
Citation: Ahamed, Z.; Khemakhem,

M.; Eassa, F.; Alsolami, F.;

Al-Ghamdi, A.S.A.-M. Technical

Study of Deep Learning in Cloud

Computing for Accurate Workload

Prediction. Electronics 2023, 12, 650.

https://doi.org/10.3390/

electronics12030650

Academic Editors: Andrea Prati, Luis

Javier García Villalba and Vincent A.

Cicirello

Received: 22 December 2022

Revised: 18 January 2023

Accepted: 24 January 2023

Published: 28 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Technical Study of Deep Learning in Cloud Computing for
Accurate Workload Prediction
Zaakki Ahamed 1,* , Maher Khemakhem 1 , Fathy Eassa 1 , Fawaz Alsolami 1

and Abdullah S. Al-Malaise Al-Ghamdi 2

1 Department of Computer Science, Faculty of Computing and Information Technology,
King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia

2 Information Systems Department, Faculty of Computing and Information Technology,
King Abdulaziz University, Jeddah 21589, Saudi Arabia

* Correspondence: zluthufi@stu.kau.edu.sa

Abstract: Proactive resource management in Cloud Services not only maximizes cost effectiveness
but also enables issues such as Service Level Agreement (SLA) violations and the provisioning of
resources to be overcome. Workload prediction using Deep Learning (DL) is a popular method
of inferring complicated multidimensional data of cloud environments to meet this requirement.
The overall quality of the model depends on the quality of the data as much as the architecture.
Therefore, the data sourced to train the model must be of good quality. However, existing works in
this domain have either used a singular data source or have not taken into account the importance of
uniformity for unbiased and accurate analysis. This results in the efficacy of DL models suffering. In
this paper, we provide a technical analysis of using DL models such as Recurrent Neural Networks
(RNN), Multilayer Perception (MLP), Long Short-Term Memory (LSTM), and, Convolutional Neural
Networks (CNN) to exploit the time series characteristics of real-world workloads from the Parallel
Workloads Archive of the Standard Workload Format (SWF) with the aim of conducting an unbiased
analysis. The robustness of these models is evaluated using the Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE) error metrics. The findings of these highlight that the LSTM
model exhibits the best performance compared to the other models. Additionally, to the best of our
knowledge, insights of DL in workload prediction of cloud computing environments is insufficient
in the literature. To address these challenges, we provide a comprehensive background on resource
management and load prediction using DL. Then, we break down the models, error metrics, and
data sources across different bodies of work.

Keywords: deep learning; workload prediction; cloud computing; machine learning

1. Introduction

The past decade has witnessed a rapid escalation in demand for upscale computa-
tional devices [1]. The progression of technology during this period has facilitated the
emergence of highly evolved and advanced computing paradigms, cloud computing being
a prominent part of it [1,2]. Cloud computing offers ease of access to a range of virtual
resources, platforms, and software as services [2,3]. Due to its responsiveness, scalability,
and efficiency, it is widely used by organizations and private as well as public sectors [2,4].

One major requirement in offering high-performance cloud computing services is to
ensure efficient resource management (RM). RM is essentially the process of handling the
release and obtention of virtual resources [1,3]. Furthermore, effective RM results in the
lowering of the cost and energy consumption of cloud Data Centers (CDCs), which in turn
results in reduced CO2 emissions [3,5]. However, modern cloud computing systems are
highly scalable and cater to a large number of users. This factor makes RM particularly
challenging due to its complexity [6]. Under RM auto-scaling is an attribute that enables

Electronics 2023, 12, 650. https://doi.org/10.3390/electronics12030650 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12030650
https://doi.org/10.3390/electronics12030650
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4201-0026
https://orcid.org/0000-0002-1287-1634
https://orcid.org/0000-0003-3987-9051
https://orcid.org/0000-0002-0396-1347
https://orcid.org/0000-0001-9259-4536
https://doi.org/10.3390/electronics12030650
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12030650?type=check_update&version=1

Electronics 2023, 12, 650 2 of 27

dynamically adjusting an application’s resource aptitude [7]. Auto-scaling can be divided
into two main categories, reactive and proactive methods.

Reactive methods: In reactive methods, the system adjusts the workload by scaling the
computational resources up or down. Its actions are based on an explicit preset threshold
from the runtime environment [3,7–9]. However, one key setback is that the system has to
reach its operating threshold before the auto-scaling mechanism comes into play. Therefore,
reactive methods might handle unexpected surges of workload poorly [3,7].

Proactive methods: These methods follow a predictive approach, where the system
is capable of actively adapting its behavior based on the forecast of future occurrences.
Thus, pre-empting the obtainability of adequate resources prior to the occurrence of actual
workload [3,7,9,10]. Efficient proactive methods can help in reducing the cost and improv-
ing performance by ensuring minimal inert resources [3]. Figure 1 illustrates the common
auto-scaling techniques under reactive and proactive methods [7].

Figure 1. Common auto-scaling techniques for reactive and proactive methods.

Based on previous studies [3,7,10,11], proactive methods have proven to be more
effective when it comes to load prediction. Additionally, various incidents such as Service
Level Agreement (SLA) violations, over-provisioning, under-provisioning or a combination
both can take place due to the dynamic nature of the cloud environment. Over-provisioning
happens when the CSP allocates or reserves excessive computing resources to accommodate
the peak time surges. Under-provisioning happens when the allocated resources cannot
cater to the existing demand, thus affecting the Quality of Service (QoS). Thus, to mitigate
and minimize the occurrence of such events, taking a proactive approach to auto-scaling
resources would be appropriate. The prediction of requirements via proactive and dynamic
decision-making ensures appropriate resource provisioning. Such methods ensure a direct
relationship between the existing resource provision and the demand for future load based
on historic data of resource usage [11,12].

Deep Learning (DL) has made a resurgence in modern applied research. The key factor
is that unprecedented quantities of data are generated from modern computing systems.
DL models perform well when extracting patterns from complicated multidimensional
data, making them ideal for this scenario [13,14]. Therefore, it is not surprising that DL has
seen popularity in research related to cloud computing as they are witnessing widespread
adoption [4,15–18]. However, the quality of the model can be affected when a large amount

Electronics 2023, 12, 650 3 of 27

of data is fed into it [19,20]. The work conducted in this domain handles data in different
ways, lacking uniformity. Issues in the data would compromise the quality of the models,
finally resulting in biased results. While some studies focus on machine learning for
workload prediction, we find that studies focusing on DL specifically are lacking, despite
its popularity.

The impact of data quality has not been deeply investigated despite its importance in
the output of the models. Only a few works exist in this domain. One such example is the
Data Quality Toolkit [21] proposed by Gupta et al. They proposed an automated solution
for investigating weaknesses in datasets. While it is a valid and valuable contribution, an
argument can be put forth that it does not cater to specific domains such as text or speech.
The application of data cleaning depends on the context of the problem. For example, data
representing cloud workloads cannot be cleaned in the same manner as an image dataset as
the feature representation would have different weightage in each scenario. We conducted
an analysis using high-quality data focusing directly on the cloud computing domain.
Furthermore, Gupta et al. presented only a limited demonstration of the application in
model training. We trained our data on contemporary deep learning models, which gives a
platform for robust analysis. We believe that these bodies of work are in the right direction
for attaining robust quality data for machine learning applications.

This article offers a detailed analysis of load prediction schemes based on DL tech-
niques. Accordingly, two research questions are considered: (1) How efficient are the
existing models of DL for load prediction in the cloud environment? (2) What is the perfor-
mance of DL models working with real-world datasets in an unbiased manner? The main
contributions of this article include:

• A brief overview of load prediction, highlighting the challenges and requirements.
• A review of existing work of deep-learning schemes used for load prediction in cloud

environments.
• A detailed comparison of the workload prediction models in terms of the DL technique

applied, the dataset used, and other factors.
• A technical analysis of real-world datasets using DL models such as Recurrent Neural

Networks (RNN), Multilayer Perception (MLP), Long Short-Term Memory (LSTM),
and Convolutional Neural Networks (CNN).

• A discussion on the research challenges and future research areas.

The remainder of this article is structured as follows: Section 2 discusses the prelimi-
naries such as metrics, challenges, and objectives related to workload prediction. Section 3
gives a detailed literature review on DL methods employed for workload prediction and
Section 4 presents a comparative analysis of the existing literature. Section 5 discusses
the methodology for the technical analysis. Section 6 discusses the results and metrics.
Section 7 explains the findings of the analysis, while the paper concludes in Section 8.
Section 9 discusses possible future directions.

2. Background

Load prediction enables the appropriate allocation of resources by predicting future
load based on historic load data and actual load data, as illustrated in Figure 2. This section
provides a brief insight into the background of the load prediction in the cloud paradigm
and discusses (1) the key challenges related to load prediction, (2) the primary objective
that should be achieved during load prediction, (3) types of load predictors, (4) types
of datasets commonly utilized to conduct experiments with load predictors, and lastly
(5) the commonly applied prediction error metrics and evaluation criteria that need to be
considered during load prediction. Each of these points has been briefly discussed in the
subsection below.

