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Abstract: Alzheimer’s disease (AD) is a deadly cognitive condition in which people develop severe
dementia symptoms. Neurologists commonly use a series of physical and mental tests to diagnose
AD that may not always be effective. Damage to brain cells is the most significant physical change
in AD. Proper analysis of brain images may assist in the identification of crucial bio-markers for
the disease. Because the development of brain cells is so intricate, traditional image processing
algorithms sometimes fail to perceive important bio-markers. The deep neural network (DNN) is
a machine learning technique that helps specialists in making appropriate decisions. In this work,
we used brain magnetic resonance scans to implement some commonly used DNN models for
AD classification. According to the classification results, where the average of multiple metrics is
observed, which includes accuracy, precision, recall, and an F1 score, it is found that the DenseNet-121
model achieved the best performance (86.55%). Since DenseNet-121 is a computationally expensive
model, we proposed a hybrid technique incorporating LeNet and AlexNet that is light weight and
also capable of outperforming DenseNet. To extract important features, we replaced the traditional
convolution Layers with three parallel small filters (1× 1, 3× 3, and 5× 5). The model functions
effectively, with an overall performance rate of 93.58%. Mathematically, it is observed that the
proposed model generates significantly fewer convolutional parameters, resulting in a lightweight
model that is computationally effective.

Keywords: dementia; deep neural network (DNN); medical image processing; Alzheimer’s disease
(AD); brain imaging; machine learning

1. Introduction

Alzheimer’s disease (AD) is a severe neurological syndrome that renders a patient
incapable of making decisions, memorising, speaking, learning, and so on [1,2]. The
majority of Alzheimer’s patients are in their early 60s or older. Damage to brain cells is
the most devastating of all the physical changes. The hippocampus, amygdala, and certain
other brain regions that regulate the majority of AD symptoms are the ones to suffer the
most damage [3–5]. Learning cells are first impacted, and subsequently, other grey matter
cells are destroyed, rendering the patient incapable of performing even the most basic
tasks. As a consequence, individuals with Alzheimer’s disease have severe behavioural
and cognitive difficulties, as well as memory loss [6]. Beginning in the early 1960s, the
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impacts of AD could be seen. According to a poll conducted in 2019 by the “National
Institute on Aging, U.S.A.”, there are around 6 million Americans who suffer from AD [7].
“Alzheimer’s and Dementia Resources” found that more than 4 million individuals in India
have AD [8]. AD patients are increasing dramatically and alarmingly over the globe.

The majority of people who experience AD have progressed through an early stage of
dementia known as mild cognitive impairment (MCI) [9,10]. MCI symptoms are almost
identical to those of AD, although in a milder form. MCI is sometimes referred to as the
early stage of AD. As per an investigation, eight out of ten persons with MCI develop AD
after seven years [10].

Traditionally, neuro-experts conduct a series of physical and mental tests with the
support of psychologists, such as a health history inspection [11], a physical assessment
and screening tests [12], a neurophysiological evaluation [13], a Mini-Mental State Exam
(MMSE) [14], a depression analysis [15], and so on. Various tools are required to accomplish
all of these activities, which is a time-consuming and ineffective process.

Magnetic resonance imaging (MRI) is a widely used technique for obtaining tissue-by-
tissue details about the nervous system [16]. MRI is often used to successfully diagnose
a variety of disorders, including cancer, tumours, and others [17]. The discrepancy in
brain cells between AD, MCI, and cognitively normal (CN) individuals can be determined
with appropriate image processing tools. The traditional AD diagnosing system includes a
variety of tests such as physical examination, memory test, genetic information, etc. The
utilization of brain images for AD classification may take lesser time than the traditional
diagnosing system and needs fewer instruments. Furthermore, optimal brain image pro-
cessing may reveal significant bio-markers long before a person develops Alzheimer’s
disease [18]. Traditional image processing tools, on the other hand, fail to diagnose AD by
examining tissue changes due to the intricate pixel formations [19]. Figure 1 shows sample
brain MR images for patients with CN, MCI, and AD.

Figure 1. Sample brain MR image of a CN, MCI, and AD patient.

From Figure 1, it can be observed that the hippocampus region (in the centre of the
brain images) in AD patients is much smaller than in CN and MCI individuals. Similarly,
the hippocampal size of MCI patients is smaller than that of CN patients.

Amongst all the ML approaches, the artificial neural network (ANN) is one of the most
widely used technique, especially in the field of medical image processing [20]. ANN works
by building multiple interlinked artificial neurons that simulate the biological functions
of a human brain in order to interpret information from the environment [21,22]. The
deep neural network (DNN) is an ANN component in which a collection of hidden layers
are interpreted between input and output to aid in absorbing crucial characteristics for
improved model training [23]. DNN is a commonly utilised machine learning approach
that has been successful in a variety of healthcare applications [24]. Another reason for
the popularity of the DNN is that it can handle even the most complex data, such as brain
images [20].
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Deep learning has many medical applications. In recent studies, it was revealed that
DL can effectively detect K-complexes in EEG signals that help in identifying biomarkers
of various diseases [25,26]. DL can also classify X-ray images effectively. In a recent article,
it was shown that DL can be used in the detection of developmental dysplasia of the
hip using X-ray images [27]. Artificial intelligence is also being utilized in the veterinary
medicine field. Recent research discussed how artificial intelligence could effectively predict
survivability likelihood and need for surgery in horses presented with acute abdomen
(Colic) [28].

