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Abstract: This paper presents a multi-task learning framework, called the dynamic information
transfer network (DITN). We mainly focused on improving the pose estimation with the spatial
relationship of the adjacent joints. To benefit from the explicit structural knowledge, we constructed
two branches with a shared backbone to localize the human joints and bones, respectively. Since
related tasks share a high-level representation, we leveraged the bone information to refine the joint
localization via dynamic information transfer. In detail, we extracted the dynamic parameters from
the bone branch and used them to make the network learn constraint relationships via dynamic
convolution. Moreover, attention blocks were added after the information transfer to balance the
information across different granularity levels and induce the network to focus on the informative
regions. The experimental results demonstrated the effectiveness of the DITN, which achieved
90.8% PCKh@0.5 on MPII and 75.0% AP on COCO. The qualitative results on the MPII and COCO
datasets showed that the DITN achieved better performance, especially on heavily occluded or easily
confusable joint localization.

Keywords: computer vision; pose estimation; multi-task learning; dynamic information transfer

1. Introduction

Two-dimensional human pose estimation (HPE) is the task of localizing human joints
or parts from monocular images [1,2] or videos [3–5]. It has become a significant basis
for human action recognition [6], human–computer interaction [7], human parsing [8],
animation [9], etc. Classical methods [10–13] are mainly based on the pictorial structure
(PS) framework. They usually adopt vertices indicating joints and edges encoding the
connections of adjacent joints to construct skeleton graph models. The spatial relationship
of joints, such as the angle and distance, is captured to predict the localization of body
joints. Deep learning methods [14–21] extract spatial contextual information directly from
data. These methods perform well in visual representation; however, they lack the ability to
explicitly learn the spatial relationship between joints. Without utilizing a holistic skeleton
structure and intrinsic prior knowledge, it is difficult for them to tackle challenges including
uncommon body postures and occlusions.

Recent studies [22,23] suggest that spatial dependency can provide contextual cues
to help localize body joints in crowded and occluded scenes. Tang et al. [24] proposed a
hierarchical compositional framework that exploits the relationships among human joints.
Nie et al. [25,26] leveraged bone information from human parsing to assist human pose
estimation in a multi-task learning manner. These methods prove the effectiveness of
spatial representation learning. The representation in the form of human bones provides
more holistic structure information for the precise localization of human joints. For human
pose estimation, it is significant to explore the simplicity of the spatial information from
different levels and promote information interaction between them.

Inspired by advances in multi-task learning for computer vision tasks [27,28], we
present a simple and effective framework, called the dynamic information transfer network
(DITN). With implicit constraints from multi-task learning, the localization accuracy of
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human joints and bones is boosted. Different from previous works, we adopted information
interaction across different granularity levels to refine the human pose estimation. Specifi-
cally, we constructed the joint prediction branch and the bone prediction branch to localize
the human joints (e.g., shoulder, elbow, wrist) and bones (e.g., lower arms, upper arm) of
images, respectively. The two branches use the same backbone as they share a common
optimal hypothesis class in localization tasks. We took dynamic parameters generated
from the bone prediction branch as the convolutional kernel weight to extract specified
features in the joint prediction branch by performing dynamic convolution. By conducting
information interaction, the two branches learn the corresponding spatial features mutually
in the training phase. The bone prediction branch provides explicit spatial information
for the joint prediction branch by dynamic information transfer. As shown in Figure 1,
the estimated poses from HRNet [19] fail to localize the right elbow due to the occlusion.
We used the spatial constraints from the bone predictions to refine the localization of the
human joints. Explicit spatial information leads to better results, especially on heavily
occluded or easily confusable joints’ localization.

(a) (b) (c)

Figure 1. Illustration of human pose estimation in an occluded scene. (a) The pose estimation from
HRNet [19]. (b) Visualization of bone information from our the bone prediction branch. (c) The pose
estimation of our method. We observe that the visual-based HRNet fails to localize the right elbow,
yet our approach delivers dependable pose estimation by exploiting bone information.

Furthermore, we introduced attention blocks into the DITN to improve the perfor-
mance of the networks. The channel attention block is incorporated in the dynamic infor-
mation transfer to balance shared features. The spatial attention block refines the output
joint features to benefit joint localization. By combining the DITN and attention blocks, our
network can obtain more accurate predictions.

The main contributions of this work are summarized as follows:

• We propose a multi-task learning framework that estimates human joints and bones
in an end-to-end trainable manner.

• We propose a dynamic information transfer module (DITM) that exploits transferred
bone-based part representations to obtain better pose estimation results.

• We integrated attention blocks into the DITM, which balance the shared feature across
different granularity levels and induce the network to focus on important features.

We achieved competitive results on two popular human pose estimation benchmarks,
the MPII and COCO datasets. Empirical evaluations proved the effectiveness of the multi-
task learning framework with dynamic information transfer.