Electronics 2023, 12, 650 4 of 27

Figure 2. Load Prediction Process Overview.

2.1. Load Prediction Challenges

The process of load prediction is a complex problem to tackle. If not carried out
properly, it could lead to a range of issues from SLA violations to the over-allocation of
resources and under-allocation of resources, thus causing the wastage of resources, higher
losses, and a lower performance of the cloud environment. Hence, it is essential that the
prediction scheme is reliable and efficient and is capable of accurately forecasting the load
to avoid such issues. However, some key challenges that need to be considered during this
process are cost, data granularity, pattern length and complexity [3,10,22]:

1. Cost: The expense of computational resources to run and train the prediction schemes.
2. Data granularity: This is the level of detail for a particular data structure. The

preliminary phase of designing the prediction scheme is to define the resources
that need to be monitored, and to determine the next sampling window. The coarse-
grained (long-term sampling) prompts the scheme to lose its potency. The fine-grained
(short-term sampling) can potentially comprise factors that are not beneficial. This
increases the intricacy of the scheme to capture it; in addition, this can also increase
the cost of data collection.

3. Pattern length: This is common for the pattern length in prediction schemes to be
constant. A sliding window is utilized to extricate and obtain the pattern with a fixed
length. Therefore, the limitations of the pattern length limit the scheme to a particular
pattern length, thus preventing the scheme from learning intricate representations
from the data.

4. Complexity: To accurately forecast the workload, prediction schemes require compos-
ite computational means. Hence, to ensure effective prediction, the time and space
requirements of the prediction scheme should not be substantial.

5. Historical load data: The quantity of specific historic data or insufficient historic data
to train the prediction scheme has a major effect on load prediction.

2.2. Main Objective

The following are the foremost objectives that need to be achieved in an efficient and
reliable load prediction scheme [22].

1. Adaptability: The prediction scheme should adapt to changes, as the cloud envi-
ronment is dynamic and constantly evolving. Thus, the prediction scheme must be
capable of learning the workload behavior changes to exploit the underlying patterns,
in turn reducing the chances of forecasting errors.

2. Proactiveness: The load prediction scheme should be proactive, and should forecast
future demand before the occurrence of load fluctuations. This allows the RM suffi-
cient time to offer suitable resources, thus avoiding the time spent on Virtual Machine
(VM) migration and provisioning.

Electronics 2023, 12, 650 5 of 27

3. Accuracy: The accuracy of the prediction scheme depends on past data and the nature
of the load. The prediction scheme examines and analyzes historic load data and
learns the behavior of the workload. The schemes are assessed by the accuracy of
their prediction and evaluated based on how it is closer to the actual values.

2.3. Types of Workload Dataset

Two types of workload data can be obtained and used for the evaluation of prediction
schemes—data sets from actual data centers versus simulated workload datasets where
synthetic data are generated by recreating the data center environment within a virtual
environment. The actual dataset can be retrieved from a regular cloud platform, or obtained
from benchmark datasets such as NASA, Planet lab, Google trace, Calgary, Saskatchewan
Alibaba Cluster Trace, and Dilma. Key characteristics that can be retrieved from such data
include CPU usage, memory, bandwidth, number of requests, etc. [4,14–17,23–27].

2.4. Evaluation Metrics

Generally, load prediction schemes are evaluated based on error metrics and certain
evaluation criteria such as cost, success, profit, and performance in terms of accuracy [22].
These factors differ from one scheme to another, depending on the scope of the scheme and
the outcome the scheme is designed to offer. However, the commonly used error metrics
and evaluation criteria are depicted in Figure 3.

Figure 3. Commonly used evaluation metrics.

1. Error metrics: This is used to evaluate the variance between the actual behavior
and the forecasted behavior of the application in different methods. The deviation
metrics directly deliberate the deviation amid the actual value and the forecasted
value [22]. Figure 3 depicts some of the commonly utilized error metrics when it
comes to evaluating load prediction schemes.

2. Cost: Errors in prediction could cause SLA violations. Hence, the cost metrics are
applied to estimate the cost derived from the prediction error [3,22].

Electronics 2023, 12, 650 6 of 27

3. Success: This defines the level up to which the scheme can accurately predict the
future activities of the application. The success rate is described as the proportion of
the number of accurate approximations to the total amount of approximations [3,22].

4. Profit: The profit rate is calculated depending on the profits acquired from renting out
the resources, hence avoiding resource wastage and SLA violations. Thus, the profit
metrics are utilized to calculate the profit rate of the cloud service provider [3,22].

5. Accuracy: The prediction schemes are assessed based on the accuracy of the forecasted
results. Hence, the schemes whose outputs are closer to the actual values are more
consistent and reliable [22].

3. Deep Learning for Load Prediction

Several DL-based workload prediction systems have been proposed in the litera-
ture [4,14–17,23–27]. In this section, we give a detailed analysis highlighting their contribu-
tions as well as the DL techniques utilized for the load prediction scheme. The taxonomy
of the commonly used load prediction schemes applied in the cloud environment based
on the type of algorithms utilized in the load prediction process is illustrated in Figure 4.
Further, we have highlighted the strengths and weaknesses of the discussed studies in
Table 1.

Figure 4. Taxonomy of load prediction schemes.

Additionally, we would like to mention that when it comes to the classic time series
analysis schemes, such as Auto Regression (AR), Moving Average (MA), etc., these schemes
presume fixed behavior and linear dependency among the time-series samples. Although
such schemes have been widely utilized previously, they were unable to provide accurate
forecasts in the long run and during high demand or highly erratic time series [4,23].
Although modern applications in time-series schemes are more accurate and provide
more efficient results, classic schemes lack these aspects. Schemes such as Particle Swarm
Optimization (PSO), Support Vector Regression (SVR), and Relevance Vector Machines
(RVM) are techniques that are expansively applied to predict load in the dynamic cloud
environment, addressing the shortcomings of the first-generation schemes. However, such
techniques require the prudent regulation of the parameters. Their forecasting performance
is based on selecting the top parameters [4,23].

Electronics 2023, 12, 650 7 of 27

DL schemes are currently popular and upcoming techniques when it comes to load
prediction in cloud environments as they offer greater benefits than the traditional machine
learning techniques, in a dynamic and complex environment [4,23]. Hence, a detailed anal-
ysis and survey of the literature on DL-based studies is done in the following paragraphs.

In [4] a hybrid scheme is proposed that applies Generative Adversarial Network
(GAN) to forecast exceedingly unstable and chaotic cloud workload. The scheme employs a
multistep-ahead method that utilized the composite and nonlinear dependencies amongst
sequential samples of the workload time series. This results in substantial advancements in
the accuracy of workload prediction which can be beneficial for RM decisions. The two
key components of the E2LG scheme are the stacked LSTM method capable of forecasting
low-frequency Intrinsic Mode Functions (IMF) units. Whereas, the GAN architecture is
capable of forecasting high-frequency IMF units.

To utilize the double-layer stacked LSTM Network, initially; the sliding window
method is employed to assemble the historic sub-sequence as an input for the scheme. Due
to the double-layer neurons, the scheme looks into the subsequent sample for a training
sub-sequence and attempts to learn the effect fluctuations in the input time series on the
following sample. By applying this process during the training stage, a trained stacked
LSTM network can be created which can then be utilized to effectually execute one step-
ahead forecasting for each sample in the testing process of the scheme for individual IMF.
Lastly, to acquire the final forecasting value, all predictions for the entire IMF and residual
are added together to create the final value.

A scheme combining LSTM and RNN is proposed by [23]. It is used to solve issues
such as dynamic resource scaling and power consumption in CDCs. The RNN component
is made up of a combination of networks in loops; this allows the information to continue
further. Each network in the loop obtains the information and input from the prior network;
carries out the defined task, and generates the output. In addition, it also passes the infor-
mation to the subsequent network in the loop. Some applications only necessitate recent
information whereas others may require additional information from the past; commonly
RNN has a delay in learning as the gap between the required prior information and the
point of requirement might be too large. Hence to evade this issue the proposed scheme
employed LSTM networks. As these are fabricated to avoid the long-term dependency
problem that occurs in recurrent networks. As LSTM networks are capable of retaining
information for a longer period. The forecasted output from the proposed scheme is then
fed into the resource manager that deliberates the current state of the data center, which
enables it to scale up or scale down the resources accordingly.

The LSTM encoder-decoder network with the attention mechanism proposed by [24]
has three key stages. The first stage is where the scheme extracts contextual and sequential
features of the historic workload data via the encoder network. In the second step, the
scheme assimilates the attention mechanism within the decoder network, which enables
the prediction process for batch workloads. Initially, during the encoding process, the input
workload is fed sequentially into the context vector. Next, the decoding network recursively
decodes the context vector, hence providing an output of the predicted sequence.