Research is going on to develop a reliable DNN-based image classifier. Different
effective models have been created to date. DNN has been widely used in the classification
of AD and has shown highly compelling findings [29]. Still, as far as we are aware, DNN
algorithms are used relatively rarely in the diagnosis of AD. In order to test the efficacy
of DNN models in AD classification, we deployed a collection of existing models and
evaluated their overall performance in this study. The models we have implemented are
LeNet [30], AlexNet [31], VGG-16 and VGG-19 [32], Inception-V1/V2/V3 [33], ResNet-
50 [34], MobileNet-V1 [35], EfficientNet-B0 [36], Xception [37], and DenseNet-121 [38]. The
motivation behind considering these DNN models includes the following: (a) LeNet has
the one of the most simplest architectures that works effectively. (b) The 1st-ImageNet
Large Scale Visual Recognition Challenge was won by AlexNet. (c) Except LeNet and
AlexNet, all other models are recognized and are available in the Keras library for transfer
learning. The main contributions to this work can be summarized as follows:

• According to the results of the performance evaluation, all of the existing models
performed at a percentage of less than 90. It has also been observed that amongst all
the models, because of the simple and effective architecture, LeNet and AlexNet can
perform faster in training and testing.

• The main aim of this work is to develop a light weighted hybrid model that can
perform faster and better. We combined LeNet and AlexNet in parallel and proposed
a new hybrid DNN architecture.

• Different convolutional kernel sizes may help a network to learn more crucial aspects,
and mixing several features can improve feature representations [39]. Hence, in the
proposed hybrid model, we replaced all the traditional large convolutional filters with
a set of three small filters (1× 1, 3× 3, and 5× 5).

• Better feature extraction improves the model’s performance, and the model’s average
performance improved to 93.58%. Mathematically, it is shown that the proposed
hybrid model retrieved much fewer convolutional parameters (even significantly
fewer than the regular AlexNet model), making it a computationally faster model.

• In comparison to all other deployed models, as well as the discussed state of the
art, it is observed that the proposed hybrid model achieved the most convincing
performance.

The organization of the paper is as follows: (a) In Section 2, we discussed some of the
recently published related state of the art. (b) In Section 3, we discussed and evaluated
the performance of some existing DNN models for AD classification. (c) In Section 4,
the proposed hybrid model is discussed and evaluated using the same data set. (d) In
Section 5, Results, a discussion is given. (e) In Section 6, we concluded the paper along
with a discussion about some future scopes of work.

2. Related Study

In the diagnosis of Alzheimer’s disease, ANN methods are becoming increasingly
popular. One of the key reasons for its popularity is the ability to learn about the best
features from the surroundings to improve its forecasting accuracy over time [40]. Some of
the recently published state-of-the-art works are discussed in this section.

A ResNet-based model for brain shrinkage identification that further helps in AD
classification is proposed in ref. [41]. Initially, a DNN of residual self-attention is developed
to increase the classification efficiency by integrating local–global along with spatial features
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from brain scans. For enhancing the intelligible characteristics, a gradient-based localisation
class activation mapping (g-LCAM) based intelligibility procedure is developed. Finally, the
authors propose an automatic classification approach which is based on the sub-sequential
training. The proposed 3D model is inspired from the original ResNet model. In order to
achieve the most convincing results, the 3D g-LCAM is used in the model. The proposed
model can classify AD/CN, and progressive MCI (pMCI)/ stable MCI (sMCI).

In a related work, a new broad learning system (BroLeS) based model for the cate-
gorization of AD is proposed in ref. [42]. The diagnosis method employs brain MRIs and
leverages BroLeS and its convolutional advances to categorize several stages of Alzheimer’s
disease. The computational anatomy toolbox (CAT-12) is used to perform various pre-
processing tasks. A new model is developed, known as the convolution feature-based
cascade of enhancement nodes BroLeS (CCEBroLeS) based on processed data that aid in
merging BroLeS variants. As a result, a new version is offered that incorporates both the
CCEBroLeS and the BroLeS. For feature extraction, a multi-layer CNN is utilised. The
model is based on the well-known VGG model.

An artificial neural network-based AD diagnosing model that can also predict the
progression of the disease is proposed in ref. [43]. A 3d multi-information generative ad-
versarial network (MulGAN) is used in order to determine brain changes as age progresses.
A DenseNet-based model is built to classify the disease that fundamentally optimises the
localized degradation of brain to predict Alzheimer stages. The model incorporates a
variety of factors, including age, gender, and so on. The Voxel-based morphometry (VoBM)
toolkit is used in pre-processing to conduct skull removal and the splitting of brain images
into 3 sections (grey matter, white matter, and cerebrospinal fluid). The presented method
can differentiate various phases of cognition, such as MCI vs. AD, MCI vs. CN, pMCI vs.
sMCI, and so on. The model was also tested as a multiclass classifier and came out with a
positive result.