2. Related Work
2.1. Human Pose Estimation

Recent deep learning methods relying on convolutional neural networks have achieved
better performance than prior works. Regression-based methods were explored in the early
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stage of 2D human pose estimation. DeepPose [17] applies the deep convolutional neural
network to the human pose estimation task and directly regresses the human joint coordi-
nates. Papandreou et al. [29] introduced a novel aggregation procedure to obtain highly
localized keypoint predictions. Sun et al. [30] applied an integral operation that relates and
unifies the heat map representation and joint regression, thus avoiding non-differentiable
postprocessing and quantization error. Heat map regression methods are easy to implement
and have much higher accuracy than traditional coordinate regression. These convolutional
neural networks usually adopt the high-to-low and low-to-high frameworks to excavate
features on various scales. Newell et al. [16] proposed a stacked hourglass architecture that
consolidates features at multiple scales for repeated bottom-up, top-down inference. Yang
et al. [31] proposed a pyramid residual module (PRM) to enhance the invariance in the
scales of deep convolutional neural networks. Tang et al. [24] demonstrated a sequential
architecture that refines joint detection via composing multiple modules. Chen et al. [32]
proposed a cascaded pyramid network that integrates and refines different spatial features
to handle the “hard” joints. Li et al. [33] adopted a coarse-to-fine supervision strategy
and aggregated features across a multi-stage network architecture to achieve better per-
formance. To keep high-resolution features across different stages of the network, Sun
et al. [19] proposed a high-resolution network (HRNet) with multi-branch information
fusion. We adopted HRNet as our backbone due to its outstanding performance. Besides,
our approach exploits inter-level feature fusion to extract more semantic information and
refine localization with the assistance of multi-task learning.

2.2. Multi-Task Learning

Multi-task learning (MTL) [27,28,34] in deep neural networks exploits similarities and
differences in multiple tasks simultaneously to learn representations by a shared model.
Compared with training the models separately, MTL can improve the generalization
performance and prediction accuracy for all tasks. In general, MTL can be divided into two
categories: hard parameter sharing and soft parameter sharing. Hard parameter sharing
is applied by sharing the model weight among all the tasks, and it has different output
layers to prevent overfitting. As for the soft parameter sharing scheme, every task has its
specific model weights. The weight distance among different tasks is generally regularized
to ensure the similarity of the parameters. The hard parameter sharing paradigm is more
helpful in these methods, such as [8,25,26,35], which used closely related tasks as auxiliary
tasks for MTL. Since human joints and bones share a common optimal hypothesis class,
we chose the hard parameter sharing paradigm to share the same hidden space for two
localization tasks.

Besides, dynamic transfer [36] is an effective process to provide useful guidance.
Bertinetto et al. [37] utilized the dynamic parameter prediction mechanism to fuse specific
information in the learning process for one-shot learning. Motivated by this, Nie et al. [25]
exploited the dynamic parameters from the human parsing information to extract com-
plementary features for pose estimation. Moreover, Nie et al. [26] introduced a mutual
adaptation mechanism by learning mutual guidance information for joint human parsing
and pose estimation. Zhou et al. [35] proposed a macro–micro mutual learning mechanism
to boost the information interaction between human limbs and joints.

2.3. Attention Mechanism

The attention mechanism helps neural networks pay attention to particular areas in an
end-to-end trainable manner. Since the attention model is effective in understanding images,
it can be easily incorporated into many computer vision tasks, such as object detection [38],
visual recognition [39], object segmentation [40–45], and activity recognition [6]. Hu
et al. [46] proposed the squeeze-and-excitation network (SENet), which focuses on the
relationship among channel features. Woo et al. [47] introduced a convolutional block
attention module (CBAM), which exploits spatial and channelwise features to compute
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complimentary attention. Moreover, Cai et al. [48] combined mixed attention to balance
local and global representations for the final prediction.

The recent representative works for 2D human pose estimation are summarized in
Table 1. We show the details of recent studies on the network type, the technique of
implementation, the datasets used, the evaluation measures, and the highlights. More
details of the datasets and evaluation metrics are described in Section 4.

Table 1. Summary of 2D human pose estimation methods.

Method Network Type Technique Datasets Evaluation
Measures Highlights

Papandreou
et al. [29] ResNet Two-step cascade COCO AP

Predict activation heat maps and
offsets for each keypoint

Keypoint-based
non-maximum-suppression (NMS)

Newell
et al. [16] Hourglass Multiple stacked

hourglass modules MPII PCKh

Captures and consolidates
information across multiple scales

Repeated bottom-up, top-down
inference

Yang
et al. [31] Hourglass Learning feature

pyramids MPII PCKh
Pyramid residual module (PRM)

learns filters for input features with
different resolutions

Tang
et al. [24] DLCM

Deeply learned
compositional

models
LSP
MPII

PCKh

Learns the hierarchical
compositionality of visual patterns

Intermediates supervision for
hierarchical representation of body

parts

Xiao
et al. [18] ResNet

Combining the
upsampling and

convolutional
parameters into
deconvolutional

layers

MPII
COCO

PCKh
AP

Simply adds a few deconvolutional
layers after ResNet to generate

high-resolution heat maps

Sun et al. [19] HRNet

Deep
high-resolution
representation

learning

MPII
COCO

PCKh AP
High-resolution representations of
features across the whole network

Multi-scale fusion

Nie et al. [25] Hourglass Parsing-induced
learner MPII PCKh

Exploits parsing information to
extract complementary features

Transferable across datasets

Cai et al. [48] RSN
Delicate local
representation

learning

MPII
COCO PCKh AP

Learns delicate local representations
by efficient intra-level feature fusion
Proposes an attention mechanism to

make a trade-off between
representations

Zhou
et al. [35] Hourglass

Macro–micro
mutual learning

mechanism

MPII
COCO PCKh AP

Macro mutual learning module to
conduct the information interaction
Micro mutual learning module to
propagate the mutual information

