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Abstract: A support vector machine (SVM) aims to achieve an optimal hyperplane with a maximum
interclass margin and has been widely utilized in pattern recognition. Traditionally, a SVM mainly
considers the separability of boundary points (i.e., support vectors), while the underlying data
structure information is commonly ignored. In this paper, an improved support vector machine with
earth mover’s distance (EMD-SVM) is proposed. It can be regarded as an improved generalization
of the standard SVM, and can automatically learn the distribution between the classes. To validate
its performance, we discuss the necessity of the structural information of EMD-SVM in the linear
and nonlinear cases, respectively. Experimental validation was designed and conducted in different
application fields, which have shown its superior and robust performance.

Keywords: support vector machine; structural information; Earth mover’s distance; deep convolu-
tional feature; pattern recognition

1. Introduction

A support vector machine (SVM) is a supervised machine learning model that has been
widely utilized in pattern recognition [1], such as text classification [2,3], face recognition [4,5],
radar [6], sonar [7], etc. Generally, the basic idea of SVM is to maximize the minimum margin
from the samples to the classification hyperplane. Built on the SVM, variants, including some
discriminative classifiers featuring large-margin theory, have been proposed to improve the
SVM or overcome its limitations [8–13].

For classification tasks, the standard SVM aims to find a hyperplane that allows di-
verse classes to be separated with a maximal margin. However, traditional SVMs mainly
consider the separability of boundary points, while the underlying data structure infor-
mation is commonly ignored. It is known that in real-world applications, different data
sets may have different distributions, and from a statistical perspective, the structural
information should be the key factor. Breiman et al. argued this point and showed that
maximizing the minimum margin was not the key factor in model generalization [14,15].
Then, Reyzin found that the margin theory was still helpful to model generalization, but
the margin distribution seemed more dominant [16]. In this case, a classifier is expected to
capture the data structure or distribution information, and a more reasonable discriminant
boundary would be available when dealing with the complex structured dataset in certain
classification tasks. Gao proved that the margin mean and margin variance do have an
essential influence on the generalization performance of the classifier [17]. Subsequently,
large margin machine (LDM) and its modified version, i.e., optimal margin distribution
learning machine (ODM), are proposed to maximize or minimize the margin mean and
margin variance, respectively [18,19]. Considering the sensitivity of the number of samples
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and its inclination to generate an imbalanced margin distribution, Cheng considered the
statistical characteristics with marginal distribution and constructed a double distribution
support vector machine (DDSVM) [20]. Additionally, due to the utilization of the sample
distribution information, the improved SVMs have shown a superior performance [21–27].

One method is to introduce structural information into the SVM. Belkin et al. [28]
proposed a laplacian support vector machine (LapSVM) by constructing a laplacian matrix
of the manifold structure of the dataset and embedding a manifold regularization term
inside the SVM. This approach is called the semi-supervised learning task. Based on this,
a structured large margin machine (SLMM) [29] is proposed to capture the structural
information by using clustering techniques, which have proved to be sensitive to data
distribution. However, the SLMM is optimized by second-order cone programming (SOCP),
which has a large computational complexity. Furthermore, research has improved the
SVM from the perspective of the objective function, of which the most representative
method is structural regularized support vector machine (SRSVM) [30]. Similar to the
SLMM, the SRSVM also obtains structural information by using the clustering method,
whereas SRSVM integrates the structural information directly into the objective function
of a traditional SVM, rather than into the constraints. That is, SRSVM can also be solved
by quadratic programming, hence a SVM with minimum within-class scatter (WCS-SVM)
was proposed to combine minimum within-class scatter with SVM [31]. Additionally, it is
further extended to a fuzzy version coined FSVM with minimum within-class scatter (WCS-
FSVM) [32]. To enhance the discriminative ability, Zhang introduced Fisher regularization
into SVM to form a Fisher regularization support vector machine (FisherSVM) [33] that
minimizes the within-class samples.

