervised Contrastive Learning-Based Voice Activity Detection Algorithm

In the proposed SCLVAD training strategy, shown in Algorithm 1, the method consists
of a data augmentation process and training with two loss functions. For one batch of input
data with N samples, the original samples {xi

original}
N
i=1 are augmented into {xi

augmented}
N
i=1

through the augmentation process Augment(). Then, the encoder networkNencoder receives
{xi

augmented}
N
i=1, which is an augmented batch, and outputs {ei}N

i=1, which is the embedding
feature. The projection network Nprojection and classification network Nclassi f ication receive
{ei}N

i=1 as an input and output the projection output {zi
projection}N

i=1 and classification

output {zi
classi f ication}

N
i=1, respectively. Finally, the supervised contrastive loss LSCL and
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cross-entropy loss LCE are calculated by {zi
projection}N

i=1 and {zi
classi f ication}

N
i=1 to update

each neural network.

Algorithm 1 Supervised Contrastive Learning for Voice Activity Detection—Model Train-
ing Strategy
Input: Encoder network Nencoder, projection network Nprojection, classification network
Nclassi f ication, Hyperparameters, Dataset samples

Output: Optimized encoder network N optimized
encoder and classification network N optimized

classi f ication
Initialize: Initialization of encoder network Nencoder, projection network Nprojection, classifi-
cation network Nclassi f ication

1: for l = 1, 2, . . . , total epochs do
2: for m = 1, 2, . . . , total batches do
3: Generate a batch of input data using data augmentation methods:
4: {xi

augmented}
N
i=1 ← Augment({xi

original}
N
i=1);

5: Input the augmented data to the encoder network:
6: {ei}N

i=1 ← Nencoder({xi
augmented}

N
i=1);

7: Input the embedding to the projection network and classification network:
8: {zi

projection}N
i=1 ← Nprojection({ei}N

i=1);

9: {zi
classi f ication}

N
i=1 ← Nclassi f ication({ei}N

i=1);
10: Calculate the supervised contrastive loss using Equation (2): LSCL;
11: Calculate the cross-entropy loss using Equation (1): LCE;
12: Calculate the total loss using Equation (3): Ltotal ;
13: Update the projection network Nprojection, classification network Nclassi f ication,

and encoder network Nencoder;
14: end for
15: end for

At the inference process after the training process, the projection layer Nprojection is
detached and only the encoder networkNencoder and classification networkNclassi f ication are
used for the VAD classification. Instead of two-stage training, which first trains the encoder
network Nencoder and then fine-tunes the classification network Nclassi f ication, as suggested
in [15], one-stage training was applied using both the projection network Nprojection and
the classification network Nclassi f ication simultaneously, as suggested in [13]. Detailed
descriptions of the loss functions are described in the next part of this section.

3.2. Loss Functions

In the proposed algorithm, two loss functions are used to train the VAD model, as
suggested in [13]. The first loss function is the cross-entropy loss function LCE. In many
VAD-related studies [3–5,12], a cross-entropy loss has been used to train VAD models.
The cross-entropy loss is calculated using the output probability distribution of the neu-
ral network of the input samples and the true probability distribution of those samples.
The training of the neural network model using a cross-entropy loss aims to reduce the
entropy between the two probability distributions. The true probability distribution can be
expressed as one-hot vectors from labels and represents the class of samples. Therefore,
the cross-entropy loss function for the proposed SCLVAD algorithm can be expressed
as follows:

LCE = H(p, z) = −∑
i

pilog(zi
classi f ication) (1)

where pi indicates the true probability distribution and zi
classi f ication is the output probability

distribution of the classification network Nclassi f ication.
The second loss function is the supervised contrastive loss function LSCL. As shown

in Algorithm 1, N samples in one batch for the original dataset can be represented as
{xi

original}
N
i=1 and augmented samples can be represented as {xi

augmented}
N
i=1. The labels of
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xi
original and xi

augmented are the same and can be expressed as yi. When xi
augmented is forward

propagated to the encoder network and projection network, the projection network outputs
zi

projection. Therefore, the supervised contrastive loss for the proposed SCLVAD algorithm
can be expressed as follows:

LSCL = − 1
Ni

pos
∑

p∈P(i)
log

exp(zi
projection · z

p
projection/τ)

∑k∈K(i) exp(zi
projection · zk

projection/τ)
(2)

where τ is a scalar value, which is a temperature parameter, and the sample with the index
i is an anchor. K(i) is the set of samples excluding i among the total N samples and P(i) is
the set of positive samples. Finally, Ni

pos is the number of positive samples with the same
label as the anchor, yi.

Therefore, the final loss function for the training process of the proposed SCLVAD
method consists of the aforementioned Equations (1) and (2), which can be expressed
as follows:

Ltotal = αLCE + βLSCL (3)

where α, β are the coefficients for each loss function. Each coefficient is used as a hyperpa-
rameter to adjust the weight of each loss function.

4. Experiments

In this section, the implementation details of the neural network model and the
experimental results are explained. All the experiments were conducted on an NVIDIA
GeForce RTX 2080 Ti GPU with a PyTorch [19] machine learning framework. More details
of the neural network models and datasets used for the experiments are explained in the
following sections.

4.1. Implementation Details

For a fair comparison, the same MarbleNet architecture was used for both the baseline
and the SCLVAD methods. The training parameters, such as the batch size and number of
training epochs, were applied equally to both methods, as in [4].

For both the baseline and SCLVAD models, a total of 150 epochs of training were
performed and the stochastic gradient descent (SGD) optimizer [20] with a momentum
of 0.9 and weight decay of 1× 10−3 was used. The initial learning rate was 1× 10−2 and
the Warmup-Hold-Decay learning rate scheduler [21] was used. Batch sizes of 256 and 512
were used for the experiments.

For the proposed SCLVAD algorithm, the temperature τ for LSCL in Equation (2) was
0.07. The coefficients α and β for Ltotal in Equation (3) were both 0.5, as used in [13]. The
encoder network Nencoder, the encoder part of MarbleNet, which is part of the last two
fully connected layers, was excluded. The classification network Nclassi f ication was the last
two fully connected layers of MarbleNet. The structures of Nencoder and Nclassi f ication were
the same as in MarbleNet and [4]. The projection network Nprojection was located after the
encoder network Nencoder and was parallel with the classification network Nclassi f ication, as
shown in Figure 2. The structure of Nprojection consisted of two fully connected layers and a
ReLU activation function. The sizes of the input and output of the first fully connected layer
were both 128 and the sizes of the input and output of the second fully connected layer were
128 and 64, respectively. The final output was normalized and used for computing LSCL.

4.2. Training Dataset

The training dataset was a variant of the training dataset that was used in [4]. The dataset
corresponding to the ‘speech’ class was composed of the Google Speech Commands Dataset
V2 [22] and the ‘non-speech’ class was composed of audio samples from freesound.org
(accessed on 26 January 2023) [23]. The Google Speech Commands Dataset V2 consists of
105,000 speeches of about 1s lengths and includes 35 classes of utterances such as “On”,

freesound.org
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“Right”, and “Go”. The total number of audio samples from freesound.org was 2615 and
32 classes of background noise were used, where the length of each sample varied from
0.63 s to 100 s.

Due to the different lengths of the initial audio samples, the audio samples were
preprocessed in order to produce training audio samples of the same length, as conducted
in [4]. The audio samples were converted into segments of 0.63-second lengths using this
process. Then, a 64-dimensional mel frequency cepstral coefficient (MFCC) encoding of
this data was used as the training input for the MarbleNet neural network.