Taking brain atrophy as an important bio-marker, a new AD classification approach
is introduced in ref. [44]. The model can be used for both atrophy identification and
classification. For determining the most discriminatory regions, a cluster-based CNN is
designed. Crucial characteristics are retrieved from the detected locations and utilised for
training the model. Information from regional brain MRI slices is also used in the training
of the model. A cell-based anatomy with each of the axially aligned images is created to
obtain the approximated positions for extracting the features. A composite loss function is
used to improve the results.

A CNN-based AD diagnostic system is proposed in ref. [45]. A CNN model is designed
that incorporates the most relevant characteristics of the hippocampal lobes utilizing T1-MR
and FDG-PET data. No splitting procedures are carried out. All image data are converted
as the identical spatial space to prepare data in training and testing. Rigid normalization
is used to ensure that the cells from same brain areas from both sources are the same.
The concept of original VGG model is taken as reference while building the proposed
model. CN vs. AD, CN vs. pMCI, and sMCI vs. pMCI individuals are classified using the
proposed model.

A novel DNN model that can classify AD from DT images is proposed in ref. [46]. Pre-
processing, such as normalisation, RoI separation, etc., is performed utilising the statistical
parametric mapping software. After performing the segmentation, a separate volumetric
measurement is performed for GM and WM. The proposed model is the combination of an
input, convolution, batch-normalization, activation, pooling, dense, and the final classifying
layer. Five-cross validation enhanced the training/testing performance of the model.

An AD classifier is developed using a fusion of CNN with the recurrent neural net-
works in a research work [47]. All 3D brain images are processed into a series of 2D slices.
A mixture of convolutional and recurrent neural networks is used to fit the classifier appro-
priately on intra–inter characteristics. Slice-wise characteristics are adopted using CNNs,
and multi-characteristics are adopted using RNNs’ gated recurrent unit.
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A DenseNet-based strategy for AD detection is proposed in ref. [48]. Some of the
effective slices are used for further analysis from 3D MR data. In the proposed model,
the concept of the DenseNet’s Bottleneck is used. A channel factor is also used that
takes into account three specific channels (RGB) from monocular MRIs. The M3d-Cam
toolkit is combined with a guided gradient weighted class activation mapping (Grad-CAM)
technique to improve imaging feature extraction. The procedure is known as attention
mapping, and it aids in the discovery of undesired characteristics. All undesirable pixels
are therefore eliminated using the proper processing methods.

An artificial neural network model for AD diagnosing using the brain MR data is
proposed in the research work of [49]. The 3D Slicer toolkit is used to separate the hip-
pocampal lobes from brain data. The surface of voxels is then processed using an uniformity
rectifying analysis based on Local-Entropy-Minimization-bi cubic Spline. Eventually, the
diagnoses are carried out using a CNN-based predictor. The input layer, convolutional
layers, pooling layers, flatten layers, fully connected layers, and output class label make up
the proposed CNN.

By using the concept of extreme learning, a novel CNN model for AD classification is
proposed in ref. [50]. Cognitive control networks are classified using two distinct networks.
Additionally, the concept of an enhanced extreme learning machine is also used.

Employing extreme learning, the model is trained on elements of deep regional
connectivity. Extreme learning is also used to assist the network in learning more about
characteristics in the area. The Pearson correlation (PC) coefficient is used to construct the
brain network. The suggested DNN is made up of convolutional layers, the ReLu activation
function, pooling layers, fully linked layers, and decision layers.

For staging the AD spectrum, a RoI-CNN based classifier is proposed in a research
article [51]. Patches of three orthogonal views of selected RoIs from cerebral regions are
used to train a CNN model. From the brain images, the hippocampus, amygdala and
insulae regions are chosen as RoIs. Softmax activation function is used to predict the
probability of the AD stages. The Gwangju Alzheimer and Related Dementia (GARD) data
set is used. RoI-basd data are used in a CNN for binary classifications. Then classifiers
are grouped together for staging the AD. A permutation test is performed to choose the
specific 3 pairs of ROIs from 101 different ROIs in the data set.

From the discussion about various recently published state-of-the-art works, it is
observed that the majority of the papers did not give a high priority to computational
time. Moreover, the highest performance is reported as 90%. So to enhance both the
computational and classification performance results, we propose a hybrid approach that
generates fewer parameters to make it a light-weight model (discussed in Section 4).

3. Experimental Analysis of Different DNN Models
3.1. Data and Tools

T1-weighted, MPRAGE MRI data are acquired from the online data set ADNI [52]. Dur-
ing the acquisition of data, a total of 150 subjects (CN: 50, MCI: 50, AD: 50) are considered.

