
Citation: Sharma, K.; Doriya, R.;

Shastri, S.; Aljrees, T.; Singh, K.U.;

Pandey, S.K.; Singh, T.; Samriya, J.K.;

Kumar, A. Development of Cloud

Autonomous System for Enhancing

the Performance of Robots’ Path.

Electronics 2023, 12, 683. https://

doi.org/10.3390/electronics12030683

Academic Editor: Antonio Brogi

Received: 22 December 2022

Revised: 15 January 2023

Accepted: 17 January 2023

Published: 29 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Development of Cloud Autonomous System for Enhancing the
Performance of Robots’ Path
Kaushlendra Sharma 1,2,† , Rajesh Doriya 1,† , Sameer Shastri 3,†, Turki Aljrees 4,†, Kamred Udham Singh 5,6,*,†,
Saroj Kumar Pandey 7,*,† , Teekam Singh 8,† , Jitendra Kumar Samriya 9,† and Ankit Kumar 7,*

1 Department of Information Technology, National Institute of Technology Raipur, Raipur 492010, India
2 Department of Computer Science & Engineering, Indian Institute of Information Technology,

Nagpur 440006, India
3 Department of Computer Science and Engineering, Bhilai Institute of Technology Durg, Durg 491001, India
4 College of Computer Science and Engineering, University of Hafr Al-Batin,

Hafar Al-Batin 39524, Saudi Arabia
5 Department of Computer Science and Information Engineering, National Cheng Kung University,

Tainan 701, Taiwan
6 School of Computing, Graphic Era Hill University, Dehradun 248002, India
7 Department of Computer Engineering & Applications, GLA University, Mathura 281406, India
8 School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248007, India
9 Department of Computer Science & Engineering, National Institute of Technology, Delhi 160058, India
* Correspondence: 11004033@gs.ncku.edu.tw (K.U.S.); saroj.pandey@gla.ac.in (S.K.P.);

kumar.ankit@gla.ac.in (A.K.)
† These authors contributed equally to this work.

Abstract: With the development of computer technology and artificial intelligence (AI), service
robots are widely used in our daily life. At the same time, the manufacturing cost of the robots is
too expensive for almost all small companies. The greatest technical limitations are the design of
the service robot and the resource sharing of the robot groups. Path planning for robots is one of
the issues playing an important role in every application of service robots. Path optimization, fast
computation, and minimum computation time are required in all applications. This paper aims to
propose the Google Cloud Computing Platform and Amazon Web Service (AWS) platforms for robot
path planning. The aim is to identify the effect and impact of using a cloud computing platform for
service robots. The cloud approach shifts the computation load from robots to the cloud server. Three
different path-planning algorithms were considered to find the path for robots using the Google
Cloud Computing Platform, while with AWS, three different types of environments, namely dense,
moderate, and sparse, were selected to run the path-planning algorithms for robots. The paper
presents the comparison and analysis of the results carried out for robot path planning using cloud
services with that of the traditional approach. The proposed approach of using a cloud platform
performs better in this case. The time factor is crucially diagnosed and presented in the paper. The
major advantage derived from this experiment is that as the size of the environment increases, the
respective relative delay decreases. This proves that increasing the scale of work can be beneficial
by using cloud platforms. The result obtained using the proposed methodology proves that using
cloud platforms improves the efficiency of path planning. The result reveals that using the cloud
computing platform for service robots can change the entire perspective of using service robots in
the future. The main advantage is that with the increase in the scale of services, the system remains
stable, while the traditional system starts deteriorating in terms of performance.

Keywords: cloud robotics; cloud computing; path planning; service robots; path time

1. Introduction

The pace of growing technology has redefined the meaning and concept of traditional
approaches. Nowadays, computing is considered one of the important resources and is

Electronics 2023, 12, 683. https://doi.org/10.3390/electronics12030683 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12030683
https://doi.org/10.3390/electronics12030683
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9140-5788
https://orcid.org/0000-0001-6375-4940
https://orcid.org/0000-0003-2020-2534
https://orcid.org/0000-0001-8050-5639
https://orcid.org/0000-0001-5466-8899
https://orcid.org/0000-0002-7945-4616
https://doi.org/10.3390/electronics12030683
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12030683?type=check_update&version=3

Electronics 2023, 12, 683 2 of 17

being utilized to strengthen the traditional approach to solving problems. Robot path
planning is one such area where the requirement of high computation power is common
sense these days. Robots are deployed in a dynamic environment, and a group of robots
are employed in many places to accomplish different tasks. Handling such environments
requires a smart approach that needs high computation. This paper attempts to implement
the concept of conflict-based pathfinding while exploiting the advantages of cloud comput-
ing. One of the most sought-after and practical implementations of path-finding algorithms
is to guide intelligent agents such as robots and smart vehicles (both virtual and real) along
a path that is most suitable for their objective. The requirement is that smart agents perform
tasks, and therefore, they need to be able to reach the location where the work is to be
accomplished. There are a plethora of path-finding algorithms, and a considerable number
of studies and implementations have been carried out on this topic. Yet, the inherent issue
with finding the best paths remains the same [1]; that is, as the environments increase in
size and become more complex in nature, the task of finding paths starts to become more
resource-intensive. No matter how optimized and efficient and implementation is, the
physical limitations are always there. To compute a solution, computational resources are
required [2,3].