A cloud environment is prone to batch workloads, where compute-demanding tasks
are typically broken down into sub-parts; hence, the latter subparts must wait for the prior
subpart to be completed before it can be executed. In such an instance, each phase in the
historic workload sequence would have a dissimilar impact on the existing workload. As a
result, the relationship modeling amongst the present time step and its content, the historic
workload sequence should be assigned different weights at each point instead of assigning
the same weight. Since a basic LSTM encoder-decoder network is not able to do so, the
attention mechanism is included to solve this by evaluating the relevance of individual
parts and assigning different weights to them. A higher weight indicates more significance.
Thus indicating the amount of workload that impacts the existing workload prediction.

A Deep Belief Network (DBN) scheme proposed by [15] consists of a multi-layer
architecture, comprising the DBN layer that is capable of extracting high-level features

Electronics 2023, 12, 650 8 of 27

from the historic load data and the logical regression layer. The scheme follows the rapid
unsupervised layer-wise training process to train the Neural Network (NN) by applying
the Restricted Boltzmann Machine (RBM) to the data to reduce its dimensionality, hence
preventing the error gradient from vanishing due to the increase in the number of hidden
layers. The logical regression layer within the scheme is responsible for conducting the
fine-tuning of the entire scheme in a supervised method. Since this scheme is specifically
designed to focus on the CPU usage of VMs, the data with regard to the CPU utilization
are taken from all the VMs in the cloud environment, the utilization data are from multiple
prior time intervals. The input layer takes CPU utilization data as the input, and the
top layer provides the predicted output. The designed model can be used to forecast the
workload for a single VM or multiple VMs. The input layer at the bottom is where the CPU
utilization data are fed, and the top layer provides the predicted output. The designed
model can be used to forecast the workload for a single VM or multiple VMs.

In [14], a DL-based prediction algorithm (L-PAW) is proposed for workload prediction
in the cloud. The proposed model uses RNN. Typically, RNN-based networks are capable
of learning valuable information from the input data. As it reads, it updates all the prior
information, increasing the gradients as the time intermissions increase, leading to the
gradient vanishing. This causes ineffective changes in the RNN network parameters so
the scheme is unable to efficiently capture long-term memory dependencies. To overcome
this issue, the proposed scheme applies a top-sparse autoencoder (TSA), which is used
to compress the workload data and extract essential features with a lower dimension,
hence avoiding the degradation of the prediction accuracy due to redundancy and high
dimensionality of the workload data. In addition, the gated recurrent unit (GRU) block is
integrated into the RNN to substitute the hidden layers of a classic RNN, thus enabling
the capture of the long-term memory dependencies from the historic workload input.
Therefore, the incorporation of the TSA along with the GRU within the RNN leads the
proposed model to attain adaptive and precise forecasts for workloads that constantly
fluctuate in the cloud environment.

A method suggested by [25] tends to perform the forecast at a specific time prior to the
predicted time point, hence providing an adequate period for the task scheduler to make a
decision. The suggested method is an m-gap prediction that retains a gap of specific (m)
time points between the input data points and the forecasted data points, thus providing
sufficient time for task scheduling to take place. Furthermore, a clustering-based prediction
method had been suggested to ensure all the workload patterns are captured within all
the heterogeneous tasks. The clustering-based method is capable of clustering all the tasks
with comparable workload patterns into groups for training to create a specific model; the
equivalent model is then used to forecast its workload. Two types of clustering methods
were used: Prototype-Based Clustering (PBC) and Density-based clustering (DBC). The use
of these leads to a higher prediction accuracy [25].

A new deep RNN approach was proposed by [26] that incorporates the Savitzky–
Golay (S-G) filter along with LSTM networks (SG-LSTM). Initially, the proposed scheme
performs a logarithmic function before the task sequence smoothing. This is mainly done to
diminish the standard deviation. Then, the S-G filter, also known as least square polynomial
smoothing, which is a data smoothing mechanism that is used to remove any noisy modules
while maintaining the original signal’s peak and width, is applied. The key condition for
forecasting task time series is to encapsulate the historically varying patterns. Within the
proposed scheme, the LSTM network substitutes the neurons within the hidden layer of
the RNN with a memory block. Individual memory blocks comprise single or multiple
memory cells along with three kinds of gates known as forget, input and output gates.
These gates can be opened or closed to regulate if the prior network circumstance at
the output layer brings about a threshold to add to the existing layer [26]. Through the
operation of the gates, LSTM memory cells are capable of realizing the intricate relationship
amongst features within a task time series, which includes both long terms and short terms.
Furthermore, the scheme employs a Backpropagation Through Time (BPTT) algorithm

Electronics 2023, 12, 650 9 of 27

to prevent the gradient exploding, which can occur due to the non-negligible learning of
the parameters enclosed in LSTM. These operations within the proposed model result in
improved accuracy when forecasting task time series within CDCs.

In [17], a storage workload prediction scheme (CrystalLP) is proposed. The key
functionalities performed by the scheme include: gathering workload data, data pre-
processing, time-series prediction, and data post-processing stages [17].

In the workload gathering or collection phase, the time-series data that comprise
the workloads at various periods are gathered. Since the proposed scheme is specifically
designed for a single-phase workload prediction, for each prediction procedure the input
data are the data contained by the history horizon, and the output is the forecasted workload
at the subsequent period. During the pre-processing phase, various normalization functions
are performed on the workload traces by utilizing a pre-processing component that is
capable of segmenting the sequential data with a permanent sliding window dimension.
The component then carries out a scaling transformation to create appropriate data to be
used as the input. Within the data post-processing phase, an LSTM network is utilized
to predict the time series, as LSTM networks can capture composite workload patterns,
thus making it suitable for capturing the inner associations amongst the historic and future
values. Furthermore, to obtain efficient model training outcomes, CrystalLP employs
Stochastic Gradient Descent (SGD) and Adam optimizer to train the prediction scheme,
hence enabling the provision of more accurate forecasts.

A DL scheme based on Canonical Polyadic Decomposition (CPD) has been proposed
by [16] to forecast the cloud workload for industry informatics. The proposed scheme
comprises a stacked auto-encoder that is capable of learning significant features of the
workload data. Next, the CPD is applied to contract the parameters considerably to enhance
the scheme’s training efficacy. However, CPD can only be applied for tensor (a matrix
or vector that characterizes all types of data) decomposition; thus, to overcome this, the
stacked auto-encoder is converted to a tensor format using a bijection. The CPD is then
used in the tensor stacked auto-encoder to compress the parameters [16]. To train the
parameters of the tensor-stacked auto-encoder, the scheme proposes an effective learning
algorithm that can be applied directly to the compressed parameters to enhance the training
efficacy. The proposed scheme is then employed for the workload prediction of VMs in the
cloud environment.

An integrated forecasting technique was proposed in [27]. The scheme comprises a
Savitzky–Golay filter, which is a data smoothing filter that is well-known for its least square
polynomial smoothing. The main goal of this filter is to eliminate the noise while preserving
the width and peak of the signal and further smooth out the non-stationary workload time
series during the data pre-processing phase. Then, the proposed model employs Wavelet
decomposition, specifically the Haar wavelet method, to attain significant details and
trends for various workload time series, as it is capable of reducing varying features of a
workload series to enhance the prediction accuracy. In addition, the wavelets can realize
information in the data at various scales of resolution. Furthermore, the proposed model
utilizes Stochastic Configuration Networks (SCN) to build a randomized learner model
following the supervised approach. This enables the distinction of statistical aspects for
the workload time-series trends and detailed features, thus resulting in a quicker learning
speed and higher prediction accuracy.

The strengths and limitations of the aforementioned studies are tabulated in Table 1.
As evident in the above table, each model has strived to improve on a combination of

higher accuracy, strong adaptability, faster learning, and dealing well with high-dimensional
data. Since it is not possible to have a perfect system, the trade offs are generally related to
having more processing power, time for training, and power consumption.

Electronics 2023, 12, 650 10 of 27

Table 1. Comparison of strengths and limitations of the DL models.

Ref Model Strengths Limitations

[4] E2LG

• Improves the prediction
accuracy.
• Reduces complexity and
nonlinearity of prediction model
in each frequency band.
• Can exploit the long-term
nonlinear dependencies in high
frequency
• Algorithm maintains its
prediction efficiency in long-term
multistep-ahead prediction
scenarios.

• Imbalance between the
generator and discriminator
causing overfitting

[23] LSTM-RNN • Higher prediction accuracy

• Difficult to train (because
they require
memory-bandwidth-bound
computation)

[24]
Attention based

LSTM
encoder-decoder

• Increase the accuracy of the
long-term prediction method
• Effective in mitigating error
amplification in the long-term
prediction.

• Requires twice the training
of the single-layer network.
• Calculation is roughly
three times that of a
single-layer model, requires
more epochs to converge.
• Extra cost of processing for
a large model.

[15] Deep Belief
Network

• Improved accuracy of the CPU
utilization prediction

• Training is more
challenging

[14] L-PAW

• High prediction accuracy
measured by MSE for highly
autocorrelated, highly periodic
and highly random workloads
• Strong adabptability
• Suitable for High-dimensional
and highly-variable cloud
workloads

• Slow convergence

[25] Clustering-based
prediction method • Higher prediction accuracy

• Difficult to scale to larger
datasets
• User must specify the
number of clusters.