Throughout ageing, the thickness and biological structures of the human brain
changes [53,54]. Our earlier studies [55,56] showed that the hippocampal size as well as
the volume of grey matter (GM) varies with the individual’s ageing. It is observed that the
average hippocampal and GM size/volume is higher in participants in a certain category
(CN, MCI, or AD) aged 60–69 years than any other ages (70+ years). Similarly, individuals
in their 70s and 80s have greater hippocampal/GM areas than those in their 80s and 90s.
As a consequence, all training and testing data are separated into multiple subgroups
depending on patient age (60–69/70–79/80+ years) for better evaluation of the algorithms.

The actual number of training images was 5000. We used the Data-Gen process to
generate a large amount of training data with several variables, such as rotation, mirror
reflection, and so on. The total number of images surpassed 11,000. Table 1 shows how all
of the data are organized.
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Table 1. Data distributions.

Classes Subjects Age (Years) Training
Images

Testing
Images

Total No.
Images

CN 50

60–69 900 350

375070–79 900 350

80+ 900 350

MCI 50

60–69 900 350

375070–79 900 350

80+ 900 350

AD 50

60–69 900 350

375070–79 900 350

80+ 900 350

Total 150 8100 3150 11,250

3.2. Experimental Setup

The CPU used in this work is configured with (a) 12 GB of RAM (b) 500 GB of SSD
storage, (c) 2 GB graphics, and (d) i7 processor. For implementations, we used the Python
3.0 toolkit. We employed the “softmax” activation function, the “StochasticGradientDescent
(SGD)” optimizer, and the “SparseCategoricalCrossEntropy (SCCE)” loss function for all of
the models. The data are split into 32 batches and trained across 40 epochs.

3.3. Pre-Processing

With the help of a radiologist from the North Eastern Indira Gandhi Regional Institute
of Health and Medical Sciences (NEIGRIHMS), we performed a pre-processing step for
selecting an appropriate slice from the 3D images. By utilizing 3D slicer software, we
selected a slice of the image where the hippocampus region can be visualised properly.
The reason behind taking the hippocampus as a region of visual interest is that, in AD, the
hippocampus is the primarily affected region in the brain. After obtaining the 2D images,
we applied the skull-stripping operation.

All data acquired from the data set ADNI are not skull-free. In our study, the skull
is unnecessary; hence, we performed the skull-stripping operation before training the
models. Five frequently utilized segmentation strategies, including region-growing, region
splitting–merging, K-means clustering, histogram-based thresholding, and the fuzzy c
means method, are examined to separate the skulls more precisely [57]. As shown in Table 2,
it is observed that the histogram-based thresholding technique can deliver a reasonable
outcome [57]. As a result, a histogram-based technique is used to remove the skull. Figure 2
shows an example of an input and the corresponding output result (skull stripping).

Table 2. Performance analysis of various skull-stripping approaches.

Algorithm Accuracy Sensitivity

Region growing 0.62 0.68
Histogram based 0.85 0.90
Fuzzy C means 0.53 0.77

K-Means 0.64 0.75
Region Splitting and Merging 0.61 0.74



Electronics 2023, 12, 676 7 of 17

Figure 2. Sample brain MR images with skull and without skull.

3.4. Discussion about the Implemented DNN Models

Below is a brief overview of all the models that have been implemented.

3.4.1. LeNet

In 1989, Yann LeCun presented one of the most simplest and effective DNN architec-
tures with only 7 layers [30]. The arrangement of the layers can be summarized after the
input as (1) conv layer, (2) pooling layer, (3) conv layer, (4) pooling layer, (5) fully connected
layer, (6) fully connected layer, and (7) the output layer. In CNN, the convolution layer
has the responsibility for extracting the important features from the input data. By learn-
ing attributes with smaller sections of input data, convolution maintains the correlation
among pixels. It is a computational process with two variables: image matrix as well as a
filter/kernel. A sample convolutional operation can be presented as Equation (1).

Cxy = C(m, n) = b + (A · B)mn = b + ∑
x

∑
y

Am−x,n−y · Bx,y (1)

In Equation (1), ‘C’ stands for convolution, ‘A’ stands for input, and ‘B’ stands for
kernel function, and ‘b’ is bias value. The matrices’ rows and columns are denoted by ‘x’
and ‘y’.

The pooling operation implies rolling a 2D kernel across each channel of the feature
space and aggregating the features that fall inside the filter’s coverage zone. Data maps’
dimensionalities are reduced by using pooling layers. As a result, the set of variables to
train as well as the cost of processing in the networks are both reduced. There are three
types of pooling layers used by different DNN models, which are max pooling, average
pooling, and global pooling.

3.4.2. AlexNet

AlexNet was first introduced by Krizhevesky in 2012 [58]. AlexNet, which uses an
8-layer network, blew away the competition in the ILSVRC 2012 [59]. AlexNet and LeNet
have nearly identical design ideas, yet they also have substantial variances. Firstly, AlexNet
is substantially larger than LeNet, which is comparably smaller. AlexNet has 8 layers,
including 5 convolutional layers and 2 dense layers, followed by an output layer. Secondly,
AlexNet adopts the ReLu activation function instead of sigmoid. This model demonstrates
that learning-based features can outperform manually designed features, shattering the old
paradigm in machine vision.