Another prospect of this endeavor, in practical scenarios, is that almost always, multi-
ple intelligent agents would be traversing the environment while dealing with static as well
as dynamic obstacles. Naturally, if there are more agents and complex environments, more
resources are required to find a solution. There are many ways to approach this problem,
the most obvious of which is to give each agent enough computational capabilities and
resources to find its own path in a given environment. While this can be a viable option,
it might not be suitable for practical applications, not everywhere at least. Independent
agents also pose another layer of complexity when it comes to cooperation. So, this paper
attempts to provide a viable option for scenarios in which multiple agents have to traverse
the same environment in cooperation with each other. Instead of giving each agent the
freedom to move and decide as they choose, in this study, we sought to implement a
centralized system to give them two necessary instructions that are needed to traverse any
given environment in the most efficient way possible.

The centralized system, if implemented, has to accomplish the work of all the agents,
and that means it needs computational capabilities and resources that are on par with all
the agents at the very least. The central system has to communicate with all the agents and
has to analyze the environment as well. This is where cloud computing comes in; instead
of setting up a local centralized system to guide the intelligent agents, cloud-based services
can be utilized to provide a viable and acceptable solution. After the rather daunting
amount of progress that has been made when it comes to cloud services, they are more
relevant than ever. Offloading complex and/or intensive tasks to a system that has a
very large amount of computational resources at its disposal is logical, especially after the
massive increase in both the bandwidth and availability of high-speed internet throughout
the world. This evolution of networking and cloud-based services is only going to improve
from the current state. That has some very real and plausible implications for the future of
computing. This paper is an effort to capitalize on those very implications [4].

2. Related Work

This section deals with the research conducted on cloud-based robots. It is required
to make robots compatible to integrate with companion computers with ease. This is
becoming the mainstream demand these days [5]. The concept of Roboearth proposed
by Waibel et al. is one of the most cited works in this field [6]. In the last few years, the
use of a cloud computing platform for robotic applications has garnered the attention of
researchers but not enough to explore all its possibilities and scope. Here, in this section,
some of the studies are discussed in detail. Table 1 gives a short outline of some of the
prominent research conducted in recent times [6,7].

Electronics 2023, 12, 683 3 of 17

There is a high need for service robots that can intelligently and reliably support
people with their activities because of the difficulties that Lam et al. identified for service
robots in unstructured environments, such as the inability to properly interact and cope
with unstructured surroundings. As a rule, robots are on the diminutive side, and their
processing capacity is not up to tackling complex computational jobs. Because of its
potential to facilitate resource sharing, parallel computation, and cost reduction, a cloud-
based robot is a possible solution to the issues with tiny robots. The proposed system
architecture for cloud-based path-planning systems consists of three layers: a server layer,
whose job it is to make it easier for robots to share structured and massive datasets; a
cloud engine layer, which provides a lightweight virtual machine called a container in
which authorized programs can execute using rapyuta; and a client robot layer, which is
made up of the collection of physical robots that use PaaS in the cloud. Path planner uses
multithreading to make efficient use of available computing power. We can determine
whether it is preferable to run a node in the cloud or on a robot based on three criteria: the
availability of local processing resources; the nature of the node; and the capacity of the
surrounding network [2,8].

In their paper, Wee et al. proposed challenges in networked robots, the architecture of
cloud robotics, and applications of cloud robotics. Initially, the trend was to use onboard
networked robotics, which faces many constraints such as resource constraints, meaning
that the efficiency of the network robot is bounded by size, configuration, power supply,
motion code, and functioning condition. Another challenge was information and learn-
ing constraints, which means that the information of the network robot is bounded by
processing power, storage capacity, and the number and type of sensors it carries. The
next challenge discussed was communication constraints, i.e., for communication net-
works, robots provide proactive routing, which requires huge estimation and memory
resources in route detection and maintenance process, as well as ad hoc routing, which
takes high latency. In this paper, we divided the architecture of cloud robotics into three
subsystems: middleware subsystem, background task subsystem, and control subsystem.
The middleware subsystem deals with robots and protocols of the network to make them
compatible with each other. The goal of the background task subsystem is to maintain
packages and libraries for programming languages. The control subsystem is used to
control networking, storage, and computation. This study also reveals some technical
challenges in cloud robotics such as computational challenges, communication challenges,
and security challenges [9].

The review of the literature that we performed before the advent of our project helped
in shaping the contours of our project in a more meaningful way. An overview of all
the relevant literature on our project is an essential part of our documentation. Gualong
hu and Wee Peng Tey, in their paper entitled “Cloud Robotics: Architecture, Challenges
and Applications” proposed a cloud robotic architecture to address the problems faced
by current standalone and network hardware robots and also the applications that can be
useful for the cloud robotic approach. They proposed a software platform that uses the
Hadoop cluster to reduce the latency and overhead time of normal robots. Table 1 depicts
some of the notable contributions in recent times in the field of cloud robotics. The table
presents a small description of papers based on the issues of cloud robotics.

Electronics 2023, 12, 683 4 of 17

Table 1. Different cloud computing platforms used for robot-based applications in recent times.

Author Year Application/Issues Addressed Cloud Technology Parameters R.I Ref

Mohd et al. 2019 Multi-Robot system with different team
sizes for the fire searching model is per-
formed. A comparison of the traditional
model HDec- POSMDPs with the cloud-
based model is presented with different
performance metrics.

Google Cloud Meantime, Number
of Turns, Average
Energy Consumption
of robots.

236 [10]

Hao et al. 2018 This research paper deals with the se-
mantic map building for intelligent ser-
vice tasks and has used both private and
public cloud for the experiment.

Cloud Stack Operating Efficiency
and average execution
time of the algorithm

06 [11]

Turnbul et al. 2013 This paper discusses the cloud infras-
tructure to develop the formation con-
trol on a multi-robot system in order to
run robotic applications. A robot with
minimal hardware was constructed to
work within the control of the cloud.

