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Abstract: With the increasing number of electric vehicles, V2G (vehicle to grid) charging piles which
can realize the two-way flow of vehicle and electricity have been put into the market on a large scale,
and the fault maintenance of charging piles has gradually become a problem. Aiming at the problems
that convolutional neural networks (CNN) are easy to overfit and the low localization accuracy in
fault diagnosis of V2G charging piles, an improved fault classification model based on convolutional
neural networks (CNN-SVM) is proposed. Firstly, the hardware adaptation optimization is carried
out for the CNN structure, the wavelet packet transformation is used to extract the fault current signal
feature information into the CNN, and the CNN-SVM model is constructed by SVM (Support Vector
Machine) instead of the SoftMax classifier in the CNN. The PSO (particle swarm algorithm) is used to
optimize the parameters of the SVM model to obtain the optimal model. Finally, the superiority of
the proposed method is verified by multi-working cases. The experimental results show that the fault
classification accuracy of the CNN-SVM model is far higher than that of the traditional deep learning
network and has practical significance for fault diagnosis of the switch module of the charging pile.

Keywords: V2G charging pile; fault diagnosis; CNN; SVM; wavelet packet decomposition; PSO

1. Introduction

Affected by the intensification of uncertainty in the global energy market, high oil
prices recently, and the government’s vigorous promotion of the implementation of the
“dual carbon” goal, new energy vehicles have gradually been sought by the market [1,2];
V2G (vehicle-to-grid) technology has realized the interactive relationship of “two-way
charging of the vehicle network”, achieving a win-win situation between the power grid
and users [3]; and they have begun to operate on a large scale in the market.

The charging pile mainly works outdoors, which is susceptible to harsh environmental
influences such as high temperature and humidity, and short circuit and open circuit
faults occur [4]. Due to long-term working in a high-voltage environment and being used
intensively, the performance of internal components gradually decreases and eventually
fails [5]. The electrolyte inside the electrolytic capacitor gradually evaporates during the
working process, and the capacitance decreases and fails [6]. The data point out that the
short circuit and open circuit faults of the power tube and electrolytic capacitor account
for about 85% of the total number of faults of the charging module. Short circuit faults
generally have built-in sensing elements for monitoring and protection [7] or add fuses to
convert short circuit faults into open circuit faults, but there is no perfect solution for open
circuit faults. Therefore, this paper studies the open circuit fault diagnosis model of power
tube and electrolytic capacitor in the charging pile, diagnoses the location of the faulty
components, troubleshoots the fault in time, and improves the maintenance efficiency.

Fault characteristic diagnosis of the charging pile is essentially fault diagnosis of the
power electronic circuits, and the current fault diagnosis methods can be divided into two
types [8]: diagnostic methods based on analytical models or methods based on process
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data. The analytical-model-based approach is by building a mathematical model. The
literature [9] calculated the residual between different fault states and normal operation
by establishing a four-quadrant pulse rectifier mathematical model and locating the open
circuit fault of the switch tube. The authors of [10] used current vector slope and load
current polarity for fault IGBT localization. Such methods rely too much on accurate
models and are difficult to establish in practice.

Fault diagnosis methods based on process data have been widely used in recent years,
mainly by analyzing a large amount of data accumulated during the operation process
to find the relationship between the data and fault types. In [11], charging module fault
characteristics were extracted by wavelet packet decomposition, PCA principal component
analysis was used to reduce dimensionality, and a random forest fault diagnostic was
established to realize charging module switch faults, which required manual calibration
of fault characteristics, large calculations, and high model complexity. The authors of [12]
used wavelet packet transformation to analyze the energy spectrum and power spectrum of
charging module components to obtain fault characteristics, which avoided the problem of
poor adaptability of the wavelet function to different signal decompositions, but it required
repeated solution algorithms to obtain the best parameters, and the diagnosis efficiency was
low. The deep learning algorithm reduced the computational complexity and improved the
accuracy by independently learning the fault sample and extracting the feature information.
The authors of [13] used deep neural networks to extract data signals and independently
learn and diagnose them under different control strategies but did not solve the influence
of noise on diagnostic accuracy. In [14], using wavelet packet transformation to extract the
eight-dimensional energy spectrum of the input current of the rectifier and combining the
fuzzy algorithm, the diagnostic accuracy was improved but the data processing time was
longer. The study by [15] used convolutional neural network to convert fault feature signals
into feature images and then realize the leap of fault diagnosis models from theoretical
research to actual hardware deployment by independent analysis and diagnosis in the
network,.