Overall, the structural SVM has matured to the extent that it can utilize structural
information from the data and improve the generalization capacities of the model. It
is usually expected to construct a classification model by explicitly mining structural
information. Therefore, the available model is sensitive to data structure information,
thus resulting in a general improvement in the model. Motivated by the aforementioned
analysis, a novel pattern recognition classifier, namely a support vector machine based
on earth mover’s distance (EMD-SVM), is proposed to learn the distribution information
between classes automatically. Specifically, we utilized earth mover’s distance [34] to
capture structural information for data explicitly, and then the structural information will
be embedded into the SVM, which acts as a regular term of the objective function optimized
by quadratic programming. Additionally, we extended the EMD-SVM formulation from
the linear classification to the nonlinear case. Considering the great success and state-
of-the art performance of deep neural networks in machine vision and signal processing
fields [35–41], we replaced fully-connected layers in a standard CNN using SVM to cope
with classification tasks [42–46], which enabled improvements to be made in the recognition
performance and generalization ability of CNN.

In terms of this, an improved support vector machine with earth mover’s distance
(EMD-SVM) is proposed, which can be regarded as an improved generalization of the
standard SVM. The main contributions of this study can be summarized as follows,

(1) We propose a new strategy to capture the underlying data structural information and
thus improve the SVM classifier.

(2) The principles of the EMD-SVM in the linear and nonlinear cases are discussed in
detail, respectively. It is proved to be a convex optimization problem and can be
solved by the QP technique.

(3) We conduct experimental verification on three kinds of classification datasets, includ-
ing UCI, image recognition, and radar emitter recognition, which have shown that
the performance of the proposed EMD-SVM is superior and robust.

The rest of this paper is organized as follows. Section 2 briefly describes SVM and
Earth Mover’s Distance (EMD). The proposed EMD-SVM is introduced in Section 3, which
is followed by numerical results in Section 4. Section 5 presents the conclusions.
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2. Related Work
2.1. Support Vector Machine

Taking binary classification for instance, we review the principle of SVM. Usually, we
use a testing set D to evaluate the discriminative ability of the classifier for new samples,
and then use the “testing error” on it as an approximation of the generalization error.
Considering the training samples set D = {(x1, y1), (x2, y2), · · · , (xn, yn)}, yi ∈ {−1,+1},
the standard SVM aims to find a hyperplane f = ωTx + b, which can separate the samples
of different classes with a margin of 2

‖ω‖ . Its objective function can be given as follows,

min
1
2

ωTω

s.t. yi(ω
Txi + b) ≥ 1, i = 1, 2, · · · , n

(1)

For the linear non-separable cases, by using ξi ≥ 0, i = 1, 2, · · · , n and penalty factors
to penalize the samples that violate inequality constraints, the following soft-margin SVM
can be obtained,

min
1
2

ωTω + C
n

∑
i=1

ξi

s.t. yi(ω
Txi + b) ≥ 1− ξi

ξi ≥ 0, i = 1, 2, · · · , n

(2)

where ξi is the slack variables, the matrix C denotes to the trade-off between errors of
training data and generalization [47].

Then, the standard SVM can be trained by solving a dual quadratic programming
problem. The dual problem can be formulated as below,

max− 1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjxT
i xj +

n

∑
i=1

αi

s.t. 0 ≤ αi ≤ C, i = 1, · · · , n
n

∑
i=1

αiyi = 0

(3)

2.2. The Earth Mover‘s Distance

The Earth Mover’s Distance is defined as the minimal cost that transforms one distribution
into the other. It is proposed to solve the transportation problem through linear optimization.
Next, we explain the algorithm by referring to the cargo transportation problem.

Suppose there are two distributions P =
{(

pi, upi

)}m
i=1 and Q =

{(
qj, uqj

)}n

j=1
,

where pi is the supplier, upi is the quantity of goods it owns, qj is the warehouse, and uqj is
the quantity of goods it can accommodate. Then, the EMD distance can be expressed as a
linear optimization problem as below,

WORK(P, Q, F) =
m

∑
i=1

n

∑
j=1

dij fij

s.t. fij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n
n

∑
j=1

fij ≤ ωpi 1 ≤ i ≤ m

m

∑
i=1

fij ≤ ωqj 1 ≤ j ≤ n

m

∑
i=1

n

∑
j=1

fij = min

(
m

∑
i=1

ωpi ,
m

∑
i=1

ωqj

)
dij =

∣∣pi − qj
∣∣

(4)
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where, dij represents the distance between pi and qj, ωpi and ωqj denotes the total supply
and accommodation capacity, respectively. Here we expect to find a flow F =