3.4.3. VGG-16 and VGG-19

The VGG-16 architecture, often known as VGGNet-16, is a CNN model introduced by
A. Zisserman and K. Simonyan of Oxford university in 2014 [32]. VGG-16, which has a total
of 16 deep layers, was designed for the Visual Geometry Group (VGG) Lab. In ILSVRC-
2014, VGG 16 won the competition for localisation, finishing 2nd for classifications [60].
VGG-16 consists of 13 convolutional, 5 pooling, and a set of dense layers. VGG-19 follows
a similar architecture as VGG-16 with a sum of 47 layers (having 19 deep layers) [61].
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3.4.4. Inception—V1 and V2 and V3

Although architectures of deep CNN, such as VGG-16 and VGG-19, can convincingly
perform classification tasks, but they sacrifice computation time [62]. Furthermore, over-
fitting difficulties have an impact on such networks, and it is difficult to propagate gradient
modifications across the entire network. Lin et al. developed the notion of the inception
module in 2014 to address these challenges [33]. The main goal of the inception block is
to estimate an ideal local sparse organization. It lets us employ many sorts of filter sizes
in a single image block, rather than being limited to a single filter size, and finally the
combination of all will be forwarded to the next layer. Szegedy et al. then developed the
architecture of Inception-V1 (which is also known as GoogleNet) by borrowing the concept
of the inception module [63]. Inception-V1 was chosen the winner of the ILSVRC 2014.
Including several inception modules, this model is designed with a total of 22 layers and in
each module, a set of 1× 1, 3× 3, and 5× 5 filters is used.

Although the achievement of Inception-V1 is adequate, the topology has a flaw. The
utilization of larger filters, such as 5× 5, can cause the input parameters to diminish by a
large factor, possibly resulting in the loss of vital information [64]. To address this problem,
the Inception-V2 framework is created, in which each of the 5× 5 convolutions is modified
with 2 3× 3 [65]. Additional modification to this approach is the replacement of the n× n
computation with n× 1 and 1× n, which improves the method to be operationally quicker.

Inception V3 is introduced by upgrading and adding some new concepts, including
label filtering, uses of 7× 7 filters, use of the RMSprop estimator, and so on [65]. Inception-
V3 came in second place in the ILSVRC contest in 2015 [66].

3.4.5. ResNet-50

Although deep models, such as Inception, produce impressive findings, as the network
grows deeper, it becomes saturated and loses accuracy quickly [34,67]. The notion of a
residual block is developed to overcome the problem. The fundamental idea is to create
a bridging that enables to bypass 1 or even more layers. The concept of residual blocks
worked successfully, as ResNet won the ILSVRC 2015 championship [68]. The ResNet-
50 can be divided into five blocks, each block owning a collection of convolution and
residual blocks.

3.4.6. MobileNet-V1

MobileNet is well known for its use in lightweight apps [69]. The notion of depth-wise
convolutions is applied in this framework, which aids in the reduction of less significant
parameters [35]. Convolutional function is divided into two parts: initially, a depth-wise
convolutional layer which is used to filter the input, and then an 1× 1 (also known as
point-wise convolution) convolutional layer merges the processed information to form
new features.

3.4.7. EfficientNet-B0

Tan et al. introduced a novel prototype scaling strategy in 2019 that is built on a
basic compounded coefficient that helps in scaling up the networks in a more ordered man-
ner [36]. Traditionally, dimension scaling is performed by taking the width/depth/resolution
as a factor, but EfficientNet uses a vector of scaling coefficients [70]. This technique is also
called compound scaling (CS). If, for a particular input channel, the depth, width, and
resolution are given by m = aφ, n = bφ, and o = cφ correspondingly, where φ represents
the compound coefficient, then the mathematical expression of CS can be defined as 2:

CS = a · b2 · c2 ≈ 2, a ≥ 1, b ≥ 1, c ≥ 1 (2)

3.4.8. Xception

Google team designed this new CNN architecture based on the Inception network
topologies with the introduction of a new idea termed depth-wise separable convolu-
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tion [37]. This new idea of the convolution technique is simply a revised form of the
depth-wise convolution. The operation starts with a 1× 1 convolution and then proceeds
to channel-wise spatial convolutional procedures. The non-linearity of the inception model
is removed in Xception by applying the depth-wise separable convolution.

3.4.9. DenseNet-121

In deeper models, the communication route from the origin to destination, as well
as the gradient that traverses in the opposite direction, can become so long that certain
information gets lost even before it achieves the given target [71]. DenseNet changed the
way the layers communicate with one another. All layers in the network are intrinsically
linked, and the idea of feature reuse is used to lower the overall amount of parameters.
Another difficulty with DNN models is that they follow knowledge transfer and also
gradients during learning. To address this problem, DenseNets provides all layers with the
ability to directly acquire gradients by matching loss functions [38].

We evaluated several of the most common parameters, including accuracy, precision,
recall, and F1-score, to evaluate performance. The aggregate of all of these key metrics is
computed. The overall evaluation is presented in Table 3.