However, there is the problem that feature information is easily lost after image input.
The deep learning diagnosis method can avoid the error caused by the artificial selection of
features and has good generalization ability and robustness. The traditional deep learning
algorithm uses the fully connected network as the classifier, but it is difficult to achieve
structural optimization; once the sample data are insufficient, it is easy to overfit, and only
the local optimal solution can be obtained, which reduces the diagnostic accuracy.

The research purpose of this paper is to make better and faster diagnosis of the fault of
the charging pile using technology based on deep learning. Compared with the traditional
machine learning algorithm, this paper does not need to calibrate the fault characteristics
manually. The neural network can make independent judgment with self-learning and
analyzing the waveform difference of different faults, which greatly saves the diagnosis
time and reduces the diagnosis error rate. At the same time, SVM is used to replace the
SoftMax classifier in the traditional neural network to further improve the classification
performance of the convolutional neural network, and the V2G charging pile fault diagnosis
model based on CNN-SVM is constructed, which is the main innovation of this paper. In
order to ensure the diagnostic accuracy of the model, before inputting the waveform into
the convolutional neural network, wavelet packet transformation is used to analyze the
signal in time and frequency domain, extract important feature information, and remove
the impact of noise, which will also greatly optimize the structure of the convolutional
neural network and reduce the requirements for hardware deployment. At the same time,
the particle swarm optimization algorithm is used to optimize the parameters of SVM,
which will help to avoid the problem that the traditional mesh parameter optimization
cannot find the optimal result when the data set is too large.
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2. Main Topology and Fault Analysis of Charging Pile Circuit
2.1. V2G Charging Pile

The V2G system is the abbreviation of the system after integrating two-way charging
and discharging technology, two-way communication technology, safety monitoring tech-
nology, data acquisition technology, and intelligent control technology [16]. The conceptual
diagram of the system is shown in Figure 1. The core of the entire system is the V2G
charging pile.
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The most critical part of the charging pile is the charging module [17]. The basic
structure is shown in Figure 2:
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2.2. Open Fault Types and Signature Signals

As shown in Figure 3, the pre-circuit uses a voltage source type three-phase full-bridge
PWM converter (VSC), and the backstage DC converter module uses a Dual Active Bridge
(DAB).

When the power tube has an open circuit fault, the input current contains a wealth of
open circuit fault characteristics [18]. We built a simulation model according to the circuit
in Figure 2 and set the circuit parameters as shown in Table 1.
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Figure 3. Topology of charging module circuit.

Table 1. Circuit parameter.

Circuit Parameters Set Point

Input voltage 380 V ± 10%
Pre-rectified output voltage 560 V ± 10%

Front-stage inductance 1.6 mH
Pre-capacitors 3.2 mF

Backstage filter inductor 100 µH
Post-filter capacitors 100 µF
Post-load resistance 50 Ω

Frequency of pre-rectified switching 40 KHz
Frequency of the post-stage converter 20 KHz

This paper mainly studies the open circuit fault diagnosis of power components of
electric vehicle DC charging piles; the faults are divided into 16 types, as shown in Table 2.

Table 2. Circuit parameter.

Fault Type Fault Location Fault Type Fault Location

E1 S1 open E9 H3 open
E2 S2 open E10 H4 open
E3 S3 open E11 Q1 open
E4 S4 open E12 Q2 open
E5 S5 open E13 Q3 open
E6 S6 open E14 Q4 open
E7 H1 open E15 C1 open
E8 H2 open E16 C2 open

We set the sampling frequency to 4 kHz, the simulation time was 0.6 s, the pre-rectifier
circuit added SVPWM modulation optimization waveform at 0.2 s, and the post-stage
converter adopted single phase shift (SPS) control to collect different types of open circuit
fault inductor three-phase current I1, I2, and I3 waveforms, shown in Figure 4.
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From the current waveform, the input current of each fault had different degrees
of distortion, and the symmetrical power tube fault had a similar effect on the current
waveform. It was found that the time-domain waveform image of the three-phase input
current of the pre-inductor alone could not accurately locate the specific location of the
fault. Therefore, this paper used wavelet packet transformation for time-domain analysis,
extracted fault feature vectors, and then entered the model to achieve accurate classification.
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2.3. Wavelet Packet Decomposition Extracts Fault Features

Wavelet packet decomposition can decompose the high-frequency and low-frequency
amounts of the signal and improve noise immunity of the information [19]. Dwe drew the
three-layer wavelet packet structure as shown in Figure 5.
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Figure 5. Structure of wavelet packet decomposition.