[
fij
]

that
minimizes the overall transportation costs, where fij is the flow from pi to qj. Then, the
EMD distance can be normalized as,

EMD(P, Q) =

m

∑
i=1

n

∑
j=1

dij fij

m

∑
i=1

n

∑
j=1

fij

(5)

3. EMD-SVM Model

In this section, the EMD-SVM model is expounded by taking binary classification as
an example. Then, the principles of the EMD-SVM in the linear and nonlinear cases are
discussed in detail, respectively.

3.1. EMD-SVM for Linear Case

The EMD-SVM model for the linear case can be given as,

min
1
2

ωTω + λ
2 ωTEdω + C

n

∑
i=1

ξi

s.t. yi(ω
Txi + b) ≥ 1− ξi

ξi ≥ 0, i = 1, 2, . . . , n

(6)

where Ed =
1

emd
I, I is the identity matrix, emd represents the EMD distance between the

two kinds of distributions, and λ is a parameter used to regulate the relative importance of
the distance representation within the distribution of the two classes.

Incorporating the constraints, we can rewrite Equation (5) as a primal Lagrangian equation,

L(ω, b, α) =
1
2

ωTω +
λ

2
ωTEdω + C

n

∑
i=1

ξi +
n

∑
i=1

αi

[
1− ξi − yi(ω

Txi + b)
]
−

n

∑
i=1

µiξi (7)

where the KKT conditions for the primal problem can be obtained as follows,

∂L
∂ω

= (I + λEd)ω−
n

∑
i=1

αiyixi = 0 (8)

∂L
∂b

=
n

∑
i=1

αiyi = 0 (9)

∂L
∂ξi

= C− αi − µi = 0 (10)

αi ≥ 0, µi ≥ 0 (11)

yi

(
ωTxi + b

)
− 1 + ξi ≥ 0 (12)

αi

(
yi

(
ωTxi + b

)
− 1 + ξi

)
= 0 (13)

ξi ≥ 0, µiξi ≥ 0 (14)
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Substitute Equations (8)–(10) into Equation (7), we can obtain

1
2

ωT(I + λEd)ω + C
n

∑
i=1

ξi +
n

∑
i=1

αi
[
1− ξi − yi

(
ωTxi + b

)]
−

n

∑
i=1

µiξi

=
1
2

n

∑
i=1

αiyixT
i (I + λEd)

−1
n

∑
j=1

αjyjxj +
n

∑
i=1

αi −
n

∑
i=1

αiyi

n

∑
j=1

αjyjxT
j (I + λEd)

−1xi

= −1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjxT
i (I + λEd)

−1xj +
n

∑
i=1

αi

(15)

Then, we can transform the primal Lagrangian equation into the dual problem,

max− 1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjxT
i (I + λEd)

−1xj +
n

∑
i=1

αi

s.t. 0 ≤ αi ≤ C, i = 1, · · · , n
n

∑
i=1

αiyi = 0

(16)

Hence, we can obtain the solution αi by using the QP techniques. In predicting the class
labels for testing data x, the classifier function can be derived as below,

Class x = sgn
[
ωTx + b

]
= sgn

[
n

∑
i=1

αiyixT
i (I + λEd)

−1x + b

] (17)

3.2. EMD-SVM for Nonlinear Case

Like the SVM, we can also construct the kernel functions for EMD-SVM to cope with
nonlinear problems. We can construct a mapping function Φ so that to map the training
data to a higher-level feature space H, i.e., Φ : Rd 7→ H . Then, the kernel transposition
problem can be described as [47],

WORK(φ(P), φ(Q), F) =
m

∑
i=1

n

∑
j=1

dφ(pi)φ(qj)
fij (18)

where the ground distance dφ(pi)φ(qj)
between φ(pi) and φ(qj) can be calculated by,

dφ(pi)φ(qj)
=
√
‖φ(pi)− φ

(
qj
)
‖2 (19)