Previous studies proposed successful network architectures to improve the qualities
of features. Our architecture builds upon the effective HRNet architecture [19] to generate
reliable representations. These methods also prove the effectiveness of multi-task learning
and the attention mechanism. We combined multi-task learning and the attention mecha-
nism to build an efficient framework. In our work, we chose human bone localization as an
auxiliary task for pose estimation. Our method leverages existing pairs of adjacent joints to
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generate auxiliary labels to avoid extra manual annotations. Compared with [35], we solely
transferred the information of the human bones to the human joints through one stage. To
filter useless information from related human joints, we applied the channel attention block
to the stage of multi-granularity information fusion. We refined the output features via the
spatial attention block, which helps the model focus on human body regions.

3. Method

In this section, we first introduce the architecture of the dynamic information transfer
network (DITN) and detail its components. The overall pipeline for the proposed DITN
model is shown in Figure 2. At the end of the backbone network, we constructed two
branches that predict the heat maps for body joints and bones, respectively. The backbone
network (Section 3.1) aims to aggregate low-level and high-level representations to achieve
a mutual boosting scheme and learn the multi-granularity features for pose estimation.
The resultant feature maps from the highest-resolution output are fed to the decoder
module (Section 3.2) to generate the features of joints or bones separately. For fine-grained
information transfer, we grouped the features so that the pairs of adjacent joint features
correspond to the bones. We appended a dynamic information transfer module (DITM)
(Section 3.3) after feature grouping. Dynamic information transfer is performed from
bone features to joint features. Meanwhile, we introduced attention blocks (Section 3.4),
the channel attention block and spatial attention block, into the DITM. The attention
blocks control the balance of shared features across different granularities and reweight the
features to automatically infer the regions of interest.

HRNet Backbone

Decoder 
Module

Joints 
features

Bones 
features

Decoder 
ModuleFeature maps

Dynamic
Information 

Transfer
Module

Features
grouping

Features
grouping

Figure 2. The proposed multi-task learning framework. The network employs a convolutional
network with shared parameters to extract joint and bone features for each person. By performing
feature grouping, the corresponding joint and bone features are sent to the dynamic information
transfer module (DITM) to achieve refined pose estimation.

3.1. Feature Extraction

Given an input RGB image I ∈ RC×H×W of size H ×W, we first ran a human detector
to extract the human bounding boxes. Then, each of these boxes is cropped from the
image and sent to the backbone network. We adopted HRNet as the backbone network,
which is a successful architecture for many vision tasks such as pose estimation [19],
object detection [49], and semantic segmentation [50]. HRNet starts from a high-resolution
convolutional stem and gradually connects high-to-low-resolution subnetworks in parallel.
Instead of adopting the high-to-low and low-to-high frameworks to recover the resolution,
HRNet maintains a high-resolution pass throughout the whole process. It is an effective
way to generate reliable representations by repeatedly receiving the information from the
high-resolution subnetwork. With the repeatedly aggregated high-level and low-level
representations, multi-resolution spatial features with rich semantics are extracted. We
modified the original HRNet by discarding the final heat map regression layer and adding
two branches to produce the human joints’ and bones’ prediction.

3.2. Decoder and Grouping

To amplify the valuable features and reduce the noise for specific tasks, we appended
two decoder modules at the end of the backbone network. The architecture of the decoder
module is shown in Figure 3, which is modified by the basic residual blocks [51]. The
number of the input feature fin channels C is expanded to 2C through a 1× 1 convolution
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and reduced to C with a 3× 3 convolution. Then, we added the original feature fin and
implemented a 1× 1 convolution on the residual features to generate the corresponding
feature maps.

3x
3 

co
nv

1x
1 

co
nv

1x
1 

co
nv

Decoder Module

fin fout⨁

Figure 3. The architecture of the decoder module.

High-level joint features FJ and bone features FB are extracted from the decoder
module. To perform the fine-grained information transfer in the DITM, we divided the
joint features FJ and bone features FB into b groups by anatomical constraints as follows:

G1 : r.ankle, r.knee↔ r.lower.leg,

G2 : r.knee, r.hip↔ r.upper.leg,

. . . ,

Gb : l.elbow, l.wrist↔ l.lower.arm.

(1)

We split and concatenated the tensor FJ into FGB
J =

{
f G1
J , . . . , f Gb

J

}
∈ RN×C×H×W ,

where N represents the batch size and C, H, and W represent the channel number, height,
and width of the feature maps. Concretely, like group GB, we concatenated the left elbow
features and left wrist features in the channel dimension to generate joint features f Gb

J .

Then, we expanded the left lower arm features to obtain the bone features f Gb
B for the

same channel number with the joint features. Figure 4 shows the body joints linked by
the bones, in which the features f Gb

J correspond to the left lower arm features f Gb
B . Other

groups follow the same procedure to transfer the information in the dynamic information
transfer module.