S(0,0) is the original signal, and S (i,j) represents the decomposition signal correspond-
ing to the j node of the i layer.

The specific steps to extract the fault characteristics are as follows:

(1) Set the signal sampling frequency to 4 kHz. The analysis frequency is 2 kHz, as can be
seen from Shannon sampling [20]. Perform a three-level decomposition of the sample
data: {

Nj+1,2n
k = ∑k∈Z Nj,n

p h(2p−k)

Nj+1,2n+1
k = ∑k∈Z Nj,n

p g(2p−k)
(1)

P is the number of decomposition layers, Np-j,n, Nk-j+1, 2n., and so on are the de-
composition coefficients, and h(2p−k) and g(2p−k) are the low-pass and high-pass filter
coefficients.

(2) Reconstruct the wavelet packet decomposition coefficient, and reconstruct the signal
frequency as shown in Table 3:

Table 3. Frequency range of reconstructed signal.

Signal Frequency/Hz Signal Frequency/Hz

S (3,0) 0–250 S (3,1) 250–500
S (3,2) 500–750 S (3,3) 750–1000
S (3,4) 1000–1250 S (3,5) 1250–1500
S (3,6) 1500–1750 S (3,7) 1750–2000

(3) The signal is analyzed by wavelet packets to further eliminate the noise margin
present in the high-frequency section. After wavelet decomposition, the wavelet
decomposition coefficient of useful signal is larger, and the wavelet decomposition
coefficient of noise is smaller. Therefore, by setting the threshold function for denois-
ing, the decomposition coefficient greater than the threshold is retained, while the
decomposition coefficient less than the threshold is eliminated by zeroing. Based
on wavelet transformation, wavelet packet analysis subdivides and decomposes the
unprocessed high-frequency components in wavelet transform again. Compared
with wavelet denoising, wavelet packet analysis has higher frequency resolution,
which can further eliminate the noise margin in high-frequency parts and improve
the denoising accuracy. The image comparison of noisy signal and de-noised signal
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are shown in Figure 6. The image comparison of signal spectrum diagrams are shown
in Figure 7.
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We calculated the energy of the third layer of wavelet packet energy spectrum shown
in Figure 8:
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From Figure 8 we found that the signal energy corresponding to the first node of Layer
3 accounted for more than 90%, which had rich time-frequency information. Therefore, the
corresponding signal of this node was selected as a feature vector to input into the neural
network.

2.4. Principle of CNN

The convolutional neural network (CNN) is a multi-layer neural network [21] with
strong adaptability. The weight-sharing network structure is shown in Figure 9, using local
spatial correlation to connect adjacent lower neuronal nodes with similar upper neuron
nodes to optimize the network structure. The image can be directly used as the input of the
network to improve the diagnostic accuracy, which avoids the complex feature extraction
and data reconstruction process in the traditional recognition algorithm.
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Figure 9 is a schematic diagram of a three-channel convolution operation, the input
image is 5 * 5 size, three channels, and then reduced to 3 * 3 size after output, the operation
process includes two sets of convolution kernels, namely filters W0 and W1. The original
two-dimensional image was input to the convolutional layer and the convolution kernel
extracted the local features of the input image. Each convolution kernel corresponds to
one feature, and by increasing the number of convolution kernels, different features were
extracted from the same position of the input image, thereby forming different feature
maps, which were arranged and combined as the output of the convolutional layer.

2.5. Principle of SVM

The traditional neural network learning method mainly adopts the principle of empir-
ical risk minimization, as shown in Equation (2):

Remp(f) =
1
N ∑N

i=1 L(yi, f(xi)) (2)

The L(yi, f(xi)) are the loss function, according to the law of large numbers, the sample
size N approaches infinity and the empirical risk, Remp(f ) approaches the ideal value [21].
However, in reality, the training samples are limited, and the model can only make good
predictions on the training set, but the effect on the test set is poor. This is often referred to
as “overfitting” [22].

Support vector machine (SVM) is a binary classification model based on the principle
of structural risk minimization, which improves the overall performance of the model by
controlling the ratio between empirical risk and confidence range.

Rsrm(f) = Remp(f) + λJ(f) (3)

J( f ) represents the complexity of the model and λ is the coefficient, which was used
to weigh empirical risk so that the desired risk on the entire sample would be controlled.

2.6. Particle Swarm Optimization Supports Parameter Selection of Vector Machines

Support vector machines have a high dependence on internal parameters, among
which the two factors of nuclear parameter σ and penalty factor C directly affect the
accuracy of classification [23].