Table 3. Performance comparison of different DNN models for AD classification.

Models Performance
(Average) p-Value Average Time

Required per Epoch

LeNet 0.8025 0.025 68 s
AlexNet 0.7150 0.033 79 s
VGG-16 0.7900 0.027 142 s
VGG-19 0.8525 0.041 248 s

Inception-V1 0.8280 0.035 228 s
Inception-V2 0.8275 0.042 188 s
Inception-V3 0.8360 0.031 212 s

ResNet-50 0.7125 0.022 552 s
MobileNet-V1 0.8640 0.192 532 s
EfficientNet-B0 0.7360 0.022 0842 s

Xception 0.86 0.027 774 s
DenseNet-121 0.8655 0.018 812 s

From Table 3, it can be noticed that the highest average performance is achieved by
the DenseNet-121 model. However, the model compromises with the execution complexity.
LeNet and AlexNet, on the other hand, have the fastest execution times because of their
simple and effective architectures. Our major goal is to design an effective architecture that
can perform better and faster. We propose a hybrid architecture where LeNet and AlexNet
combined together. A detailed discussion of the architecture is given in Section 4.

4. Proposed Model for AD Classification

The ensemble of different DL models is a popular way to enhance classification
performance results. Effective examples of ensembles of different ML models for automatic
sleep–arousal detection, attention classification, etc., can be observed in refs. [72,73]. By
taking the original LeNet and AlexNet architectures as a reference, we propose a new
model, where all the layers of both models are combined parallelly. Apart from that, since
our region of interest is the brain, which is not very large, and since different convolutional
kernel sizes help a model to learn better [39], we replaced the large convolutional filters
from the original architectures with a set of three small parallel filters (1× 1, 3× 3, 5× 5).
The architecture of the proposed model is presented in Figure 3.
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Figure 3. Block diagram of the proposed architecture.

In Figure 3, the symbol ‘+’ represents the concatenation of different layers. The average
performance of the model is presented in Table 4.

One of the primary motivations for substituting normal convolution layers is to
accelerate up the model by extracting fewer but more diverse parameters. Instead of
employing a large number of kernels with the same enormous filter size, we broke it down
into three separate filter sizes. This phase not only assisted us in obtaining multiple features,
but it also resulted in fewer parameters, allowing the model to run more efficiently. The
mathematical advantages of adopting a set of small kernel sized convolution layers are
addressed in the next paragraph.

Considering no padding and 1 stride, if we use ’M’ number of ’Kh × Kw’ kernels
in a convolution layer followed by a prior layer with ’N’ number of kernels, the total
number of parameters ’P’ generated in the current convolution layer can be represented by
Equation (3):

P = ((Kh × Kw × N) + 1)×M (3)

where 1 is added as the bias term in each filter. In the original LeNet architecture, it has a
total of two convolution layers with 6, 5× 5, and 16, 5× 5, filters. If the input dimension is
256× 256× 3, the number of parameters generated by each of the convolution layers can
be calculated as follows:

1. No. of parameters generated by first convolution layer = ((5× 5× 3) + 1)× 6) = 456.
2. No. of parameters generated by second convolution layer = ((5× 5× 6) + 1)× 16) =

2416.
3. Total parameters generated in LeNet by the two convolution layers = 2872.

Similarly, the parameters generated by all the five convolution layers in standard
AlexNet architecture with (96, 11× 11), (256, 5× 5), (384, 3× 3), (384, 3× 3), and (256, 3× 3)
filters can be calculated as follows:

1. No. of parameters generated by first convolution layer = ((11× 11× 3) + 1)× 96) =
34, 944.

2. No. of parameters generated by second convolution layer = ((5× 5× 96) + 1) ×
256) = 614, 656.

3. No. of parameters generated by third convolution layer = ((3× 3× 256)+ 1)× 384) =
885, 120.

4. No. of parameters generated by fourth convolution layer = ((3× 3× 384) + 1) ×
384) = 1, 327, 488.

5. No. of parameters generated by fifth convolution layer = ((3× 3× 384) + 1)× 256) =
884, 992.

6. Total parameters generated in LeNet by the two convolution layers = 3,747,200.
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If we add the original LeNet and AlexNet architectures together, then we will get a
total number of 3,750,072 convolutional numbers. Since the number of parameters is huge,
it will make the hybrid model slower in execution. Hence, we introduced the concept of
multiple small sized kernels in the original convolution layers to gain a variety of features
that can also reduce the total number of parameters significantly. In the modified LeNet
architecture, we divided the total number of kernels in three parts in each of the convolution
layers. In the modified convolution layers of LeNet, we have [(2, 1× 1), (2, 3× 3), (2, 5× 5)],
and [(6, 1× 1), (6, 3× 3), (6, 5× 5)], filters. The number of parameters generated by each of
the modified convolution layers can be calculated as follows:

1. No. of parameters generated by first convolution layer = [((1× 1× 3) + 1)× 2) +
((3× 3× 3) + 1× 2) + ((5× 5× 3) + 1× 2)] = 214.