Private Cloud Success Ratio and
Space Complexity

65 [12]

Duo et al. 2016 This paper proposes a vehicular cloud
computing testbed with mobile robotics
for testing various network protocol be-
havior to measure message throughput
using a middleware server.

Rabbit MQ Message Communica-
tion and No. of Move-
ment

17 [13]

Zhihui et al. 2017 This paper proposes a new environment
for robots to monitor different service re-
quest distribution using a cloud server
and also to monitor the scheduling pol-
icy and robot center solution.

Cloud Stack Scheduling Policy, Re-
quest Distribution

57 [14]

Long et al. 2020 Robot-mind-centered service system is
proposed to exploit the features of con-
ventional robotics systems using a cloud
platform. It also used the techniques of
AI and 5G technology, Multifunctional
intelligent clothing.

Private Cloud Intelligence of the
follow-me Robot-Mind

02 [9]

Liu et al. 2019 Autonomous navigation problem of
robots is taken into consideration to ad-
dress the issue. Private cloud architec-
ture is proposed to measure the param-
eters of navigation and some reinforce-
ment learning methods for the robots
in the cloud. The paper also proposes
a knowledge fusion algorithm for up-
grading a shared model deployed on the
cloud.

Private Cloud Performance of transfer
learning approaches
and transfer Reinforce-
ment Learning

43 [15]

Sandeep et al. 2019 This paper deals with the issue of the
Robot offloading problem (sensing task)
using cloud architecture to improve the
accuracy and to minimize the cost of
cloud communication using deep rein-
forcement learning.

Private Cloud Sensing task, Vision
task performance and
Accuracy

18 [16]

3. Proposed Architecture

The term “cloud robotics” was introduced in 2010 by James Kuffner, an ex-employee
of Google. Afterward, it started to raise interest among researchers [12]. Recently, Goldberg
et al., a prominent name in the field of cloud robotics, described the security issues and
privacy concerns present in cloud robotics in their research paper. This paper proposes to
solve the robot path-planning problem using the Google Cloud Computing Platform. The
continuous development of cloud technologies has spawned the concept of cloud-based
robots. Google Cloud is one of the big players in the current market in terms of cloud-based

Electronics 2023, 12, 683 5 of 17

service providers. Google’s Cloud Robotics Core is also available nowadays. This is an
open-source platform that provides the infrastructure essential to building and running
robotic solutions for business automation [17]. The first step required to set up the platform
for robots is to create a Google account for it, i.e., a Google cloud account. The next step is
to select the VM instance of a particular size required for the project. Once this is achieved,
the setting up of the Python environment is required. The next step is to implement the
path-planning algorithms on the cloud computing platform to observe the outcome of
the parameters.

We proposed a solution to set up a cloud platform and run the path-planning al-
gorithms on the cloud. Figure 1 represents the working sequence of the path-planning
algorithm for finding an optimized path for robots. Figure 2 represent the Basic architec-
ture of AWS Platform for creating an instance. Figure 3 shows the basic structure of the
Google Cloud Computing Platform, which was taken as a reference to set up the cloud
computing platform to run the path-planning program for robots. Figure 4 represents the
block diagram of the proposed architecture to run the program and all the requirements
of packages and algorithms to execute robotic path planning using the Google Cloud
Computing Platform. Figure 5 shows the working flow of path-planning algorithms in
the cloud environment. The flowcharts explain the requirements of packages and their
sequence of execution indicating how the algorithm is implemented for execution.

Figure 1. Proposed model as flow of path-planning algorithm.

Electronics 2023, 12, 683 6 of 17

In creating the VM Instance in the proposed work, we considered the following
configuration: The configuration of the virtual machine instance created for our project is
8, 23 CPU capacity with 30 GB. After creating the VM instance, the firewall settings were
configured, and after installation, all the dependencies were completed. The next step
was to create a Python environment; setting up the Python environment was achieved
by installing all the required packages and launching Jupyter notebook where the path-
planning algorithms were implemented. The proposed architecture at the cloud level
provides essential packages to run robot path planning in the cloud environment. Only the
data and commands that are necessary for the direct execution of given tasks are delivered
to the robots as the users of the cloud services. Furthermore, as described, the proposed
architecture is of modular type and can be adjusted and modified for other scenarios as well.
The pseudocode is presented in Algorithm 1, which shows the working of the networking
module for both the client and server in the cloud setup. The next section will discuss in
detail the various important reasons to implement cloud computing platforms for robot
path planning as well as some of the key points of the path-planning problem that should
be precisely considered while deriving the path from its source to destination. The path
should be collision-free and optimized for traversal.

To validate the results with more justification, AWS [18,19] is another cloud platform
that was utilized here to perform the A* star algorithm in three different reference maps.
Three variants of each environment were considered for testing the code. The solution
utilized EC2 instances from Amazon Web Services [20] to do the heavy lifting. The idea
is that most of the complex and resource-intensive tasks would be performed by the EC2
instances, as they are scalable and cost-effective at the same time. Figure 2 presents the
basic architecture of AWS for creating EC2 instances using the lambda function.

The agents, instead of finding their own path, will be waiting for directions from the
client. The client will first parse the information about the environment to the EC2 instance.
Then, the client will fetch and relay the starting as well as the goal positions of the respective
agents to the EC2 instance as well. The EC2 instance will process the data received from
the client to find those paths that are not conflicting. At this stage, the client will act purely
as a relay, i.e., the direction is just sent to the respective client that is provided by the EC2
instance until they have reached their destination. It will notify the EC2 instance about
the same, and the connection will end, thus concluding a successful traversal through the
directions received. An EC2 instance will act like a server, constantly running and waiting
for a client to request a connection. If a client connects, the requests will be fulfilled, and
the connection will end, allowing another (or the same) client to connect again. With this
method, the system can handle more than one local system of mobile agents.