Particle Swarm Optimization (PSO) iteratively finds the optimal solution by simulating
the predation behavior of flocks.

Firstly, a group of random particles was initialized, and iteratively finds the optimal
solution. In each iteration, the particles were updated by tracking two extremes. One was
the optimal solution “Pbest” of the particle itself. The expression is shown in Equation (4):

Pbest = (pi1, · · · , piD), i = 1, 2, · · · , N (4)

Another extreme value is the current optimal solution of the entire population, the
global extreme value “gbest”.

gbest = (g1, g2, · · · , gD) (5)

In this paper, the global search capability and local search capability of particle swarm
optimization are used to reasonably optimize the parameters required in the modeling
process of the support vector machine, as shown in Figure 10:
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2.7. Fault Diagnosis Based on Convolution Support Vector Machine
2.7.1. Improvement of Fault Diagnosis Model

Considering that the CNN-SVM model needed to be deployed in hardware, the
structure of the traditional CNN-SVM model was improved:

(1) The original 5 × 5 convolution kernel was replaced by a 3 × 3 size convolution kernel
to further reduce the complexity of the model.

(2) Referring to the model structure of Yolo, ResNet, and other models [24,25], we modi-
fied the number of convolution channels to 4/8/16.

(3) The convolutional layer was increased to three layers, replacing the original double
fully connected layer to further reduce the amount of parameter input.

(4) The data retained rich feature information through wavelet packet decomposition
before entering the neural network, so the filling operation in the convolution process
was removed and the hardware memory occupation was reduced. The improved
model structure is shown in Figure 11:
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The statistics of the original CNN-SoftMax and the improved CNN-SVM model
parameter amount (Params) and computational amount (MACC) are shown in Table 4:

Table 4. Comparison of calculation and parameter.

CNN-SoftMax CNN-SVM Ratio

MACC 1,864,528 67,495 3.62%
Params 14,796,236 1,279,874 8.65%

The calculation amount and parameter amount of the improved model are 3.62% and
8.65% of the original, greatly reducing the hardware deployment requirements.

The model was built based on the TensorFlow framework. SVM adopted one-to-one
learning strategy (One vs. One, OvO), CNN adopted Adam (Adaptive moment estimation)
optimizer [26], and the model super parameters are shown in Table 5:
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Table 5. Parameters of CNN-SVM model.

CNN SVM

Batch Size = 100 C = 100

Learning Rate = 0.1 Gamma = Auto

Moving Average = 0.99 γ = 0.09

Rate Decay = 0.99 Kernel = RBF

2.7.2. Process of Fault Diagnosis

In this paper, SVM was used instead of the SoftMax classification layer of the CNN net-
work, and the model training part used a large amount of fault data to train the diagnostic
model. The model operation process is shown in Figure 12:

Electronics 2023, 12, x FOR PEER REVIEW 12 of 18 
 

 

Table 5. Parameters of CNN-SVM model. 

CNN SVM 
Batch Size = 100 C = 100 

Learning Rate = 0.1 Gamma = Auto 
Moving Average = 0. 99 γ = 0.09 

Rate Decay = 0. 99 Kernel = RBF 

2.7.2. Process of Fault Diagnosis 
In this paper, SVM was used instead of the SoftMax classification layer of the CNN 

network, and the model training part used a large amount of fault data to train the diag-
nostic model. The model operation process is shown in Figure 12: 

PSO optimizes the 
parameters of SVM 

model

Fault 
waveform

Wavelet packet 
decomposition

Generate time-frequency 
energy spectrum

Training Set Test Set

Build model

Input 
Dataset

Convolutional layer

Pooling layer

Flattern layer

Establishment of fault 
diagnosis model

Put data in SVM 
model

Establish PSO-SVM 
optimization model

Training Set 
Test

CNN-SVM 
model

Output 
classification 

results

Data processing

 
Figure 12. Flowchart of model diagnosis. 

2.7.3. Dataset Establishment 
In order to verify that the model had practical application value for the diagnosis of 

charging module faults of charging piles, this paper selected AMD ARTYS7 microcontrol-
ler as the main processor, UCC14240-Q1 DC/DC module and LM5021 PWM rectifier mod-
ule as the front and rear stages, and ABB M2BAX IE2 low-voltage motor as the AC input 
power supply. The V2G charging pile circuit topology platform and main control proces-
sor are shown in Figure 13, and some of the actual output waveforms are shown in Figure 
14. Different fault conditions were simulated, 6400 sets of data were obtained by recording 
the output current signal data, and different levels of noise were added to form the final 
training set. 