The architecture of the DITM is shown in Figure 5. It takes the grouped joint features
FGB

J and bone features FGB
B as the input for the DITM. Our parameter adapter is a one-

shot learner, which processes the bone features FGB
B to generate the dynamic parameter θ

following [26,37]. The architecture of the parameter adapter is shown in Figure 6a. We
exploited a sequence of 3× 3 convolution and max-pooling to reduce the space and time cost
of the information transfer. Note that we always applied batch normalization and the ReLU
activation function after the convolution. To transfer information adaptively, the dynamic
parameter θ is taken as a convolutional kernel. After being convolved by a standard 1× 1
convolutional layer, the joint features FGB

J are sent to the adaptive convolution together

with the dynamic parameter θB =
{

θ1, . . . , θb
}

to generate the bone-induced features FB
I :

FB
I = AC(K1(FGB

J ), θB) = AC(K1(G(FJ)), PA(G(FB))), (2)

where K1(·) represents the 1× 1 convolutional operation and G(·) means dividing the
features FJ or FB into the B group. AC(·) represents the adaptive convolutional operation,
which replaces the static convolutional kernel with the dynamic convolution parameter
θ. PA(·) represents the parameter adapter, which predicts convolution parameter θ. It
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is a more efficient way to capture and consolidate information than using hand-crafted
features.

joints

bones

L.Elbow

L.Lower Arm

L.Lower Arm

L.Wrist

concatenate

Feature map

concatenate

��
��

��
��

Grouped
joints

feature

Grouped
bones
feature

Figure 4. Illustration of the proposed feature grouping.

3.3. Dynamic Information Transfer Module

The bone-induced features FB
I by the adaptive convolution are fed into the channel

attention block to generate residual features. Our network regards FGB
J after the 1× 1

convolutional operation as the original information and fuses it with the output features of
the channel attention block to generate the refined features FB

R . In particular, the feature
fusion with the channel attention block makes the network ignore the bias parameters in
the adaptive convolutional operation. Then, the features FB

R are sent to a spatial attention
module to generate joint heat maps:

Hpred
J = SA(FB

R ) = SA(K1(FGB
J ) + CA(FB

I )), (3)

where Hpred
J are the final joint heat maps and FB

I represent the bone-induced features. CA(·)
and SA(·) represent the channel attention block and spatial attention block, which are
detailed in Section 3.4. As for the bone prediction branch, the bone heat maps Hpred

B are
directly generated from the decoder module.
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Dynamic Information Transfer Module

1
x1

co
nv Adaptive  

Convolution

Channel 
Attention  

Blocks

Spatial  
Attention  

Blocks

Parameter  
Adapter

⨁

Figure 5. The architecture of the dynamic information transfer module.
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Figure 6. Illustration of the proposed parameter adapter, channel attention block, and spatial atten-
tion block.

3.4. Attention Blocks

To make the network pay attention to particular areas, we inserted the channel atten-
tion block and the spatial attention block into the dynamic information transfer module.
The architectures of the channel attention block and the spatial attention block are illus-
trated in Figure 6b,c. The channel attention block aims to generate a channel attention
map, which drives the network to focus on the meaningful channel information. The first
component of this block is a 3× 3 convolution to excavate information as a residual feature.
Inspired by SENet [46], we aggregated the spatial information using a global average
pooling, a 1× 1 convolution, and a sigmoid activation to obtain a set of channel weights.
The final features are obtained via conducting sum and elementwise multiplication with
residual features. Define the input features of the channel attention block as fin and the
output features as fout. The channel attention block is formulated as Equation (4):

fout = CA( fin) = (1 + σ(K1(Avg(K3( fin)))))� K3( fin), (4)

where K1(·) represents the 1× 1 convolution, K3(·) represents the 3× 3 convolution, Avg(·)
represents the global average pooling, σ(·) represents the sigmoid activation function, and
� represents the elementwise multiplication. We expected the network to benefit from the
correctly induced features and to diminish the negative impacts of ambiguous information.
Therefore, we utilized the channel attention block to exchange the information through
adaptive channel weighting.

To utilize the spatial relationship of the features, the spatial attention block induces
the network to focus on the informative part for target localization. Similar to our channel
attention block, a 3× 3 convolution is implemented to extract the residual features. Then,
we used a 3× 3 convolution, a depthwise 9× 9 convolution, and a sigmoid activation to
obtain a spatial attention map. The sum and elementwise multiplication with residual
features are conducted in the final component. Define the input features of the spatial
attention block as fin and the output features as fout. The spatial attention block can be
formulated as Equation (5):

fout = SA( fin) = (1 + σ(DW(K1(K3( fin)))))� K3( fin), (5)

where DW(·) represents the depthwise 9× 9 convolution. The larger convolutional ker-
nel used in the spatial attention block not only obtains a larger receptive field, but also
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obtains more global features. A previous study [47] showed the comparison of different
convolutional kernel sizes, showing that adopting a larger kernel size generates better
accuracy. This implies that a broad view (i.e., large receptive field) is needed to decide
on spatially important regions. CBAM [47] uses average pooling in the spatial attention,
which generates the spatial attention map at each pixel by aggregating all the channel
information. However, our spatial attention block aims at learning the spatial information
about specific human joints. The depthwise convolution breaks the filters and feature maps
into different channels. It convolves the corresponding feature map with the corresponding
channel and then stacks them back. In this way, the spatial features of different joints can
be adaptively learned.