MFCC is an audio feature representation commonly used in speech and audio signal
processing. It is a set of coefficients that describes the shape of a signal’s power spectrum
in a way that more closely resembles the way the human auditory system perceives
sound. MarbleNet [4], which was the baseline neural network architecture used in the
experiments, also uses MFCC features instead of the Mel spectrogram. The experimental
results presented in [4] showed that the accuracy achieved using MFCC was higher than
the corresponding accuracy using the Mel spectrogram. Therefore, in this paper, MFCC was
used to produce the training input features and the resulting performance was compared
with the baseline.

4.3. Performance Evaluation

In order to ensure a proper evaluation of the effectiveness of the proposed method,
testing was conducted using the AVA-Speech dataset [18], which is a completely different
dataset from the datasets used during training (sound samples from Google Speech Com-
mands dataset and freesound.org were used during training). The use of the AVA-Speech
dataset for testing enabled a fair comparison with MarbleNet since MarbleNet also used
the AVA-Speech dataset for testing [4]. The AVA-Speech dataset is composed of YouTube
videos with four classes: “no speech”, “clean speech”, “speech with noise”, and “speech
with music”. As in [4], the “All” speech class, which is a combination of the aforementioned
three speech classes, was also used for the evaluation.

Two metrics were used to evaluate and compare the proposed method with the Mar-
bleNet baseline. As the first evaluation metric, the true-positive rate (TPR) was calculated
at the frame level for each speech class, and the TPR value when the false-positive rate
(FPR) = 0.315 was used (this evaluation method is the same one used in MarbleNet). For
the second evaluation metric, the area under the receiver operating characteristic (AUROC)
curve was used. This is a metric commonly used to measure the overall effectiveness of
speech processing.Sentences have been revised

In the evaluation process, two frame-level prediction methods were evaluated. First,
the frame was created by shifting the window for 10 ms without overlapping and then, the
window’s prediction was used to indicate the label of the frame. Second, the prediction was
created by overlapping the input segments. The label for the frame spanned by multiple
segments was generated by applying a smoothing filter, which used the median values.
The degree of overlapping was fixed at 87.5%.

4.4. Data Augmentation

Four audio data augmentation methods, including time shift, white noise augmenta-
tion, SpecAugment [16], and Cutout [17], were used in [4]. These augmentation methods
were applied to both the baseline and the proposed training algorithm. White noise augmen-
tation was applied with a probability of 80% and the other aforementioned augmentation
methods were applied to every training dataset. The parameters related to augmentation
were set in the same way as [4]. Specifically, time shift was applied in the range of −5 ms to
5 ms and white noise with a magnitude between −90 dB and −46 dB was applied for white
noise augmentation. For SpecAugment, two continuous time masks with sizes ranging
from 0 to 25 time steps were used and two continuous frequency masks with sizes ranging
from 0 to 15 frequency bands were used. For Cutout, five rectangular masks were used in
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the time and frequency dimensions. Each mask contained a width of 25 time steps and a
height of 15 frequency bands.

4.5. Experimental Results

Three different training methods are compared to verify the effectiveness of the
proposed method.

In Tables 2 and 3, No Augmentation indicates MarbleNet trained without using ei-
ther the data augmentation methods or the proposed SCLVAD algorithm. The other two
methods, baseline and SCLVAD, were trained using the same augmentation methods. Base-
line indicates MarbleNet trained without the proposed SCLVAD algorithm and SCLVAD
indicates MarbleNet trained with the proposed SCLVAD algorithm.

Table 2. Experimental results of the baseline and SCLVAD algorithm with a batch size of 256.

Batch Size = 256 TPR for FPR = 0.315 AUROC

Method Clean Noise Music All All

No Augmentation 0.888± 0.021 0.683± 0.028 0.655± 0.021 0.729± 0.023 0.778± 0.014
Baseline [4] 0.960± 0.011 0.794± 0.023 0.742± 0.028 0.823± 0.021 0.844± 0.017

SCLVAD 0.959± 0.009 0.807± 0.018 0.779± 0.012 0.839± 0.015 0.851± 0.009

Table 3. Experimental results of the baseline and SCLVAD algorithm with a batch size of 256 and
input segments overlapped by 87.5%.