[26] SG-LSTM • Accurate prediction of task
time series

• Higher network capacity
and training required.
• Long time to learn
complex dependencies.

[17] CrystalLP
Framework • Higher performance

• Increase in required
network capacity and
training.

[16] CPD
• Good speed on training
• Low values for RMSE and
MAPE metrics

• Privacy concerns -require
the domain knowledge.
• Less performance in video
recognition and robot control,
and lesser accuracy
(compared to deep
reinforcement learning).

[27] SGW-SCN • Better accuracy
• Faster learning speed

• Higher resource
consumption

Electronics 2023, 12, 650 11 of 27

4. Comparative Analysis

This section provides a brief comparison of the models for workload prediction
discussed in Section 3 based on the following areas, highlighting the key similarities and
differences:

• The architecture type employed in designing the scheme;
• The simulation environment that is employed;
• The resource factors forecasted by the schemes to identify the sustained load;
• The type of dataset utilized for each scheme;
• The error metrics that are used to evaluate each scheme.

Figure 5 depicts the classification of the commonly employed aspects in terms of
architecture, environment, datasets, features analyzed and metrics used amongst the
models assessed.

Figure 5. Classification of commonly employed aspects.

4.1. Architecture Type

Based on the models discussed and compared in Table 2, most of the workload
prediction schemes either employ NN-based schemes, such as RNN, CNN, and DBN, or
Hybrid schemes. NN-based schemes are employed mainly because such schemes consist
of multiple layers or networks that enable the capture of intricate features from the input
data; furthermore, the multilayer architectures enhance the learning of the model, which
could lead to higher accuracy in workload prediction. Whereas, amongst the models
that employed hybrid schemes, the hybrid was a combination of LSTM and a type of
NN. LSTM is included within the hybrid schemes as they are capable of retaining long-
term information; hence, a combination of NN and LSTM further improves the learning
aspects of the model and hence results in a more efficient model that offers accurate
workload predictions.

4.2. Environment

As shown in Table 2, among the models assessed, most of the models do not provide
sufficient information on the simulation environment utilized to simulate the proposed
models. However, certain models that have provided this information utilize Cloudsim [28]
as the simulation environment to run the experiments simulations of the proposed models,
mainly because Cloudsim is an open source framework that offers a generalized and exten-
sile environment to run simulations on cloud computing infrastructures, hence enabling us
to test how the proposed models would respond in a similar environment.

Electronics 2023, 12, 650 12 of 27

Table 2. Comparison of Architecture type and Simulation Environment of the DL models.

Scheme
Architecture Environment

LSTM NN Hybrid Others CloudSIM Other/NA

[4] N/A

[23]

[24] N/A

[15]

[14] N/A

[25] (m-grap prediction) N/A

[26] N/A

[17] N/A

[16] (CPD)

[27] N/A

4.3. Dataset

As made evident by Table 3, the most commonly employed datasets are the Google
cluster trace and Planet lab datasets from Cloudsim. These datasets were chosen mainly
due to the ease of access, as Google Cluster trace datasets are publicly released workload
traces. They comprise running information from a large number of machines in Google
CDCs. Whereas, Planet Lab datasets can be retrieved from Cloudsim. Furthermore, these
datasets are actual datasets, hence providing actual workload-related information and
sufficient workload information that can be used to train the proposed models efficiently.

Table 3. Comparison of the dataset and analyzed features of the DL models.

Scheme
Dataset Features Analyzed

No. Of Requests
Google NASA Planet Lab Alibaba Others CPU Memory Task Time Series

[4]

[23]

[24]

[15]

[14]

[25]

[26]

[17]

[16]

[27]

4.4. Analyzed Features

Based on the workload prediction models assessed, Table 3 shows the key features
taken into consideration, including CPU, Memory, No. of requests, and task time series.
However, out of the ten models, almost half, around 46 percent of the assessed models,
focus on the CPU factor, as illustrated in Figure 6. This is mainly because it is essential for
CDCs and cloud service providers to maintain balance and optimize computational and
hardware resources, to meet the QoS standards and also ensure cost-effectiveness. Hence,
the CPU information in the workload dataset can help train the workload prediction model
to improve its efficacy in providing accurate results, which can aid in efficient resource
provisioning.

Electronics 2023, 12, 650 13 of 27

Figure 6. Representation of the features analyzed.

4.5. Metrics Employed

Error metrics function as a measure of accuracy between predicted values compared
to the ground truth. Table 4 displays the error metrics commonly employed to evaluate
the prediction accuracy. These include the Mean Absolute Percentage Error (MAPE) [29]
and Root Mean Squared Error (RMSE) [30], followed by Mean Squared Error (MSE) [31].
However, some models use a combination of two or more evaluation metrics to evaluate
the respective models. The MSE error metric was chosen for its propensity to be sensitive to
outliers. They work well in assigning more weight to them. RMSE and MSE are very similar
in that the former is simply the squared value of the latter. Both can represent positive
and negative values. RMSE is more useful when the overall impact is disproportionate to
the actual increase in error. Despite this, the similarity in function means studies would
be more effective not using them together and by picking a different error metric. MAPE
is popular in regression problems since it suits relative variations well. However, it is
best-suited for positive data and problems where large errors are not expected. Out of the
chosen models, six of them have used a minimum of two error metrics in their evaluation,
lending more credibility to their findings.

Table 4. Comparison of error/accuracy metrics used in the DL models.

Scheme
Metrics

MAPE RMSRE MSE RMSE MAE Others

[4]

[23]

[24]

[15]

[14]

[25]

[26]

[17]

[16]

[27]

5. Methodology

The detailed analysis of the previous section makes it evident that almost all existing
Machine Learning (ML)/DL models employ singular data sources and do not take into
account the importance of using unbiased data. In the bodies of existing work in this

Electronics 2023, 12, 650 14 of 27

domain, it is apparent that the output of machine learning models is highly impacted
by the quality of data [32–35]. The exponents of this state that the real-world value of
an ML model is directly proportional to the data it has been trained on. Therefore, it is
crucial that we build methods and frameworks that enable us to assess if data are ready
for training and deploying machine learning models. The effectiveness, precision, and
complexity of machine learning tasks are significantly influenced by the quality of the
training data. The collecting, aggregation, or annotation stages of data processing can
still introduce errors or inconsistencies. Data must be profiled and evaluated in order to
determine whether they are suitable for machine learning activities; otherwise, erroneous
analytics and unreliable judgments may follow. The majority of the effort by researchers
is centered around enhancing the quality of models and it is evident that less attention
has been given to data quality. Data scientists can spend less time fixing errors to improve
model performance by evaluating the quality of the data using intelligently designed
metrics and creating matching transformation operations to address the quality gaps.

Table 2 shows the analysis of the datasets of Google Cloudtrace, Alibaba, NASA,
Planetlabs, and proprietary datasets. Due to the unique setup of each of these data centers,
the data being recorded lacks uniformity among different datasets. Each researcher has a
different method for engineering the features for training. We believe that uniformity is a
critical factor for a fair comparison. Various issues such as missing data, inconsistent data,
erroneous data, lapses in the logging period, and unrepresentative user behavior should
be taken into account [19,20]. For this reason, we have used the datasets from the Parallel
Workloads Archive [36].

These workload logs are collected from large-scale parallel systems in production use
in various places around the world. The unique feature of these logs is that all of them
are formatted in the Standard Workload Format (SWF) format and programs would only
need to parse a single format and can be applied to multiple workloads. Furthermore, the
authors have taken steps to clean the data of errors and inconsistencies [36]. Table 5 lists
the important data fields available in each of the datasets in the archive.

Table 5. Data fields of the Parallel Workload logs chosen for analysis

Data Fields Feature in Dataset Description

Job Number jobID Unique value representing jobs submitted for processing.

Submit Time submission_time In seconds. The earliest time the log refers to is zero and is usually the submittal time of the first job.

Wait Time waiting_time In seconds. Job’s submit time vs the time at which it actually began to run.

Run Time execution_time In seconds. The wall clock time the job was running (end time minus start time). Values are rounded.

Number of Allocated Processors proc_alloc The number of processors the job uses.

Average CPU Time Used cpu_used Both user and system, in seconds. Average over all processors of the CPU time used.

Used Memory mem_used In kilobytes. Average per processor.

Requested Number of Processors proc_req Number of processors requested by the user.

Requested Time user_est This can be either runtime (measured in wallclock seconds), or average CPU time per processor (also in seconds).

Out of a myriad of fields, the ones considered most important were chosen. the Job Number
field allows each entry to be uniquely identified. Temporal data can be inferred from the
Submit Time, Wait Time, and Run Time fields. The Number of Allocated Processors
and Requested Number of Processors fields are not always the same and the system
might not always possess the resources requested by the user. Average CPU Time Used
differs from the other time fields mentioned above since certain CPU operations can be
parallellized for quicker processing. Requested Time is usually the upper boundary of
time a user estimates that their job might need [37].