Figure 2. Basic architecture of AWS Platform for creating an instance.

Electronics 2023, 12, 683 7 of 17

Figure 3. Basic architecture of Google Cloud Computing Platform for mounting applications and
programs on top of it.

Figure 4. Proposed architecture for robot path planning using Google Cloud Computing Platform.

Electronics 2023, 12, 683 8 of 17

Figure 5. Setting up of cloud environment.

Algorithm 1 Networking Module for Cloud Server

Get user input f or the coordinates
For i in range (no o f agents):

sCoord = (sX, sY)
gCoord = (gX, gY)

Initialise the client
client = client (′15.206.191.18, 4005, 1024′, noti f y = True)
Send the data & receive noti f ication f rom server

client.send (Map)
client.send (Start)
client.send (Goal)
sendingTimeEnd = currentTime()

agent[]
Create a List o f Agents that are all on their starting positions
Command agents to move according to the directions received
move=1
data =client.receive()
i f data == True:

break
else :

move+ = 1
For i in range (no o f agents):

agents[i].move(data[i])
agentTimeEnd=currentTime()

End Agent Time

4. Robot Path Planning Using Cloud Computing Platform

The concept of cloud-based robots started early in 2010 when the problem with
standalone robots came into the picture; the capacity of a single hardware robot was
insufficient, and gathering information took a long time and caused delays, which was also
the case of networked hardware robots in which robots were interconnected and shared

Electronics 2023, 12, 683 9 of 17

information; if one robot runs out of service, then the information contained in that robot
that had to be shared cannot be forwarded to that particular robot [12]. Then came the
concept and use of cloud-based robots, where all the necessary information is kept in the
cloud itself in a centralized way, and it is not required by the robot to store each and every
piece of information for performing a particular task [21]. The use of cloud robotics was
recently developed, where there are centralized storage and control from where the other
robots take the required message and perform that particular task. The importance of
using cloud computing for robot path planning can be understood with the help of the
following points:

Service robots are specifically made for a particular type of environment. When build-
ing service robots, two factors are more important: The first is the hardware requirement,
and the other one is the software requirement. The hardware part mostly resembles all
types of service robots. The differentiation is made based on the programming embedded in
it for accomplishing a specific task. The limitation of this process is that physical robots are
not portable and flexible to be used by other applications or in some other required place,
though the hardware requirements do not change much; the only feature that becomes a
hurdle is the software part. As already a specific type of programming is already performed
and embedded into it, to make it more usable and operational, there is a need to physically
reprogram it, which may require handling it manually and can increase the entire cost of
applying robots. This problem can be easily resolved by introducing cloud computing
technologies for robots. As there is no limitation of space or computational power at the
cloud server, once the robots connect to the cloud server, they may obtain the required
program instantly from the cloud server and can operate in the environment accordingly.

Considering the problem of robot path planning, a service robot can instantly access
the best result-oriented algorithms for any specific environment (Maze, Random Obstacles,
or Maze Maps) from the cloud server’s repository and can optimize the solution to a greater
level. Even the applied intelligence at the cloud server can suggest or compute by applying
the best technique for the robots at the server itself, which is not possible when a robot is
physically localized in any environment.

The other issue is the use or requirement of space. A physical robot can have a limited
memory as per the requirement of the operation. Any change to be made requires physical
interruption to it. This is where cloud computing comes in and plays an important role.
The robot can access the space more or less as per the requirement. Space availability at the
cloud server is scalable and can store any volume of data for the robots. This flexible use
policy has multiple advantages; for instance, all the executions of robots can be stored and
monitored at the cloud end. Several intelligent techniques can be applied to it to perform
much better in the next iteration. It may also help in finding a suitable technique based
on the past performance of robots, which can help in achieving optimized results. In the
case of multiple robots, there is no need to traverse the environment multiple times by each
robot. All the robots can share their traversal with the cloud, which can be coordinated and
executed in a much better way by using cloud computing.

The coordination of robots in a multi-robot environment is one of the important and
crucial tasks that need to be handled with precision. This could be more deliberately han-
dled with the help of a cloud computing platform. There are several types of coordination
such as centralized coordination, incremental coordination, and distributed coordination,
and sometimes, a hybrid approach is considered the best option. Again, applying the best
techniques needs a clear understanding of the current scenario, some past experience, and
intelligent mechanisms to apply the best technique in the time of need. These requirements
make it complicated to provide an optimum solution for the run time. The only issue that
becomes a big hurdle is the availability of time, space, and computational power. The
presence of a cloud computing platform can handle this issue with ease.

Another prospect of this endeavor, in practical scenarios, is that almost always, multi-
ple intelligent agents would be traversing the environment while dealing with static and
dynamic obstacles. Naturally, if there are more agents and complex environments, more

Electronics 2023, 12, 683 10 of 17

resources are required to find a solution. There are many ways to approach this problem,
the most obvious of which is to give each agent enough computational capabilities and
resources to find its own path in a given environment. While this can be a viable option, it
might not be suitable for practical application, not everywhere at least. Independent agents
also present another layer of complexity when it comes to cooperation. Thus, this study
sought to provide a viable option for such scenarios where multiple agents have to traverse
the same environment in cooperation with each other. Instead of giving each agent the
freedom to move and decide as they choose, in this project, we implemented a centralized
system to give them the necessary instructions that are needed to traverse any given envi-
ronment in the most efficient way possible. The centralized system, if implemented, has to
accomplish the work of all the agents. This means that it needs computational capabilities
and resources that are on par with all the agents at the very least. The central system has to
communicate with all the agents and analyze the environment as well. This is where cloud
computing comes in; instead of setting up a local centralized system to guide the intelligent
agents, cloud-based services can be utilized to provide a viable and acceptable solution.