Background pixels occupy the greater part of the heat maps, and only the smaller
part of the heat maps indicates the foreground pixels. This is the common challenging
foreground–background imbalance problem in pose estimation. The attention blocks drive
the network to focus on the human body regions highlighted by the attention maps. Our
network pays attention to localizing each body joint based on the well-defined human body
region without considering the background. Therefore, our network tackles the imbalance
problem and improves the localization performance with the attention blocks.

3.5. Loss Function

A straightforward idea is to jointly train the network with two kinds of losses: the
focal L2 loss [52] for the joint prediction branch and the smooth L1 loss [53] for the bone
prediction branch. After dynamic information transfer, the joint prediction branch generates
the heat maps HJ , one for each joint, with each pixel of these heat maps indicating the
probability of containing a joint. The bone prediction branch simultaneously generates
the heat maps HB, one for each bone with each pixel of these heat maps indicating the
probability of being a human bone. Previous methods [4,14,18,19] adopted a mean-squared
error (MSE) loss function, between the predicted heat map Hpred and the ground-truth heat
map Hgt. To pay more attention to the occluded and “hard” keypoints, online hard keypoint
mining (OHKM) [32] is proposed to backpropagate the gradients of the K maximum
keypoint losses. In our work, we adopted the focal L2 loss, which balances the foreground
and background and helps the network learn the “hard” keypoints adaptively. The joint
prediction branch loss function is computed as Equation (6):

LJ =
1

W · H · J
W

∑
w

H

∑
h

J

∑
j

∥∥∥Hpred
whj − Hgt

whj

∥∥∥2

2
· FAC(Hpred

whj , Hgt
whj)

γ, (6)

in which

FAC(x, y) =

{
1− x, if y < thre,
y, otherwise,

(7)

where J is the number of body joints, W is the horizontal location, and H is the vertical
location. The ground-truth heat maps Hgt

whj are generated by applying a Gaussian kernel to
each joint’s location. FAC(·) denotes a pixel-weight-adaptive function that can help the
network handle the “hard” keypoints. γ is a hyper-parameter, which controls the weight
for easy examples and hard examples in the focal loss. The higher the value of γ, the lower
the loss for easy examples is, so we could turn the attention of the model more towards
hard examples. In our work, we set γ = 2 to obtain more accuracy following [52]. The
hyper-parameter thre was set to 0.01 to filter areas that have a low confidence of being body
joints following [52].

The focal L2 loss is sensitive to outliers, which is difficult for the highly differentiated
bone heat maps’ prediction. To prevent exploding gradients, the smooth L1 loss was
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adopted for the bone heat maps’ regression. The bone prediction branch loss function is
written as Equation (8):

LB =
1

W · H · B
W

∑
w

H

∑
h

B

∑
b

SmoothL1(Hpred
whb − Hgt

whb), (8)

in which

SmoothL1(x) =

{
0.5x2, if |x|< 1,
|x|−0.5, otherwise,

(9)

where B is the number of body bones and the confidence maps Hgt
whb are weighted by the

perpendicular distance from a pixel to a line of two joints. To balance the conflicts between
the two branches, a hyper-parameter λ is multiplied on LB. Specifically, we improved
the localization ability of the network by jointly updating two losses. The overall loss
function is:

L = LJ + λLB, (10)

where λ denotes the weight of the bone loss LB.

4. Experiments

We evaluated our method on two standard human pose estimation benchmarks: the
MPII human pose dataset (MPII) [54] and Common Objects in Context (COCO) [55].

4.1. Experiments on MPII Dataset
4.1.1. Dataset and Evaluation Metric

The MPII dataset is a large-scale benchmark for human pose estimation with rich
annotations. It contains about 25k images of full-body poses collected from daily human
activities. There are over 40k person instances annotated with up to 16 visible joint locations,
among which 26k human instances were used for training, 3k instances for validation, and
the others for testing.

Our models were evaluated using the standard evaluation metric of the MPII dataset:
head-normalized percentage of correct keypoints (PCKh). We adopted the PCKh@0.5
evaluation measure, which refers to the matching threshold as 50% of the head diameter.

4.1.2. Implementation

We trained our models with the input image size of 256× 256 and a batch size of
32. The size of the generated feature maps is 64 × 64, which is typically smaller than
the input image. Data augmentation was adopted with random rotation (−30◦ ∼ 30◦),
random scaling (0.65 ∼ 1.35), and flipping. The AdamW optimizer [56] was used for
training. We used 0.9 and 10−4 for the momentum and weight decay parameters. The
initial learning rate was 10−3, which was decayed by a factor of 10 at Epoch 130 and Epoch
160, respectively. We trained the model on the MPII dataset for 210 epochs. In the loss
function (Equation (8)), we set λ = 0.1 for the balance between joint loss and bone loss. We
used the provided person boxes from the MPII dataset as the detected person boxes. The
results were evaluated on the validation split proposed in [57]. Following [16,18,32], we
computed the heat map by averaging the heat maps of the original and flipped images.
The final predicted localization is calculated by adjusting the highest response value with a
quarter offset in the direction from the highest heat value to the second one following [19].