Batch Size = 256 TPR for FPR = 0.315 AUROC

Method Clean Noise Music All All

No Augmentation + overlap 87.5% 0.892± 0.021 0.687± 0.030 0.661± 0.023 0.734± 0.025 0.783± 0.016
Baseline + overlap 87.5% [4] 0.969± 0.011 0.808± 0.025 0.758± 0.026 0.838± 0.021 0.854± 0.018

SCLVAD + overlap 87.5% 0.969± 0.008 0.825± 0.019 0.793± 0.013 0.857± 0.013 0.863± 0.011

In addition, the evaluation of each method with segment overlapping is reported.
For the overlapped case in Tables 3 and 5, the input segment was overlapped by 87.5%,
leveraging the median smoothing filter. All the values in the table are the mean and
standard deviation values of five repeated experiments for each case. More specifically,
each value in the table indicates the mean± standard deviation.

The experimental results using a batch size of 256 are reported in Tables 2 and 3. In
both cases, MarbleNet trained without the data augmentation methods showed the worst
classification performance for all speech classes. Although the performance improved
when data augmentation was applied, there was a greater performance improvement when
the proposed method and data augmentation were used together.

For the most part, SCLVAD achieved superior results both with and without the
segments overlapping to the baseline. With the SCLVAD method, the AUROC of MarbleNet
for the “All” class was improved by 0.9% with overlapping segments compared to the
baseline. For the TPR with the overlapping segments, the improvements were 1.7%, 3.5%,
and 1.9% for the “Noise”, “Music”, and “All” classes, respectively. Moreover, the standard
deviations for all cases were significantly reduced using SCLVAD. For “Clean” speech,
the mean TPR values of SCLVAD and MarbleNet were similar but SCLVAD showed a
smaller standard deviation value. From these results, it can be seen that SCLVAD more
robustly distinguished between “speech” and “non-speech” in terms of noise. Considering
the fact that SCLVAD barely affected the performance for the “Clean” speech data but
significantly improved the performance for the other classes, the proposed method can
provide robustness for noisy data. In addition, SCLVAD can help to obtain stable training
results. This can be seen in the standard deviation results shown in Tables 2–5.
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Table 4. Experimental results of the baseline and SCLVAD algorithm with a batch size of 512.

Batch Size = 512 TPR for FPR = 0.315 AUROC

Method Clean Noise Music All All

Baseline [4] 0.960± 0.012 0.793± 0.027 0.739± 0.029 0.821± 0.024 0.845± 0.016
SCLVAD 0.961± 0.003 0.819± 0.012 0.786± 0.012 0.849± 0.010 0.859± 0.005

Table 5. Experimental results of the baseline and SCLVAD algorithm with a batch size of 512 and
input segments overlapped by 87.5%.

Batch Size = 512 TPR for FPR = 0.315 AUROC

Method Clean Noise Music All All

Baseline + overlap 87.5% [4] 0.966± 0.013 0.806± 0.028 0.748± 0.026 0.834± 0.025 0.854± 0.018
SCLVAD + overlap 87.5% 0.972± 0.003 0.837± 0.013 0.804± 0.018 0.865± 0.010 0.871± 0.006

Since SCLVAD uses supervised contrastive learning, the performance can be improved
as the number of negative pairs increases [15]. Therefore, the performance of SCLVAD
was also tested with a batch size of 512 while maintaining the other hyperparameters.
In addition, for a fair comparison, the performance was compared by applying the same
batch size to the MarbleNet baseline model.