The goal of cloud robotics is to have complex algorithms run in the cloud while more
basic robots operate on the ground. Robots’ computational loads are greatly lightened
when data processing is moved to high-performance cloud servers [22]. Each additional
robot added into the system would have to independently replicate the experiences and
learning of its predecessors if not for the cloud-connected network. However, when robots
are networked together in the cloud, previously learned information may be recycled [23].
There are some important concepts in robot path planning that are mandatory to consider
such as path generation, tracking control, and obstacle detection shown in Table 2 and in
Algorithm 2. The robot’s linear velocity vp is controlled by satisfying Equation (1). ωp is the
angular velocity given by Equation (2). Equation (3) defines the nearby obstacle definition
for the robot. Equation (4) defines the assigned velocity for robots [24,25]. Equation (5)
defines the formula for finding the shortest path shown in Algorithm 3.

vp =

{
Gn − Pn

Db f
Vmax, |Gn − Pn| ≤ Db f ,

Vmax, |Gn − Pn| > Db f ,

(1)

ωp =

{
∆θ

Db f
ωmax, |∆θ| ≤ θb f ,

∆θ

|∆θ|ωmax, |∆θ| > θb f

(2)

do = ∑
1

[
(1− |di|

Dsa f e
)α(

di

|di|
)

]
(3)

ωo =

{
Vp

|Xo|
, θ ≤ 90

−Vp

|Xo|
, θ > 90

(4)

lv =
√
((x[i]− x[i− 1])2 + (y[i]− y[i− 1])2) (5)

Electronics 2023, 12, 683 11 of 17

Table 2. Definition of the variables taken into the equations.

Variables Definition

vp Controlling linear velocity o f robots
Gn Target f or the nth robot
Pn Current position o f the nth robot
Db f Parameter f or the bu f f er distance
Vmax Maximum speed o f the robot
ωp Robots angular velocity
∆θ Angle between current & next position
θb f Next bu f f er angle
ωmax Maximum angular velocity
do Obstacle Vector with distance & direction
Dsa f e Sa f e distance between robot & obstacle
di Vector f or the obstacle
ωo Assigned angular velocity
lv Path length o f robot
|Xo| Distance between robot & next point

Algorithm 2 A* Algorithm for finding path

Input : A graph
Output : Path between start and goal nodes
repeat

pick nbest f rom O such that f (nbest ≤) f (n), ∨n ∈O
Remove nbest f rom O and add to C

I f nbest =qgoal , EXIT
Expandnbest f or all xStar(nbest) thatare not in C

I f x ∈ O then
add x to O

else i f g(nbest) + c(nbest.x) <g(x) then
update x′s backpointer to point to nbest

end i f
untill O is empty

Algorithm 3 PFA Algorithm for finding path

Input : A graph
Output : Path between start and goal nodes
t = 0, xc(0)= xstart, Flag = 0, Calculate the potential f unction
while Next decision is not goal do

i f Flag = 0 then
Change the cell weight and treat the cells as occupied by an obstacle
Update the potential o f each cell

end
end
i f the UAV is trapped in a cell or visit the same cells multiple times then

i f Flag = 1,
search f or the trapping point

i f Flag = 0
end

xx+1 ← cell nearby with lowest potential f unction
t← t + 1
end

5. Results and Discussion

This paper presents the results in two parts. In the first part, we implemented the A*
star algorithm and observed the time taken using the algorithm. The first step in doing so

Electronics 2023, 12, 683 12 of 17

was to choose a cloud service [26]. Here, we chose Google Cloud Platform (GCP) for this
purpose, as they offered a free tier and an interactive console. The next step was setting
up a virtual machine (VM) instance in the cloud platform. Following the interactive guide
on Qwiklabs, it becomes easy to set up a VM instance and run SSH into a VM instance
through the local machine without having to go to a web-based cloud console. The next
step was to set up an n1-standard-2 machine having 2-CPU and 7.5GB RAM with Debian
GNU/Linux 9 OS. The next step was benchmarking with a robot pathfinding algorithm
(A* algorithm). Here, we took an A* star algorithm with a given maze in an executable
Python program and timed its execution speed using the ’time’ Unix tool, and recorded
the execution times. The last step was to compare the local machine versus the cloud VM
instance. Cloud VM instance performs better than the local machine in terms of speed and
efficiency of execution of the program, as they are highly scalable and flexible in terms of
CPU speed and memory, and they can be highly optimized for a specific task.

Table 3 presents the results obtained by using A* star algorithm using cloud and
local machines. It is clear from the results that cloud VM instances for computing the
same problem produced much better results than the operation performed using the local
machine shown in Figure 6.

Table 3. Comparative study of time taken by the path planning algorithm using local machine and
using Google cloud.

S.No Local Machine (ms) Google Cloud (ms)

1 182 93
2 203 102
3 173 87
4 152 71
5 196 84

Avg. 181 87

(a) PP using Local Machine (b) PP using Google Cloud

Figure 6. Output of path planning using A* Star algorithms using local machine (a) and Google
Cloud Computing Platform (b).

After the successful run of the A* star algorithm for a maze map shown in Figure 6, we
implemented the rapid exploring random-tree algorithm (RRT), ant colony optimization
algorithm (ACO), and potential field approach (PFA) algorithm and tested with different
maps. To validate the use of the cloud platform, we chose the algorithms that have their own
aesthetic features, and to evaluate the performance of each algorithm shown in Figure 2,
the different nature of its execution was investigated. Some key points covering their pros
and cons are stated here.