Figure 12. Flowchart of model diagnosis.

2.7.3. Dataset Establishment

In order to verify that the model had practical application value for the diagnosis of
charging module faults of charging piles, this paper selected AMD ARTYS7 microcontroller
as the main processor, UCC14240-Q1 DC/DC module and LM5021 PWM rectifier module
as the front and rear stages, and ABB M2BAX IE2 low-voltage motor as the AC input power
supply. The V2G charging pile circuit topology platform and main control processor are
shown in Figure 13, and some of the actual output waveforms are shown in Figure 14.
Different fault conditions were simulated, 6400 sets of data were obtained by recording
the output current signal data, and different levels of noise were added to form the final
training set.
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The TeKtronix MDO3024 oscilloscope was selected to read the current waveform, and
the display waveform is shown in Figure 14:

3. Experimental Results and Comparative Tests Discussion
3.1. Experimental Results

We set the number of training rounds to 180 rounds, the number of iterations per
round was three, and the model training and testing steps are as follows:

(1) Obtain sample data. Build a V2G charging pile circuit, set up different fault types,
and collect the pre-output three-phase current waveform.

(2) Extract fault characteristics. The upper computer decomposes the current waveform
through three layers of wavelet packets, extracts the signals of each node to draw the
energy spectrum, selects the signal waveform of the first node of the third layer as the
fault characteristic vector, and introduces the current amplitude to further supplement
the feature vector and enrich the characteristic information.

(3) Run the fault diagnosis model. If the fault feature vector obtains the same result
through the model as the expected fault, it means that the model has completed the
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fault diagnosis. The accuracy of the model for faulty power devices is shown in
Table 6:

Table 6. Parameters of CNN-SVM model.

Fault Type Fault
Component Accuracy Fault Type Fault

Component Accuracy

E1 S1 open 99.68% E9 H3 open 95.14%
E2 S2 open 95.62% E10 H4 open 96.89%
E3 S3 open 95.36% E11 Q1 open 96.92%
E4 S4 open 96.29% E12 Q2 open 98.82%
E5 S5 open 96.71% E13 Q3 open 98.92%
E6 S6 open 97.24% E14 Q4 open 98.64%
E7 H1 open 96.45% E15 C1 open 99.26%
E8 H2 open 97.69% E16 C2 open 98.57%

We set the number of training rounds of the model as 180 and the cycle of each round
was three times. We calculated the average of each round of trainings’ accuracy and loss
function. We displayed them comprehensively as shown in Figures 15 and 16. The model
training time took 2 min 28 s, the number of iterations was 540, and the model diagnosis
rate reached 98.47%.
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3.2. Model Validation Comparison

We verified that the CNN-SVM-based V2G charging pile diagnostic model proposed
in this paper has a more accurate classification effect than the CNN-SoftMax model, and the
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fault simulation under different noises was carried out on the circuit topology of Figure 3;
the fault type and component parameters are shown in Table 1. A total of 3620 test samples
were generated, the number of training rounds was set to 100 rounds, and after training
the same batch, the output was a confusion matrix as shown in Figure 17:
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As can be seen from Figure 17, there were more cases of misjudgment in the CNN-
SoftMax model under the same conditions. The CNN-SVM model is more stable.

3.3. Comparison of Hardware Platform Occupancy

Fault diagnosis should meet the requirements of high performance and low power
consumption of hardware platforms in practical applications. Table 6 shows the software
and hardware experiment parameters. In this paper, a 10-fold cross-validation experiment
was used to ensure that each data sample was studied as a training set. The batch size of
CNN-SVM was set to 64. The number of iterations was set to 100, the learning rate of the
first 40 times was 0.001, the learning rate of the next 40 times decayed 10 times, and the
learning rate of the last 20 times decayed 10 times again.

This setting allowed the parameters to be updated with a larger step size at the
beginning of the training and a smaller step size at the end of the training to avoid falling
into the local minimum. We set the L2 regularization coefficient to 0.0001, reduced the
complexity and instability of the model by limiting the weight size, and avoided over-
fitting the model. We chose the representative algorithms for multi-classification problems:
random forest, BP neural network, and CNN-SVM model are compared for comparison,
and the frequency and power consumption of the algorithm when running on GPU are
shown in Table 7:

Table 7. Comparisons of GPU performance.