2. No. of parameters generated by second convolution layer = [((1× 1× 2) + 1)× 6) +
((3× 3× 2) + 1× 6) + ((5× 5× 2) + 1× 6)] = 438.

3. Total parameters generated in LeNet by the two convolution layers = 652.

Similarly, the parameters generated by all the five convolution layers in standard AlexNet
architecture with [(32, 1 × 1), (32, 3 × 3), (32, 5 × 5)], [(86, 1 × 1), (86, 3 × 3), (86, 5 × 5)],
[(128, 1 × 1), (128, 3 × 3), (128, 5 × 5)], and [(128, 1 × 1), (128, 3 × 3), (128, 5 × 5)], and
[(86, 1× 1), (86, 3× 3), (86, 5× 5)] filters can be calculated as follows:

1. No. of parameters generated by first convolution layer = [((1× 1× 3) + 1)× 32) +
((3× 3× 3) + 1× 32) + ((5× 5× 3) + 1× 32)] = 3776.

2. No. of parameters generated by second convolution layer = [((1× 1× 32) + 1)×
86) + ((3× 3× 32) + 1× 86) + ((5× 5× 32) + 1× 86)] = 96, 578.

3. No. of parameters generated by third convolution layer = [((1× 1× 86) + 1)× 128) +
((3× 3× 86) + 1× 128) + ((5× 5× 86) + 1× 128)] = 385, 664.

4. No. of parameters generated by fourth convolution layer = [((1× 1× 128) + 1)×
128) + ((3× 3× 128) + 1× 128) + ((5× 5× 128) + 1× 128)] = 573, 824.

5. No. of parameters generated by fifth convolution layer = [((1× 1× 128) + 1)× 86) +
((3× 3× 128) + 1× 86) + ((5× 5× 128) + 1× 86)] = 385, 538.

6. Total parameters generated in LeNet by the two convolution layers = 1,445,380.

The proposed hybrid model (modified LeNet + modified AlexNet) generates 1,446,032
convolutional parameters, which is 2,304,040 lesser than the original architecture. It can
be clearly observe that the proposed model generates significantly fewer convolutional
parameters, resulting in a model that is lighter in weight and faster.

Table 4. Performance evaluation table of the proposed hybrid model.

Model Classes Age (Years) Accuracy Precision Recall F1 Score Average
Performance

Average Time
per Epoch

Proposed Hybrid
Model

CN/MCI

60–69 0.95 0.93 0.95 0.94

0.9358 72 s

70–79 0.93 0.94 0.95 0.94

80+ 0.95 0.94 0.92 0.94

MCI/AD

60–69 0.93 0.93 0.92 0.96

70–79 0.96 0.93 0.93 0.96

80+ 0.92 0.92 0.95 0.92

CN/AD

60–69 0.96 0.96 0.94 0.93

70–79 0.92 0.93 0.92 0.93

80+ 0.91 0.92 0.93 0.93

It is also worth noting that the number of convolutional parameters in the hybrid
model is even much lower than the original AlexNet (parameters difference is 2,301,168),
which makes the hybrid model even faster than the original AlexNet model. The hybrid
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model not only outperforms all other models in terms of execution time, but it also has a
better ability to classify AD. In Table 4, the average performance of the proposed hybrid
model is presented.

All the performances evaluated in this work are examined over test images. The
performance evaluation metrics used in this work are accuracy, precision, recall, and F1
score. The percentage of correct forecasts (true positive + true negative) among all guesses
is known as accuracy. The number of correctly predicted positive outcomes (true positive) is
measured by precision. The percentage of positive cases the classifier accurately predicted
out of all the positive instances in the data is known as recall. The F1-score is a measurement
that combines recall and precision. Overall, it is referred to as the mean of the two.

From Table 4, it can be observed that the average performance of the proposed hybrid
model, which is around 93.58%, is the maximum among all the implemented models.
Moreover, the average time required per epoch in the proposed model is lower than most
of the discussed models.

The proposed model is also tested for multi-class classification (CN vs. MCI vs. A)
using 5-fold cross validation. The dataset is split into 5 folds, where examples are assigned
randomly to each fold. For each one of the ith runs (where i = 1 to 5), assign examples in
the ith fold for testing with the remaining examples in the other folds for training. Then,
perform predictions on the ith testing fold. The performance observed is presented in
Table 5.

Table 5. Multi-class performance evaluation table of the improved LeNet model.

Model Age
(Years) Accuracy Precision Recall F1 Score

Proposed Hybrid model

60–69 0.88 0.92 0.90 0.91

70–79 0.83 0.88 0.89 0.89

80+ 0.83 0.85 0.84 0.85

The best-performing confusion matrix for multi-class classification is shown in Figure 4.

Figure 4. Confusion matrix.

From Table 5, the standard deviation (σ) is determined as Equation (4):

σ =

√√√√ 1
T

T

∑
i=1

(xi − µ)2 (4)

In Equation (4), T is the population size (3). Mean Performance = 0.87; Sum of
difference (s) = (xi − µ) =0.002; Variance (σ2) = s/T = 0.0027/3 = 0.001; Deviation (σ) =√

0.0013 = 0.032.