Electronics 2023, 12, 683 13 of 17

Ant colony optimization (ACO) is one of the well-accepted algorithms for solving
problems related to optimization. Due to the feature of having inherent parallelism and
proficiency in solving travel salesman problems, it is used in many progressive applica-
tions [27,28]. The rapidly exploring random tree (RRT) algorithm is another algorithm
considered in our work. Many modified versions of RRT are available for solving the
problem of robot path planning. One of the important features of this algorithm is that
it is quick, and no adjusting parameter is required initially. Its limitation is that its com-
putational time is highly dynamic [29,30]. The next algorithm used in our work is the
potential field approach (PFA) [31]. One of the greatest advantages of PFA is having a very
fast computation time, whereas the limitation is that it produces local minima in which
robots are trapped. Three different kinds of environments were tested with three different
algorithms. Each individual environment was tested three times, and their averages were
tabulated. The dataset to test against the system was randomly generated using scripts
and/or programs so as to make sure the system can handle all kinds of scenarios. The
result presented in Figure 7 shows the comparison of the time taken by the local machine
with respect to the relative delay. Table 3 shows the relative delay (RD), which may be
caused by network, hardware, and implementation issues following the trend of becoming
less and less significant as the task at hand scales. To validate this observation, the second
stage of the implementation included the execution of the algorithm in AWS using EC2 [32].
An EC2 instance acts as the brain of the system. A virtual machine instance can have any
amount of computational capability and resources that are required as per the task at hand,
making them a very scalable solution. To test the system, the dataset was divided into
three major categories, and three different kinds of environments were tested. They were
categorized based on the complexity of the environment, namely dense, moderate, and
sparse environments. For each category, three sizes were tested as well: small, medium, and
large environments in each category. Each individual environment was tested three times,
and their averages were tabulated. The dataset to test against the system was randomly
generated using scripts and/or programs so as to make sure the system can handle all
kinds of scenarios [33].

In the second phase of the run, we considered the time taken by the algorithms, the
sending time (ST) from the robot to the cloud, and the difference between the results of
the local machine and VM instance (Diff.), where T1 = the time taken by the cloud, T2 =
the time taken by the local machine, and the processing delay in nine different reference
maps using Google Cloud and nine different maps using AWS. As evident from the results
presented in Table 4 and the graph in Figure 8, the relative delay that may be caused by
network, hardware, and implementation issues follows the trend of becoming less and
less significant as the task at hand scales. Smaller environments have relatively larger
delays, while larger maps have a relatively small delay. For each category, three sizes were
tested as well, small, medium, and large environments in each category. Each individual
environment was tested three times, and their averages were tabulated. The dataset to test
against the system was randomly generated using scripts and/or programs so as to make
sure the system can handle all kinds of scenarios. The data suggest that the performance
overhead was almost constant or close to constant and that the same amount of time was
always taken, irrespective of the task. The tests were fairly rudimentary, only focusing on
the timings because, in the current day and age, CPU and RAM consumption does not
really affect the results at all, especially because of the small scale and very basic structure
of the project. There was not much strain on the hardware of any system.

Electronics 2023, 12, 683 14 of 17

(a) Map 1 using RRT Algorithm (b) Map 2 using RRT Algorithm (c) Map 3 using RRT Algorithm

(d) Map 6 using ACO Algorithm (e) Map 7 using ACO Algorithm (f) Map 8 using ACO Algorithm

(g) Map 10 using PFA Algorithm (h) Map 11 using PFA Algorithm (i) Map 12 using PFA Algorithm

Figure 7. Output of path planning algorithms applied on different reference maps using Google
Cloud Computing Platform.

Electronics 2023, 12, 683 15 of 17

Table 4. Comparison of results obtained, path length, and path time on four different reference maps
using cuckoo search algorithm and proposed approach.

Google Cloud Computing Platform

Ref. Map Algo.
Used

Sending
Time

Time Taken
by Agents

Expected
Time Taken

Time
Difference

Network
Delay (%)

Map 1 RRT 4.60 77.8888 73.8348 0.946 4.20
Map 2 RRT 4.59 74.9542 75.8492 0.895 3.90
Map 3 RRT 4.50 73.2089 73.9849 0.776 3.93
Map 4 RRT 4.61 78.0373 78.9843 0.947 3.60
Map 5 RRT 4.04 74.7899 75.6749 0.885 3.23
Map 6 ACO 3.09 6.0549 6.1469 0.092 3.32
Map 7 ACO 3.09 6.5576 6.556 0.098 3.18
Map 8 ACO 3.07 6.0982 6.1872 0.089 3.28
Map 9 ACO 3.05 5.7798 5.8728 0.093 6.65

AWS Cloud Computing Platform

Ref. Map Algo.
Used

Sending
Time

Time Taken
by Agents

Expected
Time taken

Time
Difference

Network
Delay (%)

Map 1 A* 4.02 65.525 64.000 1.525 2.83
Map 2 A* 4.03 160.153 156.00 4.153 2.59
Map 3 A* 5.978 512.243 506.00 6.248 1.22
Map 4 A* 3.630 47.381 46.00 1.381 2.91
Map 5 A* 4.046 76.625 75.00 1.625 2.12
Map 6 A* 3.610 443.049 440.00 3.049 0.69
Map 7 A* 3.792 51.516 50.00 1.516 2.94
Map 8 A* 3.973 125.540 124.00 1.540 1.23
Map 9 A* 3.973 791.831 788.00 3.831 0.48

(a) Graph showing computation time and relative delay of the
reference maps

(b) Graph showing relative delay performance of the dense,
moderate, and sparse maps using AWS

Figure 8. Output of path planning using A* Star algorithms with a local machine (a) and Google
Cloud Computing Platform (b).