As shown in Tables 4 and 5, SCLVAD showed a higher TPR and AUROC for all speech
classes compared to the baseline. In the case of the baseline, as the batch size increased,
the AUROC was similar but the TPR degraded for all speech classes. However, in the case
of SCLVAD, both the AUROC and TPR improved as the batch size increased. In addition,
the overall standard deviation was further reduced, resulting in improved model stability as
the batch size increased. With the proposed SCLVAD method, the AUROC of the MarbleNet
for the “All” class was improved by 1.7% with overlapping segments compared to the
baseline trained with a batch size of 256, which showed better performance than the baseline
trained with a batch size of 512. For the TPR with overlapping segments, the improvements
were 2.9%, 4.6%, and 2.7% for the “Noise”, “Music”, and “All” classes, respectively.

In order to provide a more detailed analysis, we examined the AUROC values, as
well as the TPR values, for the “Noise” and “Music” classes when the input segments
overlapped by 87.5%. We compared the performance of the proposed method and the
baseline method, both of which were trained with batch sizes of 256 and 512, respectively.
The results, as shown in Figure 3, indicated that the “Noise” class for the baseline method
resulted in similar AUROC average and standard deviation values for both batch sizes.
However, the proposed SCLVAD method performed better than the baseline for both batch
sizes. Additionally, as the batch size increased, the average value of the AUROC improved
and the standard deviation decreased. In the case of the “Music” class, as shown in Figure 4,
the results indicated that the proposed SCLVAD method had a superior average AUROC
value and a smaller standard deviation for both batch sizes compared to the baseline
method. In contrast, the performance of the baseline method decreased when the batch
size increased, whereas the performance of the SCLVAD method improved as the batch
size increased, which was similar to the results obtained for the “Noise” class.

As can be seen from the experimental results, it can be confirmed that supervised
contrastive learning, which has not been previously applied to the VAD task, effectively
improves the noise robustness of the VAD model. The AVA-Speech dataset used in the
experiments is composed of YouTube movie videos. Therefore, the use of this dataset
enabled testing in a more realistic and difficult noise environment than in a simple white
noise environment.
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Figure 3. Comparison of AUROC for the baseline and the proposed method: mean and standard
deviation values for the area under the receiver operating characteristic (AUROC) metric are shown
for the “Noise” class in the AVA-Speech dataset.

Figure 4. Comparison of AUROC for the baseline and proposed methods: mean and standard
deviation values for the area under the receiver operating characteristic (AUROC) metric are shown
for the “Music” class in the AVA-Speech dataset.

The proposed SCLVAD method is a supervised learning technique, which means that
the training samples must be tagged by an expert as examples and counterexamples of
each class. Speech processing can also be conducted using unsupervised learning, which
uses untagged training samples. However, there are significant differences in the training
methods and models used for supervised and unsupervised learning. Thus, the use of
these two types of learning methods for VAD cannot be directly compared.

Since SCLVAD utilized an additional projection network in the training process,
the training time was slightly increased. The training time of the baseline for 150 epochs
was 72 min and the training time of the proposed method for the same number of epochs
was 75 min (a 4.2% increase). There was no difference in the inference time, as both the
SCLVAD and baseline methods used the same neural network model.

5. Conclusions

To improve the performance of VAD training, a SCLVAD training strategy is proposed.
The VAD model was trained using a weighted combination of a supervised contrastive loss
function and a cross-entropy loss function, along with various audio data augmentation
methods. MarbleNet, which is a compact audio-specialized neural network with high
accuracy, was used as the baseline for our experiments. Training was conducted using
audio samples from freesound.org and the Google Speech Commands Dataset V2. For a
reliable evaluation, testing was conducted using a different dataset, i.e., the AVA-Speech
dataset. The proposed SCLVAD method improved the classification performance of the
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VAD model and slightly increased the training time. The TPR values (given an FPR of 0.315)
of speech with noise and speech with music were improved by 2.9% and 4.6%, respectively,
compared to the baseline. The AUROC value, which indicates the overall performance on
the target dataset, was improved by 1.7% compared to the baseline. Therefore, the proposed
SCLVAD method provides a significant advance in state-of-the-art methods for the VAD
task, especially for detecting speech in noisy environments.
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