4.1.3. Results

Figure 7 shows the qualitative results to visually illustrate the effectiveness of our
approach in pose estimation. HRNet does not accurately estimate the joints in the first row
of Figure 7 due to truncation in the camera view, similar parts, and occlusion. The images
of the second row are shown with our results refined via dynamic information transfer.
Not only did we have fewer false positives, but also we gave joints that partially occlude
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each other more reasonable inferences. We further show the qualitative results on more
real-world scenes in Figure 8. This suggests that our model can achieve satisfying results in
many real-world scenes.

(a
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Figure 7. Qualitative comparison on the MPII dataset. HRNet (first row) often fails on overlapping
and occluded joints in cluttered scenes. Our approach (second row) overcomes these limitations with
dynamic information transfer.

Figure 8. Sample results on the MPII dataset.

Figure 9 depicts the PCKh@0.5 score curves of our approach and HRNet [19] during
training. We can clearly see that our method exhibits higher training and validation ac-
curacy. This shows that the DITN has a greater ability to exactly localize the keypoints
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compared to HRNet. Moreover, we can find that our multi-task learning framework con-
verges much faster than the base HRNet. Table 2 shows the overall PCKh@0.5 results on
the MPII validation set. We adopted HRNet-W32 as the main backbone. Our approach
achieved 90.8 PKCh@0.5 scores, which outperformed the base HRNet and stacked hour-
glass extensions [16,31]. Compared with HRNet, the proposed approach achieved 0.9
improvements on the elbow and hip. Our approach surpassed HRNet by 0.5 PCKh@0.5
scores and surpassed the macro–micro mutual learning [35] by 0.2 PCKh@0.5 scores. The
results above verify the effectiveness of our approach.

Figure 9. PCKh@0.5 score curves of our approach and HRNet on the MPII dataset.

Table 2. Performance comparisons on the MPII validation set (PCKh@0.5).

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total

Newell et al. [16] 96.5 96.0 90.3 85.4 88.8 85.0 81.9 89.2
Yang et al. [31] 96.8 96.0 90.4 86.0 89.5 85.2 82.3 89.6
Xiao et al. [18] 97.0 95.9 90.3 85.0 89.2 85.3 81.3 89.6
Tang et al. [24] 95.6 95.9 90.7 86.5 89.9 86.6 82.5 89.8
Sun et al. [19] 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3
Zhou et al. [35] 97.3 96.0 91.1 86.8 89.3 87.1 83.3 90.6

Ours 97.2 96.0 91.2 86.5 90.0 87.0 84.1 90.8

4.2. Experiments on COCO Dataset
4.2.1. Dataset and Evaluation Metric

We validated our model on the COCO 2017 dataset, which has many challenging
images in the wild. It contains about 200k images of full-body poses and over 250k person
samples. Each person instance is labeled with 17 visible joints. We trained our network on
the COCO keypoint detection training set, which has 57k images and 150k labeled person
instances. The experimental results were evaluated on the validation subset, which contains
5k images, and the test-dev subset with 20k images.

For the COCO dataset, we adopted a standard evaluation metric that is based on object
keypoint similarity (OKS):

OKS =
∑i exp

{
−d2

i /2s2σ2
i
}

δ(vi > 0)
∑i δ(vi > 0)

, (11)

where di denotes the Euclidean distance between the detected keypoint and the ground-
truth, s represents the scale of the object, σi controls the falloff for keypoint i, and vi is the
visibility of keypoint i. We report the standard OKS-induced AP (the mean of the average
precision scores at OKS = 0.50, 0.55,..., 0.90, 0.95), AP50 (average precision at OKS = 0.50),
AP75 (average precision at OKS = 0.75), APM for medium objects, APL for large objects,
and AR (the mean of recall scores at OKS = 0.50, 0.55, ..., 0.90, 0.95).
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4.2.2. Implementation

We trained our model with an input image size of 256× 192. Data augmentation and
the training strategy were adopted the same as for the experiments on the MPII dataset. We
used the detected person boxes provided by [18] for both the validation set and test-dev set.

4.2.3. Results

We report the results of our method and other state-of-the-art methods on the COCO
validation 2017 dataset in Table 3. Our network achieved 75.0 AP scores, outperforming
other methods with the same input size (256× 192). From the results, we can see that
our method was 0.6% higher than the total result of the baseline HRNet [19] at AP with
almost the same model size and a marginal increase in GFLOPs (+0.16). Compared with
HRNet [19], we also found that the gain of the results mainly came from medium persons
(+1.3APM). This means that the dynamic information transfer brings more spatial infor-
mation for small-scale persons. Besides, our method was 0.7% higher than macro–micro
mutual learning [35] with only 41% GFLOPs. Table 4 reports the final keypoint detection
results of our approach on the COCO test-dev 2017 dataset. Our approach achieved 73.9 AP
without the use of additional training data. Moreover, our models have fewer parameters
and computational complexity than the others. Compared with the recently proposed
attention-based method [48], our approach achieved improvements of 1.4 on AP. Com-
pared with the macro–micro method [35], our approach performed much better with less
computation.

Table 3. Comparisons on the COCO validation set. Pretrain = pretraining the backbone on the
ImageNet classification task. OHKM = online hard keypoint mining [32].