5.1. Experiment Setup

The archive in [36] contains 40 datasets. For our analysis, we have chosen the following
Table 6.

Electronics 2023, 12, 650 15 of 27

Table 6. Datasets chosen for analysis from the Parallel Workloads Log.

Name From To Months CPUs User Runtime Data Memory Data

ANL Intrepid Jan 2009 Sep 2009 8 163,840

CEA CURIE Feb 2011 Oct 2012 20 93,312

UniLu Gaia May 2014 Aug 2014 3 2004

MetaCentrum2 Jan 2013 Apr 2015 28 8412

CIEMAT Euler Nov 2008 Dec 2017 110 1920

KIT FH2 Jun 2016 Jan 2018 19 24,048

The datasets listed in Table 6 were chosen on the following basis -

• The most recent datasets (between 2008 and 2018).
• The duration of data collection (between 3 months to 110 months).
• The number of CPUs present (from 2004 and 163,840).
• The scope of the available data (user runtime and memory data)

We believe that the above criteria would cover a wide range of scenarios when it
comes to patterns to be extracted and learned The robustness of the DL models can be
tested this way

The results of the preliminary analysis conducted on the dataset using the Pandas
library [38] are tabulated in Table 7. It is evident that df_index and jobID are interchange-
able in their function as unique identifiers for the jobs submitted for processing. Some
datasets contained df_index but all the datasets contained jobID. Therefore, df_index is
omitted from further analysis. In machine learning, distinct values are preferred. jobID
is completely distinct as each row has a unique value. The rest of the table presents the
percentage of distinct values. Minor distinct is for fields with less than 3% distinct values.
The Pearson correlation technique [39] revealed skewed values. These outliers have the
potential for creating noise in the machine learning model but cannot be ignored as spikes
in usage is not uncommon. Some columns have been filled with constant values as a
placeholder. Since they will not add any benefit to the training, they would also be omitted.
The main feature used for prediction would be proc_alloc which describes the number
of processors allocated for the particular job. This is justified since CPU usage is a major
factor in determining resource provisioning for datacenters [40–42].

Table 7. Preliminary exploratory analysis of the chosen datasets.

Datasets
Feature ANL-Intrepid-2009-1 CEA-Curie-2011-2 CIEMAT-Euler-2008-1 KIT-FH2-2016-1 METACENTRUM-2013-3 UniLu-Gaia-2014-2

df_index Not present 100% distinct 100% distinct Not present Not present 100% distinct
jobID 100% distinct 100% distinct 100% distinct 100% distinct 100% distinct 100% distinct
submission_time 99.3% distinct 77% distinct 32.2% distinct 85.6% distinct 62.6% distinct 80.2% distinct
waiting_time Minor distinct Minor distinct Minor distinct Minor distinct Minor distinct Minor distinct
execution_time Minor distinct Minor distinct Minor distinct Minor distinct Minor distinct Minor distinct
proc_alloc SKEWED (γ1 = 20.41500034) SKEWED (γ1 = 30.54379091)
cpu_used CONSTANT CONSTANT CONSTANT CONSTANT 14.7% distinct
mem_used CONSTANT CONSTANT CONSTANT CONSTANT 13.5% distinct
proc_req SKEWED (γ1 = 28.98839718) SKEWED (γ1 = 30.54379091)
user_est SKEWED (γ1 = 73.30789535) SKEWED (γ1 =32.67258397) SKEWED (γ1 = 80.07723573)
mem_req CONSTANT CONSTANT SKEWED (γ1 = 99.25888565) CONSTANT

The experiments were run on a system with an Intel i7 processor, 16 GB RAM along with
Python(3.7), Keras(2.9.0) [43], Sci-kit learn(1.0.2) [44], Tensorflow(2.9.2) [45],
Numpy(1.21.6) [46] and Pandas(1.3.5).

5.2. Feature Engineering

When preparing the data before using it for training, the first task was to drop columns
that had constant values as mentioned in the previous section. The submission_time col-
umn represents the timestamp at which a job was submitted for processing in seconds. Each
dataset has a field stating a start_time which mentions when the data collection began.

Electronics 2023, 12, 650 16 of 27

Since we are dealing with a time-series problem here, the time factor needed to be
represented accurately. It was necessary to calculate the exact time a job was submitted
for processing. To that end, the aforementioned start_time was added to each value
of the submission_time column to produce a new column featuring a timestamp of this
format—"Year,Month,Date,Hour,Minutes,Seconds". Subsequent to that, the new times-
tamp column was set as the index column to be the unique identifier for each row while
jobID and submission_time columns were dropped due to them being redundant at
this point.

The next issue to deal with was the time interval between job submissions. For
training time series problems, the interval between data points must be uniform [47]. In
this case, our datapoints were not evenly spaced. Therefore, the Pandas package was used
to resample all the values to 1-hour intervals. The rest of the values in the other columns
were calculated by using the interpolate function.

Each of the datasets was split into training and test sets. For our analysis, 10% of each
dataset was used for testing purposes as described in Figure 7 below.

According to Figure 7, the y-axis denotes the processor allocation, and the x-axis
of the graphs denotes the time period. The varied nature of each of these environments
can be seen by the fact that Figure 7a has spikes of processor use going up to 160,000 while
Figure 7b,d are in the range of 80,000 and 20,000 respectively. The others are relatively
less comparatively even though Figure 7c,e represent valuable temporal data as they have
the highest data collection window. In each of these cases, the last portion of the dataset
was used for testing. Finally, the data were rescaled using the MinMaxScaler feature to fit
between 0 and 1. Using this method, the representations and underlying patterns of data
are extracted so that the training of the model is not slowed down due to a large range
of values.

(a)

(b)

2008-11-17 14:00:00 2009-11-27 14:00:00 2010-12-07 14:00:00 2011-12-17 14:00:00 2012-12-26 14:00:00 2014-01-05 14:00:00 2015-01-15 14:00:00 2016-01-25 14:00:00 2017-02-03 14:00:00
Time

0

100

200

300

400

500

Pr
oc

es
so

r A
llo

ca
tio

n

Train
Test

(c)
Figure 7. Cont.

Electronics 2023, 12, 650 17 of 27

(d)

2013-01-01 00:00:00 2013-03-25 08:00:00 2013-06-16 16:00:00 2013-09-08 00:00:00 2013-11-30 08:00:00 2014-02-21 16:00:00 2014-05-16 00:00:00 2014-08-07 08:00:00 2014-10-29 16:00:00
Time

0

20

40

60

80

100

120

140

Pr
oc

es
so

r A
llo

ca
tio

n

Train
Test

(e)

2014-06-01 2014-06-15 2014-07-01 2014-07-15 2014-08-01 2014-08-15
Time

0

25

50

75

100

125

150

175

200

Pr
oc

es
so

r A
llo

ca
tio

n

Train
Test

(f)
Figure 7. Train/Test split of datasets representing processor allocation and data collection duration.
(a) ANL-Intrepid-2009-1 Dataset. (b) CEA-Curie-2011-2 Dataset. (c) CIEMAT-Euler-2008-1 Dataset.
(d) KIT-FH2-2016-1 Dataset. (e) METACENTRUM-2013-3 Dataset. (f) UniLu-Gaia-2014-2 Dataset.

5.3. Setup Deep Learning Models

In the literature review done for this paper, it was discovered that most of the work
related to workload prediction is done using RNN and LSTM. For our analysis, we are
comparing the more prominent DL models along with them -

• RNN
• MLP
• LSTM
• CNN

RNNs are the more popular option for time series prediction but have issues with
long-term retention. LSTM is the successor for that. Along with that, we have an MLP and
a CNN which would take the same data as the input.

All the datasets were trained on each of the models depicted in Figure 8 for a fair
comparison. Each of the models, as shown in Figure 8a–d use the same input layers and
use a generic structure for the middle layers. All of them have used a Dense layer for the
final result output. Since the data points are numerous, we used a Data generator to feed
in the data to the input layers in batches of 64 samples and trained for 100 epochs.

Electronics 2023, 12, 650 18 of 27

(a) (b)

(c) (d)
Figure 8. Structure of DL models used for training. (a) Recurrent Neural Network (RNN) Architecture.
(b) Multilayer Perception (MLP) Architecture. (c) Long Short-Term Memory (LSTM) Architecture.
(d) Convolutional Neural Network (CNN) Architecture.

6. Results
6.1. Metrics

For the sake of comparison, we employed the following metrics

• Mean Absolute Error (MAE)
• Root Mean Squared Error (RMSE)

They are the more popular metrics used for statistical analysis [48].
Equation (1) presents the formula for the MAE function [48]:

MAE =
1
n

Σn
i=1
∣∣ei
∣∣ (1)

the Mean Absolute Error quantifies the errors between paired observations expressing the
same phenomenon.

Equation (2) presents the formula for the RMSE function [48]:

RMSE =

√
1
n

Σn
i=1

∣∣ei
∣∣2 (2)

the RMSE on the other hand depicts how much the prediction errors deviate from the
standard deviation. It indicates the concentration of data around the line of best fit. Since
the errors are squared before they are averaged, the RMSE gives more prominence to large
errors since errors are squared before they are averaged. It is particularly useful when large
errors are a major issue.