5. Results and Discussion

Some of the most commonly used DL models are implemented for AD classification
using the same dataset and the same experimental setup. As presented in Table 3, the
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average performance results of all implemented models are observed. It is observed from
Table 3 that LeNet and AlexNet are computationally faster (68 s/epoch, and 79 s/epoch)
than all other implemented models. The idea of this work is to design a hybrid approach
that can classify AD efficiently with less computational time. Hence, we combined LeNet
and AlexNet with certain modifications.

After combining LeNet and AlexNet with certain modifications, the hybrid model is
tested for binary class classifications. As presented in Table 4, we observed the performance
with some widely used evaluation matrices, such as accuracy, precision, recall, and F1
score. According to the average value shown in Table 4, it is observed that the hybrid
model can outperform all implemented DL models (except the original LeNet) in terms of
performance (93.58%) and computational time (72 s/epoch).

The same hybrid model is also tested for multi-class classifications. For better perfor-
mance analysis, we used a 5-fold cross-validation approach. The multi-class classification
performance is presented in Table 5. Table 5 shows that the proposed hybrid approach can
be utilized effectively for multi-class categorization as well.

As some of the recently published related state-of-the-art works are discussed, we
made a performance comparison of all the discussed state-of-the-art work with the pro-
posed approach (in the referred similar works, authors mentioned the performance of their
models). It is observed from Table 6 that the proposed hybrid approach can outperform all
the discussed state-of-the-art works convincingly.

As compared in Tables 3 and 6, it can be observed that amongst all the discussed
models and state-of-arts, the proposed hybrid approach can classify AD more convincingly.

Table 6. Performance comparison amongst the discussed AD classification approaches.

Sl No. Authors Dataset Average Performance

01 Zhang et al. [41] ADNI 86.34%

02 Han et al. [42] ADNI 89.6%

03 Zhao et al. [43] ADNI 77.39%

04 Lian et al. [44] ADNI 82.63%

05 Huang et al. [45] ADNI 84.82%

06 Marzban et al. [46] ADNI 86.15%

07 Liu et al. [47] ADNI 89.6%

08 Rojas et al. [48] ADNI 88.6%

09 Choi et al. [49] ADNI 85.34%

10 Xin Bi, et al. [50] ADNI 83.27

11 Ahmed, et al. [51] Gwangju Alzheimer
Research Data (GARD) 90%

Proposed Hybrid model ADNI 93.58%

From Table 6, it can be observed that, amongst all the implemented models, Efficient-
Net requires the maximum time for execution. The proposed hybrid approach requires
approximately 72 s per epoch, which is the minimum among all implemented models
(except the original LeNet).

6. Conclusions and Future Work

In this experimental work, we took 12 of the most commonly used DNN models for
implementation. We tested the models using the same data which were acquired from
the online database ADNI. There are three classes considered for classification (CN, MCI,
and AD). All data were further distributed separately for different age groups. From the
implementation results, it was observed that the DenseNet performed most convincingly
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but took much computational time. Although the LeNet and AlexNet performance results
are not as good as that of DenseNet, their simple and effective architecture allows them
to run significantly faster. Given the importance of computing time, we presented a new
hybrid DNN model in which we integrated LeNet and AlexNet in parallel. However, the
proposed model would take longer time to implement due to its complicated architecture
and high convolutional operations. We replaced all of the typical convolution layers with a
series of three small parallel convolution layers having 1× 1, 3× 3, and 5× 5 filters to fix this
issue, which also allowed the model to extract more significant features. Mathematically,
the proposed hybrid model extracted much fewer convolutional parameters than all of the
other models (except LeNet) presented, revealing that it is one of the most light-weight
models. We discussed some of the recently published state-of-the-art work to compare our
work. From the experimental evaluation, it was observed that the average performance of
the proposed hybrid model not only outperformed all the implemented models but also
all the discussed state-of-the-art works. The proposed model’s average performance is
approximately 93.58%, and training takes around 72 s per epoch, which is faster than all
the discussed models (except the original LeNet model).

This work demonstrates that large convolutional filters are not necessarily required to
extract features for image classification using DNN. More relevant features can be extracted
by combining more than two small-sized kernels, which results in significantly fewer
parameters and reduces computing time.

Although the proposed DNN model can classify AD convincingly, the model can be
further improved in future work. The performance of the model may be further improved
by adopting advanced DNN concepts, such as the Dense-block notion, that can help the
model with gradient losses. For better feature extraction, GA based approach may be
utilized in the proposed model. Since lower-intensity valued pixels may also contain
important information, a hybrid pooling layer (Min + Max pooling) may help the model
in adopting more relevant features. In this work, only one data-set ADNI is used. In
the future, more data from different databases can be acquired to compare and improve
the results. The performance of the model can be compared with some more advanced
DNN-based approaches. Only MRI is used in this work; in the future, more modalities of
images, such as CT images, PET, etc., can be acquired and tested in the model.
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