CNN-SVM Random Forest BP

Frequency/Hz 130 1650 1390
Power/W 39.6 89.8 56
Energy/J 18.6 96.89 67

It can be seen from Table 7 that the model shows good generalization and robustness
under different noise intensities and is very stable.

There will be noise in the fault recording data of the actual distribution network, so it
is necessary to verify the adaptability of the proposed method under noise conditions. Stay



Electronics 2023, 12, 655 16 of 18

Gaussian white noise with a signal-to-noise ratio of 5 dB to 30 dB was added to the test set
point position, and the fault type was set as per Section 3.1.

We set different noise intensities, put test data into the model, and obtained the
accuracy of different algorithms, as shown in Table 8:

Table 8. Comparison of model diagnostic.

Model
Diagnostic Rate/%

0 dB 5 dB 10 dB 20 dB 30 dB Average

CNN-SVM 97.5 94.57 94.08 92.86 91.21 94.044
Random

forest 94.3 95.28 91.26 89.76 86.28 91.376

BP 92.1 90.04 86.45 82.46 82.35 86.68
CNN 90.6 90.15 89.42 88.62 86.88 89.134

According to Tables 7 and 8, the accuracy of random forest is similar to CNN-SVM,
but the running time is longer, and the running time of the BP neural network is shorter,
but the comprehensive diagnosis accuracy is greatly reduced.

4. Conclusions

In this paper, a fault diagnosis research model of charging piles based on CNN-SVM
is proposed, and the circuit topology model of the V2G charging pile is constructed and
analyzed by example. The following conclusions were obtained:

(1) The deep learning model adopted in this paper avoids the problems with traditional
machine learning, such as how it is easy to lose some features when manually extract-
ing fault signals and the signal difference characterization is weak under complex
fault conditions, which cannot be accurately identified. This model improves the
classification accuracy

(2) Wavelet packet decomposition was introduced to extract the time-frequency feature
map of the signal to prevent the image from being directly input into the neural
network to generate a large amount of data redundancy, and at the same time, the
SSO was used to optimize the SVM model to find the optimal parameters and penalty
factors and to further optimize the model.

(3) The structure of the traditional convolutional neural network was modified to reduce
the complexity of the model. Through the hardware platform test, the improved model
still maintained high classification accuracy and calculation speed under different
noise intensities, and the operating power consumption was also greatly reduced,
which is of practical significance.

The proposed CNN-SVM fault diagnosis model has unique advantages and higher
accuracy in fault diagnosis of the front and rear stages of the charging pile. However, it
still has certain limitations and drawbacks in its practical application which should be well
addressed in future studies.

Firstly, in future research, we will further focus on how the fault diagnosis model
based on deep learning can better adapt to new energy electric equipment, such as electric
vehicles and charging piles, and improve some of the problems in previous studies. These
improvements include how the model can maintain high diagnostic accuracy when the front
and rear modules of the charging pile adopt different topological structures (three-phase
Vienna structure, PWM rectifier) and using different types of power electronic components
(electric vehicle charging station, low-voltage frequency converter). Additionally, the
robustness of the proposed method was affected owing to the limited dataset used for
the model. Accordingly, in future work, the experimental tests will be conducted on the
accuracy of fault diagnosis of the model on different front and rear circuits in the laboratory.
Different from the traditional simulation circuit, we will build more actual circuit platforms
and carry out experimental tests under various parameter conditions to expand the test set



Electronics 2023, 12, 655 17 of 18

and experimental set of the model. Actually, the selection of the optimization algorithm
for this task is not unique. In the future, other intelligent algorithms, such as information
fusion and deep residual shrinkage network [25], FASSA-SVM [23] will be further applied
to the fault diagnosis model to improve the diagnostic accuracy and speed.
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Abbreviations

Terms Full Name and Explanation
CNN Convolutional Neural Networks
SVM Support Vector Machines
PSO Particle Swarm Optimization
V2G Vehicle to Grid
SPS Single Phase-Shift Control
DAB Dual Active Bridge Converters
OvO One-to-One Learning Strategy
Adam Adaptive Moment Estimation Optimizer
VSC Three-Phase Full-Bridge PWM Converter
Symbol Meaning
h(2p−k) low-pass filter coefficient
g(2p−k) high-pass filter coefficient
L (yi), f(xi) loss function
Remp(f ) ideal value
J( f ) complexity of the model
λ coefficient
Pbest optimal solution of the particle itself
gbest the global extreme value of the entire population
Rsrm(f ) the overall performance of the model
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