Electronics 2023, 12, 650 19 of 27

The MAE and the RMSE can be utilized in tandem to find the homogeneity or hetero-
geneity of the sample. The greater the divide between them, the greater the variance in
individual errors in the sample [49].

6.2. Performance Evaluation

Figures 9–12 represent the graphs associated with the RNN, MLP, LSTM, and CNN
respectively. Under each main figure, there are 6 sub figures each representing the chosen
datasets. The MAE and RMSE error metrics have been recorded in graph form for each of
these datasets. The X-axis represents the training epochs while the Y-axis represents
the relevant value for the error metric.

The results have been displayed in the following figures.

i. MAE ii. RMSE
(a)

i. MAE ii. RMSE
(b)

10 20 30 40 50 60 70 80 90 100
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
Ab

so
lu

te
 E

rro
r

RNN - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

RM
SE

RNN - Root Mean Squared Error per Epoch

ii. RMSE
(c)

10 20 30 40 50 60 70 80 90 100
Epochs

0.025

0.026

0.027

0.028

0.029

M
ea

n
Ab

so
lu

te
 E

rro
r

RNN - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.072

0.074

0.076

0.078

0.080

RM
SE

RNN - Root Mean Squared Error per Epoch

ii. RMSE
(d)

Figure 9. Cont.

Electronics 2023, 12, 650 20 of 27

10 20 30 40 50 60 70 80 90 100
Epochs

0.000

0.005

0.010

0.015

0.020

0.025

M
ea

n
Ab

so
lu

te
 E

rro
r

RNN - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.00

0.01

0.02

0.03

0.04

0.05

RM
SE

RNN - Root Mean Squared Error per Epoch

ii. RMSE
(e)

10 20 30 40 50 60 70 80 90 100
Epochs

0.0

0.1

0.2

0.3

0.4

M
ea

n
Ab

so
lu

te
 E

rro
r

RNN - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.1

0.2

0.3

0.4

0.5

RM
SE

RNN - Root Mean Squared Error per Epoch

ii. RMSE
(f)

Figure 9. Metrics for the RNN Model. (a) Error Metrics for ANL-Intrepid-2009-1 Dataset. (b) Error
Metrics for CEA-Curie-2011-2 Dataset. (c) Error Metrics for CIEMAT-Euler-2008-1 Dataset. (d) Error
Metrics for KIT-FH2-2016-1 Dataset. (e) Error Metrics for METACENTRUM-2013-3 Dataset. (f) Error
Metrics for UniLu-Gaia-2014-2 Dataset.

10 20 30 40 50 60 70 80 90 100
Epochs

0.0350

0.0355

0.0360

0.0365

0.0370

0.0375

0.0380

0.0385

M
ea

n
Ab

so
lu

te
 E

rro
r

MLP - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.0775

0.0780

0.0785

0.0790

0.0795

0.0800

0.0805

0.0810

RM
SE

MLP - Root Mean Squared Error per Epoch

ii. RMSE
(a)

10 20 30 40 50 60 70 80 90 100
Epochs

0.022

0.024

0.026

0.028

0.030

0.032

M
ea

n
Ab

so
lu

te
 E

rro
r

MLP - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.063

0.064

0.065

0.066

0.067

0.068

0.069

0.070

RM
SE

MLP - Root Mean Squared Error per Epoch

ii. RMSE
(b)

10 20 30 40 50 60 70 80 90 100
Epochs

0.0655

0.0660

0.0665

0.0670

0.0675

0.0680

0.0685

0.0690

M
ea

n
Ab

so
lu

te
 E

rro
r

MLP - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.097

0.098

0.099

0.100

0.101

0.102

RM
SE

MLP - Root Mean Squared Error per Epoch

ii. RMSE
(c)

Figure 10. Cont.

Electronics 2023, 12, 650 21 of 27

10 20 30 40 50 60 70 80 90 100
Epochs

0.022

0.023

0.024

0.025

0.026

0.027

0.028

0.029

M
ea

n
Ab

so
lu

te
 E

rro
r

MLP - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.056

0.058

0.060

0.062

0.064

0.066

RM
SE

MLP - Root Mean Squared Error per Epoch

ii. RMSE
(d)

10 20 30 40 50 60 70 80 90 100
Epochs

0.0255

0.0260

0.0265

0.0270

0.0275

0.0280

0.0285

0.0290

M
ea

n
Ab

so
lu

te
 E

rro
r

MLP - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.0435

0.0440

0.0445

0.0450

0.0455

0.0460

RM
SE

MLP - Root Mean Squared Error per Epoch

ii. RMSE
(e)

10 20 30 40 50 60 70 80 90 100
Epochs

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

M
ea

n
Ab

so
lu

te
 E

rro
r

MLP - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.110

0.115

0.120

0.125

0.130

0.135

0.140

RM
SE

MLP - Root Mean Squared Error per Epoch

ii. RMSE
(f)

Figure 10. Metrics for the MLP Model. (a) Error Metrics for ANL-Intrepid-2009-1 Dataset. (b) Error
Metrics for CEA-Curie-2011-2 Dataset. (c) Error Metrics for CIEMAT-Euler-2008-1 Dataset. (d) Error
Metrics for KIT-FH2-2016-1 Dataset. (e) Error Metrics for METACENTRUM-2013-3 Dataset. (f) Error
Metrics for UniLu-Gaia-2014-2 Dataset.

10 20 30 40 50 60 70 80 90 100
Epochs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ea

n
Ab

so
lu

te
 E

rro
r

LSTM - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0

50

100

150

200

250

300

350

RM
SE

LSTM - Root Mean Squared Error per Epoch

ii. RMSE
(a)

10 20 30 40 50 60 70 80 90 100
Epochs

0.010

0.015

0.020

0.025

0.030

M
ea

n
Ab

so
lu

te
 E

rro
r

LSTM - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.03

0.04

0.05

0.06

0.07

RM
SE

LSTM - Root Mean Squared Error per Epoch

ii. RMSE
(b)

Figure 11. Cont.

Electronics 2023, 12, 650 22 of 27

10 20 30 40 50 60 70 80 90 100
Epochs

0.000

0.005

0.010

0.015

0.020

0.025

M
ea

n
Ab

so
lu

te
 E

rro
r

LSTM - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.00

0.01

0.02

0.03

0.04

RM
SE

LSTM - Root Mean Squared Error per Epoch

ii. RMSE
(c)

10 20 30 40 50 60 70 80 90 100
Epochs

0

25

50

75

100

125

150

175

200

M
ea

n
Ab

so
lu

te
 E

rro
r

LSTM - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0

500

1000

1500

2000

2500

3000

3500

RM
SE

LSTM - Root Mean Squared Error per Epoch

ii. RMSE
(d)

10 20 30 40 50 60 70 80 90 100
Epochs

0.000

0.005

0.010

0.015

0.020

M
ea

n
Ab

so
lu

te
 E

rro
r

LSTM - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.00

0.01

0.02

0.03

0.04
RM

SE

LSTM - Root Mean Squared Error per Epoch

ii. RMSE
(e)

10 20 30 40 50 60 70 80 90 100
Epochs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
ea

n
Ab

so
lu

te
 E

rro
r

LSTM - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

RM
SE

LSTM - Root Mean Squared Error per Epoch

ii. RMSE
(f)

Figure 11. Metrics for the LSTM Model. (a) Error Metrics for ANL-Intrepid-2009-1 Dataset. (b) Error
Metrics for CEA-Curie-2011-2 Dataset. (c) Error Metrics for CIEMAT-Euler-2008-1 Dataset. (d) Error
Metrics for KIT-FH2-2016-1 Dataset. (e) Error Metrics for METACENTRUM-2013-3 Dataset. (f) Error
Metrics for UniLu-Gaia-2014-2 Dataset.

10 20 30 40 50 60 70 80 90 100
Epochs

0.020

0.025

0.030

0.035

0.040

M
ea

n
Ab

so
lu

te
 E

rro
r

CNN - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.03

0.04

0.05

0.06

0.07

0.08

RM
SE

CNN - Root Mean Squared Error per Epoch

ii. RMSE
(a)

Figure 12. Cont.