In this work, we focused on using cloud computing platforms for robotic applications.
The main advantage revealed in this study is that when the number of services increases
with respect to any applications, traditional applications start to deteriorate in terms of
performance, whereas cloud computing platforms show steady performance in terms of
parameters. This is the main advantage over traditional approaches that we would like to
highlight. The benefit of using a cloud computing platform adds an extra advantage to the
applications, as it does not limit storage and computational capacity.

Electronics 2023, 12, 683 16 of 17

6. Conclusions

The evolution of networking and cloud-based services is only going to improve from
the current state. That has some very real and plausible implications for the future of
computing. This study aimed to capitalize on those very implications. We proposed the use
of Google Cloud and AWS cloud computing platforms for robot path planning. RRT, PFA,
ACO, and A* algorithms were implemented to test the proposed approach. The time taken
by the cloud server was monitored and compared with the time taken by the conventional
approach. The result obtained using the proposed approach showed improvement in
performance. The experiment was conducted on different reference maps, and a significant
improvement was observed. The time taken by the local machine was compared with the
time taken by the cloud plus the time taken while transferring the data between the cloud
server and the robot. This addition created a slight overhead, but as the scale of work
increased, this overhead gradually decreased. This behavior shows that using the cloud
for robotic applications may be more useful in dense and complex environments. There
are several other benefits of using cloud computing platforms: Multiple algorithms can
be implemented for different reference maps, which can be used instantly as and when
required by applying any Intelligent techniques. It can also be concluded that the cloud
instance performs faster than the local machine. Additionally, it serves on-demand, it
is self-service, with broad network access, resource pooling, and rapid elasticity, and it
provides measured service.

The future course of action of this research would be to test the path-planning appli-
cations of the robot with some more parameters and complex configuration spaces. We
will also try to explore the Multi-robot coordination scheme on some applications using
Google Cloud.

Author Contributions: Validation, S.K.P.; Formal analysis, R.D.; Investigation, K.U.S.; Resources, T.S.
and A.K.; Data curation, J.K.S. and T.A.; Writing—original draft, K.S. and S.S.; Funding acquisition,
T.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not Applicable.

Conflicts of Interest: All authors declare there are no conflict of interest

References
1. Abu-Amara, F.; Bensefia, A.; Mohammad, H.; Tamimi, H. Robot and virtual reality-based intervention in autism: A comprehensive

review. Int. J. Inf. Technol. 2021, 13, 1879–1891. [CrossRef]
2. Lam, M.L.; Lam, K.Y. Path planning as a service PPaaS: Cloud-based robotic path planning. In Proceedings of the 2014 IEEE

International Conference on Robotics and Biomimetics (ROBIO 2014), Bali, Indonesia, 5–10 December 2014; pp. 1839–1844.
3. Dawarka, V.; Bekaroo, G. Cloud robotics platforms: Review and comparative analysis. In Proceedings of the 2018 International

Conference on Intelligent and Innovative Computing Applications (ICONIC), Mon Tresor, Mauritius, 6–7 December 2018; pp. 1–6.
4. Liu, J.; Zhou, F.; Yin, L.; Wang, Y. A Novel Cloud Platform for Service Robots. IEEE Access 2019, 7, 182951–182961. [CrossRef]
5. Camargo-Forero, L.; Royo, P.; Prats, X. Towards high performance robotic computing. Robot. Auton. Syst. 2018, 107, 167–181.

[CrossRef]
6. Waibel, M.; Beetz, M.; Civera, J.; d’Andrea, R.; Elfring, J.; Galvez-Lopez, D.; Häussermann, K.; Janssen, R.; Montiel, J.; Perzylo, A.;

et al. Roboearth. IEEE Robot. Autom. Mag. 2011, 18, 69–82. [CrossRef]
7. Alamri, A.; Ansari, W.S.; Hassan, M.M.; Hossain, M.S.; Alelaiwi, A.; Hossain, M.A. A survey on sensor-cloud: Architecture,

applications, and approaches. Int. J. Distrib. Sens. Netw. 2013, 9, 917923. [CrossRef]
8. Sharma, K.; Doriya, R. Path planning for robots: An elucidating draft. Int. J. Intell. Robot. Appl. 2020, 4, 294–307. [CrossRef]
9. Hu, L.; Jiang, Y.; Wang, F.; Hwang, K.; Hossain, M.S.; Muhammad, G. Follow me Robot-Mind: Cloud brain based personalized

robot service with migration. Future Gener. Comput. Syst. 2020, 107, 324–332. [CrossRef]
10. Mohamed, K.; Elshenawy, A.; Harb, H. Comparison of Traditional and Cloud-based models for Multi-robot Exploration and

Fire Searching. In Proceedings of the 1’st International Conference on Information Technology (IEEE/ITMUSTCONF), Jeju-si,
Republic of Korea, 16–18 October 2019.

11. Wu, H.; Wu, X.; Ma, Q.; Tian, G. Cloud robot: Semantic map building for intelligent service task. Appl. Intell. 2019, 49, 319–334.
[CrossRef]

http://doi.org/10.1007/s41870-021-00740-9
http://dx.doi.org/10.1109/ACCESS.2019.2927743
http://dx.doi.org/10.1016/j.robot.2018.05.011
http://dx.doi.org/10.1109/MRA.2011.941632
http://dx.doi.org/10.1155/2013/917923
http://dx.doi.org/10.1007/s41315-020-00129-0
http://dx.doi.org/10.1016/j.future.2020.01.041
http://dx.doi.org/10.1007/s10489-018-1277-0

Electronics 2023, 12, 683 17 of 17

12. Turnbull, L.; Samanta, B. Cloud robotics: Formation control of a multi robot system utilizing cloud infrastructure. In Proceedings
of the 2013 Proceedings of IEEE Southeastcon, Jacksonville, FL, USA, 4–7 April 2013; pp. 1–4.