Method Backbone Pretrain Input Size Params GFLOPs AP AP50 AP75 APM APL AR

8-stage hourglass [16] 8-stage hourglass N 256× 192 25.1 M 14.3 66.9 − − − − −
CPN [32] ResNet-50 Y 256× 192 27.0 M 6.20 68.6 − − − − −
CPN + OHKM [32] ResNet-50 Y 256× 192 27.0 M 6.20 69.4 − − − − −
SimpleBaseline [18] ResNet-50 Y 256× 192 34.0 M 8.90 70.4 88.6 78.3 67.1 77.2 76.3
SimpleBaseline [18] ResNet-101 Y 256× 192 53.0 M 12.4 71.4 89.3 79.3 68.1 78.1 77.1
SimpleBaseline [18] ResNet-152 Y 256× 192 68.6 M 15.7 72.0 89.3 79.8 68.7 78.9 77.8
HRNet-W32 [19] HRNet-W32 N 256× 192 28.5 M 7.10 73.4 89.5 80.7 70.2 80.1 78.9
HRNet-W32 [19] HRNet-W32 Y 256× 192 28.5 M 7.10 74.4 90.5 81.9 70.8 81.0 79.8
HRNet-W48 [19] HRNet-W48 Y 256× 192 63.6 M 14.6 75.1 90.6 82.2 71.5 81.8 80.4
Macro–micro [35] 8-stage hourglass N 256× 192 26.7 M 17.7 74.3 89.7 81.3 70.9 81.1 79.6

Ours HRNet-W32 Y 256× 192 28.6 M 7.26 75.0 90.4 82.5 72.1 80.5 81.3

Table 4. Comparisons on the COCO test-dev set.

Method Backbone Input Size Params GFLOPs AP AP50 AP75 APM APL AR

CPN [32] ResNet-50 256× 192 27.0 M 6.20 68.6 − − − − −
G-RMI [29] ResNet-101 353× 257 42.6 M 57.0 68.5 87.1 75.5 65.8 73.3 73.3
IPR [30] ResNet-101 256× 256 45.0 M 11.0 67.8 88.2 74.8 63.9 74.0 -
RSN [48] RSN-50 256× 192 - - 72.5 93.0 81.3 69.9 76.5 78.8
Macro–micro [35] 8-stage hourglass 256× 192 27.1 M 23.5 73.7 91.9 81.7 70.6 79.3 79.1
Ours HRNet-W32 256× 192 28.6 M 7.26 73.9 92.3 82.0 70.6 79.5 84.7

Figure 10 shows some pose estimation results obtained by our approach on the COCO
dataset. Our method is not constrained to single-person pose estimation and can be applied
to multi-person pose estimation. We can note that our model can achieve promising results
across different datasets.
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Figure 10. Sample results on the COCO dataset.

4.3. Ablation Study
4.3.1. Network Design

In this section, we evaluate the model performance with different components of our
approach. Table 5 demonstrates the results of each component that contributes to the final
performance. Our baseline was the HRNet model; it reached 90.3 PKCh@0.5 scores on the
MPII validation set. “MTL” indicates the multi-task learning with the decode module. We
can see that the performance was improved by 0.12 with MTL compared to the HRNet
baseline. The “DITM” indicates the dynamic information transfer module without the
“CAB” (channel attention block) and “SAB” (spatial attention block). The improvement of
adding the DITM over the baseline reached 0.24 and proves the effectiveness of dynamic
information transfer across different granularity levels. Explicit spatial information leads
to better localization accuracy of human joints. Besides, combining the CAB or the SAB
with the DITM achieved 0.29 and 0.30 improvement, respectively. The combination of the
CAB and the SAB improved the performance largely, which surpassed the baseline by 0.33.
Our attention blocks make a trade-off between spatial and channel representations in the
output features and benefit from the combination. This kind of combination confirms that
cooperation between the DITN and attention blocks benefits the information exchange
across different levels.
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Table 5. Ablation study of each component in our framework.

Backbone MTL DITM CAB SAB PCKh@0.5

HRNet-W32

90.330
X 90.458
X X 90.585
X X X 90.596
X X X 90.632
X X X X 90.658

4.3.2. Loss Function

Gaussian response heat maps have many background pixels and only a few foreground
pixels. In the training phase, too many “easy” samples (simply recognized keypoints
and background pixels) inhibit the network from learning the “hard” samples (occluded
keypoints and foreground pixels). To deal with the problem of imbalanced data, we used
the focal L2 loss to replace the original mean-squared error (MSE) loss. We compare
different loss functions in Table 6. This study was conducted on the ResNet-50 backbone.
For our model trained with the MSE loss, the PCKh scores were 88.81, while for our model
trained with the focal L2 loss, the PCKh scores decreased to 88.58. The reason might be that
the bone branch may bring in some ambiguous information. The focal L2 loss is sensitive
to outliers, which is difficult for bone pixel regression. We used the smooth L1 loss for the
bone pixel regression to guide the network to learn robust features. We can observe that
using the focal L2 loss for the joint prediction branch and the smooth L1 loss for the bone
prediction branch achieved 88.90 PCKh scores. The improvement reached about 0.09 PCKh
scores and verifies the effectiveness of the combination of the focal L2 loss and smooth
L1 loss.