Electronics 2023, 12, 650 23 of 27

10 20 30 40 50 60 70 80 90 100
Epochs

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

M
ea

n
Ab

so
lu

te
 E

rro
r

CNN - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.02

0.03

0.04

0.05

0.06

0.07

0.08

RM
SE

CNN - Root Mean Squared Error per Epoch

ii. RMSE
(b)

10 20 30 40 50 60 70 80 90 100
Epochs

0.0350

0.0375

0.0400

0.0425

0.0450

0.0475

0.0500

0.0525

M
ea

n
Ab

so
lu

te
 E

rro
r

CNN - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.055

0.060

0.065

0.070

0.075

0.080

RM
SE

CNN - Root Mean Squared Error per Epoch

ii. RMSE
(c)

10 20 30 40 50 60 70 80 90 100
Epochs

0.010

0.015

0.020

0.025

0.030

0.035

0.040

M
ea

n
Ab

so
lu

te
 E

rro
r

CNN - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.02

0.03

0.04

0.05

0.06

0.07

0.08
RM

SE

CNN - Root Mean Squared Error per Epoch

ii. RMSE
(d)

10 20 30 40 50 60 70 80 90 100
Epochs

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

M
ea

n
Ab

so
lu

te
 E

rro
r

CNN - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.015

0.020

0.025

0.030

0.035

0.040

0.045

RM
SE

CNN - Root Mean Squared Error per Epoch

ii. RMSE
(e)

10 20 30 40 50 60 70 80 90 100
Epochs

0.02

0.04

0.06

0.08

0.10

0.12

M
ea

n
Ab

so
lu

te
 E

rro
r

CNN - Mean Absolute Error per Epoch

i. MAE

10 20 30 40 50 60 70 80 90 100
Epochs

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

RM
SE

CNN - Root Mean Squared Error per Epoch

ii. RMSE
(f)

Figure 12. Metrics for the CNN Model. (a) Error Metrics for ANL-Intrepid-2009-1 Dataset. (b) Error
Metrics for CEA-Curie-2011-2 Dataset. (c) Error Metrics for CIEMAT-Euler-2008-1 Dataset. (d) Error
Metrics for KIT-FH2-2016-1 Dataset. (e) Error Metrics for METACENTRUM-2013-3 Dataset. (f) Error
Metrics for UniLu-Gaia-2014-2 Dataset.

Electronics 2023, 12, 650 24 of 27

7. Discussion

The first thing of note is the fact that almost all the models start with higher MAE and
RMSE values for the first 10 epochs or so. This is understandable as the neural network is
attempting to optimize the weights initially.

With the exception of i and ii of datasets (a) and (b) of Figure 9 along with i
of datasets (a) of Figure 10, all the other graphs indicate a general downward slope as
the epochs progress. This indicates the model successfully minimizing the error metrics
over successive iterations. Figure 9, being the RNN, according to our literature, has a
generally weaker performance over extended periods. This could be the result of the
ANL-Intrepid-2009-1 (a) possessing rapid fluctuations of peaks and lows over time as
indicated in (a) of Figure 7.

As discussed in Section 6.1, the relationship between MAE and RMSE indicates the
rate of individual errors in the sample. Except for i and ii of datasets (a) and (b) of
Figure 9 along with i of datasets (a) of Figure 10, all the other graphs display similar
trends in the error rate over the epochs. Therefore, we can conclude the individual error
rate is lower since there is less variance between the MAE and RMSE values.

The LSTM model from Figure 11 shows the best results yet compared to the others;
reinforcing the fact that they had time series data over a long period of time better. The RNN
model from Figure 9 displays the worst performance compared to the others for the reasons
mentioned above. Interestingly, the CNN model, which is usually used for interpreting
graphical information, has also performed well. Going by the results represented by the
graphs, LSTMs have the best performance.

8. Conclusions

This paper achieves the objective of bringing perspective to the domain of workload
prediction in cloud computing environments using DL by classifying and systematically
reviewing the existing literature. The findings have been broken down into cross sections
detailing the taxonomy, strengths, limitations, models used, metrics used, architecture,
datasets used and features analyzed.

Based on the models analyzed, it is evident that almost all the analyzed models aim
to enhance the prediction accuracy by improving the model training, including adaptive
strategies to improve resource provisioning or train the models more to predict multiple
correlations of VMs. We also make a case for the technical analysis where the result of the
DL model can be biased based on the quality of the datasets and uniformity is needed for
unbiased analysis. The data from the parallel workloads archive were sanitized for the sake
of removing anomalies or erroneous data that have not been the focus behind the other DL
works explored in this domain. In this paper, we used datasets of the SWF format, which,
to our knowledge, has not been analyzed in the context of the same DL model utilized on
different datasets.

Our study has found that the LSTM model in comparison to the other models seems
to have superior performance. It performs well in retaining information over lengthy time
windows. We hope that our finding is a stepping stone in further enhancing the domain
to enable effective and efficient resource management in cloud computing platforms. We
hope the findings would help researchers in deploying DL models in production or live
systems where the accurate prediction results in less resource wastage. This would lead
to more efficient systems, less cost, and finally, a smaller carbon footprint when running
data centers.

9. Future Work

DL is a rapidly growing field of study. While it has gained significant interest in recent
years, avenues are abundant and yet to be explored. In its entirety, the models analyzed
seem to have their drawbacks in terms of the limited combinations for the hybrid models,
the lack of information on the simulation environment, and the limited choice of datasets
mainly based on ease of access. In our future work, we will consider addressing these

Electronics 2023, 12, 650 25 of 27

matters in-depth, in the hopes of finding an efficient model that can best implement the
principles of DL for resolving the challenge of efficient workload prediction. We would
also consider training for larger iterations to further improve the models. We could also
explore various ways of increasing the prediction window as well. All in all, the field of
deep learning will not wane in research interest in the near future.

Author Contributions: Conceptualization, Z.A., M.K. and F.E.; Methodology, Z.A., M.K. and F.E.;
Software, Z.A.; Validation, Z.A., F.A. and A.S.A.-M.A.-G.; Formal analysis, Z.A.; Investigation, Z.A.;
Resources, M.K., F.E. and F.A.; Data curation, Z.A.; Writing—original draft, Z.A.; Writing—review
and editing, Z.A., M.K., F.E. and A.S.A.-M.A.-G.; Visualization, Z.A.; Supervision, M.K., F.E., F.A.
and A.S.A.-M.A.-G.; Project administration, M.K., F.E., F.A. and A.S.A.-M.A.-G.; Funding acquisition,
M.K., F.E., F.A. and A.S.A.-M.A.-G. All authors have read and agreed to the published version of the
manuscript.

Funding: This paper is a part of a project funded by the Deanship of Scientific Research (DSR),
King Abdulaziz University, Jeddah, under grant No. (KEP-PHD-21-611-42). The authors, therefore,
gratefully acknowledge the DSR technical and financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here (Parallel workloads archive): https://www.cs.huji.ac.il/labs/parallel/workload/logs.
html.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DL Deep Learning
RM Resource Management
SWF Standard Workload Format
NN Neural Network
ML Machine Learning
CDC Cloud Data Center
SLA Service Level Agreement
VM Virtual Machine
MSE Mean Squared Error
RMSE Root Mean Squared Error
MAPE Mean Absolute Percentage Error
MAE Mean Absolute Error
AR Auto Regression
MA Moving Average
SVR Support Vector Regression
RVM Relevance Vector Machines
PSO Particle Swarm Optimization
CNN Convolutional Neural Network
LSTM Long-Short Term Memory
RNN Recurrent Neural Network
GAN Generative Adversarial Network
MLP Multilayer Perception
IMF Intrinsic Mode Functions
QoS Quality of Service

https://www.cs.huji.ac.il/labs/parallel/workload/logs.html
https://www.cs.huji.ac.il/labs/parallel/workload/logs.html

Electronics 2023, 12, 650 26 of 27

References
1. Mustafa, S.; Nazir, B.; Hayat, A.; Madani, S.A. Resource management in cloud computing: Taxonomy, prospects, and challenges.

Comput. Electr. Eng. 2015, 47, 186–203.
2. Parikh, S.M.; Patel, N.M.; Prajapati, H.B. Resource Management in Cloud Computing: Classification and Taxonomy. arXiv 2017,

arXiv:1703.00374.
3. Masdari, M.; Khoshnevis, A. A survey and classification of the workload forecasting methods in cloud computing. Clust. Comput.

2020, 23, 2399–2424.
4. Yazdanian, P.; Sharifian, S. E2LG: A multiscale ensemble of LSTM/GAN deep learning architecture for multistep-ahead cloud

workload prediction. J. Supercomput. 2021, 77, 11052–11082.
5. Gill, S.S.; Garraghan, P.; Stankovski, V.; Casale, G.; Thulasiram, R.K.; Ghosh, S.K.; Ramamohanarao, K.; Buyya, R. Holistic

resource management for sustainable and reliable cloud computing: An innovative solution to global challenge. J. Syst. Softw.
2019, 155, 104–129.

6. Marinescu, D.C. Cloud Computing: Theory and Practice; Morgan Kaufmann Publishers: Waltham, MA, USA; Elsevier: Amsterdam,
The Netherlands, 2018.

7. Radhika, E.; Sadasivam, G.S. A review on prediction based autoscaling techniques for heterogeneous applications in cloud
environment. Mater. Today Proc. 2021, 45, 2793–2800.

8. Alaei, N.; Safi-Esfahani, F. RePro-Active: A reactive–proactive scheduling method based on simulation in cloud computing. J.
Supercomput. 2018, 74, 801–829.

9. Bouabdallah, R.; Lajmi, S.; Ghedira, K. Use of reactive and proactive elasticity to adjust resources provisioning in the cloud
provider. In Proceedings of the 2016 IEEE 18th International Conference on High Performance Computing and Communi-
cations, IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Sydney, NSW, Australia, 12–14 December 2016; pp. 1155–1162.