13. Lu, D.; Li, Z.; Huang, D.; Lu, X.; Deng, Y.; Chowdhary, A.; Li, B. VC-bots: A vehicular cloud computing testbed with mobile
robots. In Proceedings of the First International Workshop on Internet of Vehicles and Vehicles of Internet, Paderborn, Germany,
4–8 July 2016; pp. 31–36.

14. Du, Z.; He, L.; Chen, Y.; Xiao, Y.; Gao, P.; Wang, T. Robot cloud: Bridging the power of robotics and cloud computing. Future
Gener. Comput. Syst. 2017, 74, 337–348. [CrossRef]

15. Liu, B.; Wang, L.; Liu, M. Lifelong federated reinforcement learning: A learning architecture for navigation in cloud robotic
systems. IEEE Robot. Autom. Lett. 2019, 4, 4555–4562. [CrossRef]

16. Chinchali, S.; Sharma, A.; Harrison, J.; Elhafsi, A.; Kang, D.; Pergament, E.; Cidon, E.; Katti, S.; Pavone, M. Network offloading
policies for cloud robotics: A learning-based approach. arXiv 2019, arXiv:1902.05703.

17. Crow, S. Google Cloud Robotics Platform coming to developers in 2019. Robot Rep. 2018, 1, 01–04.
18. Sparrow, R. Robots and respect: Assessing the case against autonomous weapon systems. Ethics Int. Aff. 2016, 30, 93–116.

[CrossRef]
19. Koubâa, A. Service-Oriented Computing in Robotic. In Encyclopedia of Robotics; Springer: Berlin/Heidelberg, Germany, 2020;

pp. 1–12.
20. Huang, M.H.; Rust, R.T. Engaged to a Robot? The Role of AI in Service. J. Serv. Res. 2020, 1 1094670520902266. [CrossRef]
21. Saini, M.; Sharma, K.; Doriya, R. An empirical analysis of cloud based robotics: Challenges and applications. Int. J. Inf. Technol.

2022, 14, 801–810. [CrossRef]
22. Wan, J.; Tang, S.; Yan, H.; Li, D.; Wang, S.; Vasilakos, A.V. Cloud robotics: Current status and open issues. IEEE Access 2016,

4, 2797–2807. [CrossRef]
23. Saravanan, K. Cloud robotics: Robot rides on the cloud–architecture, applications, and challenges. In Robotic Systems: Concepts,

Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2020; pp. 2027–2040.
24. Song, K.T.; Sun, Y.X. Coordinating multiple mobile robots for obstacle avoidance using cloud computing. Asian J. Control 2021,

23, 1225–1236. [CrossRef]
25. Song, K.T.; Chiu, Y.H.; Kang, L.R.; Song, S.H.; Yang, C.A.; Lu, P.C.; Ou, S.Q. Navigation control design of a mobile robot by

integrating obstacle avoidance and LiDAR SLAM. In Proceedings of the 2018 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 1833–1838.

26. Hurbungs, V.; Bassoo, V.; Fowdur, T. Fog and edge computing: Concepts, tools and focus areas. Int. J. Inf. Technol. 2021,
13, 511–522. [CrossRef]

27. Chen, X.; Kong, Y.; Fang, X.; Wu, Q. A fast two-stage ACO algorithm for robotic path planning. Neural Comput. Appl. 2013,
22, 313–319. [CrossRef]

28. Rashid, R.; Perumal, N.; Elamvazuthi, I.; Tageldeen, M.K.; Khan, M.A.; Parasuraman, S. Mobile robot path planning using Ant
Colony Optimization. In Proceedings of the 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation
(ROMA), Ipoh, Malaysia, 25–27 September 2016; pp. 1-6.

29. Kuffner, J.J.; LaValle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the Proceedings
2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat.
No. 00CH37065), Philadelphia, PA, USA, 24–28 April 2000; Volume 2, pp. 995–1001.

30. Wei, K.; Ren, B. A method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an
improved RRT algorithm. Sensors 2018, 18, 571. [CrossRef]

31. Hwang, Y.K.; Ahuja, N. A potential field approach to path planning. IEEE Trans. Robot. Autom. 1992, 8, 23–32. [CrossRef]
32. Singh, A. Security concerns and countermeasures in cloud computing: A qualitative analysis. Int. J. Inf. Technol. 2019, 11, 683–690.
33. Choi, Y.; Choi, M.; Oh, M.; Kim, S. Service robots in hotels: Understanding the service quality perceptions of human–robot

interaction. J. Hosp. Mark. Manag. 2020, 29, 613–635. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.future.2016.01.002
http://dx.doi.org/10.1109/LRA.2019.2931179
http://dx.doi.org/10.1017/S0892679415000647
http://dx.doi.org/10.1177/1094670520902266
http://dx.doi.org/10.1007/s41870-021-00842-4
http://dx.doi.org/10.1109/ACCESS.2016.2574979
http://dx.doi.org/10.1002/asjc.2431
http://dx.doi.org/10.1007/s41870-020-00588-5
http://dx.doi.org/10.1007/s00521-011-0682-7
http://dx.doi.org/10.3390/s18020571
http://dx.doi.org/10.1109/70.127236
http://dx.doi.org/10.1080/19368623.2020.1703871

	Introduction
	Related Work
	Proposed Architecture
	Robot Path Planning Using Cloud Computing Platform
	Results and Discussion
	Conclusions
	References