Table 6. Ablation study of different loss functions.

Loss PCKh@0.5

MSE + MSE 88.81
Focal L2 + Focal L2 88.58
Focal L2 + Smooth L1 88.90

The hyper-parameter λ was set to balance the conflicts between joint loss and bone
loss. We study the impact of the hyper-parameters λ in Table 7. We found that setting
λ = 0.1 achieved the highest performance among all variations. This setting ensures that
the balance of joint loss and bone loss should be addressed properly.

Table 7. Ablation study on the hyper-parameter λ.

Backbone λ = 0.05 λ = 0.10 λ = 0.15

ResNet-50 88.649 88.813 88.720

5. Discussion

Our proposed dynamic information transfer network architecture explores how to
refine body joint localization with the spatial relationship of adjacent joints. The advan-
tages of our study are three-fold. First, we conducted inference of the human pose in a
compositional model, which is composed of the joint and bone branches to benefit from
the spatial dependency. The bone information has more spatial constraints, which can
mitigate the inconsistencies (even some errors) in joint localization. Second, our method
leverages the existing pairs of adjacent joints to generate auxiliary bone labels to avoid
extra manual annotations. Finally, we improved the localization ability of the network by
adding the attention blocks. The attention blocks balance the shared feature across different
granularity levels and drive the network to focus on the human body regions.

For clarity, the main network architectures of the proposed models are presented in
Table 8. Our framework uses the same backbone for joint estimation and bone location pre-
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diction. With the feature-sharing mechanism, our model only brings a small computational
cost (+0.19GFLOPs) and model parameter (+0.1M) overhead for HRNet. The computational
superiority of our proposed modules is of great value.

Table 8. Main architectural details of the networks. IC denotes the number of input channels for a
layer; OC is the number of output channels; Nums indicates the number of layers; K is the kennel
size; S is the stride size; P is the padding size; BN (Y/N) indicates if batch normalization is applied;
ReLU (Y/N) indicates if the ReLU activation is used.

Arch Layer IC OC Nums K S P BN ReLU Params FLOPs

Backbone: HRNet-W32 Stage 1–Stage 4 3 64 - - - - - - 28.5 M 9.49 G

Bone Decoder Module
conv 32 64

1
1 1 0 Y Y

21.2k 83.4 Mconv 64 32 3 1 1 Y Y
conv 32 15 1 1 0 Y Y

Joint Decoder Module
conv 32 32

1
1 1 0 Y Y

21.2 k 83.6 Mconv 32 32 3 1 1 Y Y
conv 32 16 1 1 0 Y Y

Parameter Adapter

conv 2 2

15

3 2 0 N N

1.6 k 0.6 M
max-pooling 2 2 2 2 0 N N
conv 2 2 3 1 1 N N
max-pooling 2 2 2 2 0 N N
conv 2 2 3 1 1 N N

Transfer Module conv 16 16 1 1 1 0 N N 3.2 k 12.5 Madaptive conv 2 2 15 7 1 3 N N

Channel Attention Blocks

conv 2 2

15

3 1 1 Y Y

0.8 k 3.1 Mavg pooling 2 2 32 1 0 N N
conv 2 2 3 1 1 Y Y
sigmoid 2 2 - - - - -

Spatial Attention Blocks

conv 16 16

1

3 1 1 Y Y

4.0 k 16.1 Mconv 16 16 1 1 0 Y Y
depthwise conv 16 16 9 1 4 Y Y
sigmoid 16 16 - - - - -

Total - - - - - - - - - 28.6 M 7.26 G

There are some limitations in our work. For the source images with complex scenes
as shown in Figure 11, it is insufficient to use the spatial correspondences extracted from
human bone features as guidance. In crowded scenes, many joints from other human
instances generate mistaken bone predictions, which misleads the network to learn unre-
alistic cases. Besides, our framework with the attention mechanism can focus on human
body regions, but cannot cope well with the invisible joints in the image.

Figure 11. Failure cases caused by (left) overlapping people, (middle) cluttered background, and
(right) severe occlusion.

In this paper, we focused on predicting the pose of a single person assuming the
location and scale of the person are provided in the form of a bounding box. Our method
can be extended to multi-person pose estimation in a bottom-up manner. The proposed
dynamic information transfer module can fuse multi-granularity feature information to
boost the joint location. However, joint grouping can be a big challenge. In the future, we
plan to extend our work on multi-person pose estimation and explore the way of applying
dynamic information transfer for joint grouping.
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6. Conclusions

This paper presented a dynamic information transfer network (DITN) that jointly
localizes human joints and bones. The DITN was designed to share features across different
granularity levels in a multi-task learning scheme. Our approach exploits bone informa-
tion to assist human pose estimation through dynamic information transfer. Moreover,
attention blocks were integrated into our network to balance the shared feature and induce
the network to focus on the human body region to refine body joint localization. The
extensive experimental results showed that the spatial dependency of human joints is the
key ingredient for human pose estimation. The proposed DITN shows advantages over
previous studies in model performances and the simplicity of information transfer. The
DITN achieved competitive results on two benchmarks, COCO and MPII. We believe that
the dynamic transfer module with an attention mechanism can be applied to other tasks.
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