10. Kumar, J.; Singh, A.K. Workload prediction in cloud using artificial neural network and adaptive differential evolution. Future
Gener. Comput. Syst. 2018, 81, 41–52.

11. Vashistha, A.; Verma, P. A literature review and taxonomy on workload prediction in cloud data center. In Proceedings of the
2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 29–31 January
2020; pp. 415–420.

12. Calheiros, R.N.; Masoumi, E.; Ranjan, R.; Buyya, R. Workload prediction using ARIMA model and its impact on cloud applications’
QoS. IEEE Trans. Cloud Comput. 2014, 3, 449–458.

13. Espadoto, M.; Hirata, N.S.T.; Telea, A.C. Deep learning multidimensional projections. Inf. Vis. 2020, 19, 247–269.
14. Chen, Z.; Hu, J.; Min, G.; Zomaya, A.Y.; El-Ghazawi, T. Towards accurate prediction for high-dimensional and highly-variable

cloud workloads with deep learning. IEEE Trans. Parallel Distrib. Syst. 2019, 31, 923–934.
15. Qiu, F.; Zhang, B.; Guo, J. A deep learning approach for VM workload prediction in the cloud. In Proceedings of the 2016 17th

IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), Shanghai, China, 30 May–1 June 2016; pp. 319–324.

16. Zhang, Q.; Yang, L.T.; Yan, Z.; Chen, Z.; Li, P. An efficient deep learning model to predict cloud workload for industry informatics.
IEEE Trans. Ind. Inform. 2018, 14, 3170–3178.

17. Ruan, L.; Bai, Y.; Li, S.; He, S.; Xiao, L. Workload time series prediction in storage systems: A deep learning based approach. In
Cluster Computing; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–11. https://doi.org/10.1007/s10586-020-03214-y

18. Tang, X. Large-scale computing systems workload prediction using parallel improved LSTM neural network. IEEE Access 2019,
7, 40525–40533.

19. Feitelson, D.G.; Tsafrir, D. Workload sanitation for performance evaluation. In Proceedings of the 2006 IEEE International
Symposium on Performance Analysis of Systems and Software, Austin, TX, USA, 9–21 March 2006; pp. 221–230.

20. Tsafrir, D.; Feitelson, D.G. Instability in parallel job scheduling simulation: The role of workload flurries. In Proceedings of the
20th IEEE International Parallel & Distributed Processing Symposium, Rhodes, Greece, 5–29 April 2006; p. 10.

21. Gupta, N.; Patel, H.; Afzal, S.; Panwar, N.; Mittal, R.S.; Guttula, S.; Jain, A.; Nagalapatti, L.; Mehta, S.; Hans, S.; et al. Data Quality
Toolkit: Automatic assessment of data quality and remediation for machine learning datasets. arXiv 2021, arXiv:2108.05935.

22. Amiri, M.; Mohammad-Khanli, L. Survey on prediction models of applications for resources provisioning in cloud. J. Netw.
Comput. Appl. 2017, 82, 93–113.

23. Kumar, J.; Goomer, R.; Singh, A.K. Long short term memory recurrent neural network (LSTM-RNN) based workload forecasting
model for cloud datacenters. Procedia Comput. Sci. 2018, 125, 676–682.

24. Zhu, Y.; Zhang, W.; Chen, Y.; Gao, H. A novel approach to workload prediction using attention-based LSTM encoder-decoder
network in cloud environment. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 274.

25. Gao, J.; Wang, H.; Shen, H. Machine learning based workload prediction in cloud computing. In Proceedings of the 2020 29th
International Conference on Computer Communications and Networks (ICCCN), Honolulu, HI, USA, 3–6 August 2020; pp. 1–9.

26. Bi, J.; Li, S.; Yuan, H.; Zhao, Z.; Liu, H. Deep neural networks for predicting task time series in cloud computing systems. In
Proceedings of the 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC), Banff, AB, Canada,
9–11 May 2019; pp. 86–91.

Electronics 2023, 12, 650 27 of 27

27. Bi, J.; Yuan, H.; Zhang, L.; Zhang, J. SGW-SCN: An integrated machine learning approach for workload forecasting in geo-
distributed cloud data centers. Inf. Sci. 2019, 481, 57–68.

28. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.; Buyya, R. CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 2011, 41, 23–50.

29. De Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean absolute percentage error for regression models. Neurocomputing
2016, 192, 38–48.

30. Kelley, K.; Lai, K. Accuracy in parameter estimation for the root mean square error of approximation: Sample size planning for
narrow confidence intervals. Multivar. Behav. Res. 2011, 46, 1–32.

31. Sammut, C.; Webb, G.I. Mean squared error. In Encyclopedia of Machine Learning; Springer: Boston, MA, USA, 2010; p. 653.
32. Bandyopadhyay, B.; Bandyopadhyay, S.; Bedathur, S.; Gupta, N.; Mehta, S.; Mujumdar, S.; Parthasarathy, S.; Patel, H. 1st

International Workshop on Data Assessment and Readiness for AI. In Proceedings of the Pacific-Asia Conference on Knowledge
Discovery and Data Mining; WSPA, MLMEIN, SDPRA, DARAI, and AI4EPT; Springer: Delhi, India 2021; pp. 117–120.

33. Jain, A.; Patel, H.; Nagalapatti, L.; Gupta, N.; Mehta, S.; Guttula, S.; Mujumdar, S.; Afzal, S.; Sharma Mittal, R.; Munigala, V.
Overview and importance of data quality for machine learning tasks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, Virtual, 6–10 July 2020; pp. 3561–3562.

34. Patel, H.; Ishikawa, F.; Berti-Equille, L.; Gupta, N.; Mehta, S.; Masuda, S.; Mujumdar, S.; Afzal, S.; Bedathur, S.; Nishi, Y. 2nd
International Workshop on Data Quality Assessment for Machine Learning. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, KDD ’21, Singapore, 14–18 August 2021; Association for Computing Machinery: New
York, NY, USA, 2021; pp. 4147–4148. https://doi.org/10.1145/3447548.3469468.

35. Gupta, N.; Mujumdar, S.; Patel, H.; Masuda, S.; Panwar, N.; Bandyopadhyay, S.; Mehta, S.; Guttula, S.; Afzal, S.; Sharma Mittal,
R.; et al. Data quality for machine learning tasks. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining, Singapore, 14–18 August 2021; pp. 4040–4041.

36. Feitelson, D.G.; Tsafrir, D.; Krakov, D. Experience with using the parallel workloads archive. J. Parallel Distrib. Comput. 2014,
74, 2967–2982.

37. Cirne, W.; Berman, F. A comprehensive model of the supercomputer workload. In Proceedings of the Fourth Annual IEEE
International Workshop on Workload Characterization, WWC-4 (Cat. No. 01EX538), Austin, TX, USA, 2 December 2001;
pp. 140–148.

38. McKinney, W. Pandas: A foundational Python library for data analysis and statistics. Python High Perform. Sci. Comput. 2011,
14, 1–9.

39. Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 1–4.

40. Ranjbari, M.; Torkestani, J.A. A learning automata-based algorithm for energy and SLA efficient consolidation of virtual machines
in cloud data centers. J. Parallel Distribut. Comput. 2018, 113, 55–62.

41. Cortez, E.; Bonde, A.; Muzio, A.; Russinovich, M.; Fontoura, M.; Bianchini, R. Resource central: Understanding and predicting
workloads for improved resource management in large cloud platforms. In Proceedings of the 26th Symposium on Operating
Systems Principles, Shanghai, China, 28–31 October 2017; pp. 153–167.

42. Delimitrou, C.; Kozyrakis, C. Paragon: QoS-aware scheduling for heterogeneous datacenters. ACM SIGPLAN Not. 2013,
48, 77–88.

43. Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 10 December 2022).
44. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
45. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 3 December 2022).
46. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,

N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. https://doi.org/10.1038/s41586-020-2649-2.
47. Fulcher, B.D. Feature-based time-series analysis. In Feature Engineering for Machine Learning and Data Analytics; CRC Press: Boca

Raton, FL, USA, 2018.
48. Vishwakarma, G.; Sonpal, A.; Hachmann, J. Metrics for benchmarking and uncertainty quantification: Quality, applicability, and

best practices for machine learning in chemistry. Trends Chem. 2021, 3, 146–156.
49. Syntetos, A.A.; Boylan, J.E. The accuracy of intermittent demand estimates. Int. J. Forecast. 2005, 21, 303–314.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://keras.io
tensorflow.org

	Introduction
	Background
	Load Prediction Challenges
	Main Objective
	Types of Workload Dataset
	Evaluation Metrics

	Deep Learning for Load Prediction
	Comparative Analysis
	Architecture Type
	Environment
	Dataset
	Analyzed Features
	Metrics Employed

	Methodology
	Experiment Setup
	Feature Engineering
	Setup Deep Learning Models

	Results
	Metrics
	Performance Evaluation

	Discussion
	Conclusions
	Future Work
	References