If there were a “kernel function” K such that K
(
xi, xj

)
= φ(xi)

Tφ
(
xj
)
, we would use

K to rewrite the Equation (19) as,

dφ(pi)φ(qj)
=
√

K(pi, pi)− K
(

pi, qj
)
− K

(
qj, pi

)
+ K

(
qj, qj

)
(20)

Then, the kernel of the EMD-SVM can be defined,

min
1
2

ωTω +
λ

2
ωTφ(X)EdφT(X)ω + C

n

∑
i=1

ξi

s.t. yi
(
ωTφ(xi) + b

)
≥ 1− ξi

ξi ≥ 0, i = 1, 2, . . . , n

(21)

where Ed represents the EMD distance of the two kinds of distributions in the kernel space.
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The Largrangian form for this problem can be formed as below,

L(ω, b, α)

=
1
2

ωTω + λ
2 ωTφ(X)EdφT(X)ω + C

n

∑
i=1

ξi

+
n

∑
i=1

αi
[
1− ξi − yi(ω

Tφ(xi) + b)
]
−

n

∑
i=1

µiξi

(22)

Setting the partial derivative of L(ω, b, α) with respect to w and b equal to zero,

ω =
[

I + λφ(X)EdφT(X)
]−1 n

∑
i=1

αiyiφ(xi) (23)

n

∑
i=1

αiyi = 0 (24)

C− αi − µi = 0 (25)

The dual problem can be further formed as,

max− 1
2

n

∑
i=1

n
∑

j=1
αiαjyiyjφ

T(xi)
(

I + λφ(X)EdφT(X)
)−1

φ
(
xj
)
+

n

∑
i=1

αi

s.t. 0 ≤ αi ≤ C, i = 1, · · · , n
n

∑
i=1

αiyi = 0

(26)

According to Woodbury’s formula, we could have,

(I + UBV)−1 = A−1 − A−1UB
(

B + BVA−1UB
)−1

BVA−1 (27)

Then, we have,[
I + λφ(X)EdφT(X)

]−1

= I − λφ(X)Ed
[
Ed + λEdφT(X)φ(X)Ed

]−1EdφT(X)

= I − λφ(X)Ed[Ed + λEdKEd]
−1EdφT(X)

= I − λφ(X)PφT(X)

(28)

where
P = Ed[Ed + λEdKEd]Ed (29)

Let Ki: denote the i-th row of K, K:j denote the j-th column of K, then the dual problem
can be cast as

−1
2

n

∑
i=1

n

∑
j=1

αiαjyiyj
[
Kij − λKi:PK:j

]
+

n

∑
i=1

αi

s.t. 0 ≤ αi ≤ C, i = 1, · · · , n
n

∑
i=1

αiyi = 0

(30)

Once the solution α are obtained from the above convex optimization problem, we can
obtain the hyperplane. Then, the class label of a data point x ∈ Rn can be determined as

Class x = sgn
[
ωTφ(x) + b

]
= sgn

[
n

∑
i=1

αiyiK(xi, x)− λ
n

∑
i=1

αiyiKi:PK(X, x) + b

] (31)



Electronics 2023, 12, 645 7 of 14

4. Experimental Results and Discussion

In this section, the EMD-SVM is evaluated on synthetic and real-world datasets. We
compared the performance of the proposed EMD-SVM with standard SVM and some
representative large margin methods, including SRSVM, LDM, ODM, and ELM [48]. We
first evaluated the effectiveness of the proposed EMD-SVM on a synthetic dataset to
illustrate the impact of data distribution information on classification. Then, we evaluated
the performance of these methods on UCI datasets and the Caltech 101 dataset. Next, we
utilized a deep convolutional neural network to extract convolutional features and discuss
the performance of EMD-SVM based on deep convolutional features. Finally, the proposed
EMD-SVM was applied to the radar emitter recognition task. All the experiments were
carried out on a PC with a 3.50 GHz CPU and 48 GB RAM.

4.1. Recognition Performance of EMD-SVM on Synthetic Dataset

The two-dimensional synthetic dataset consists of three groups of randomly generated
Gaussian distributions. The blue plus represents the positive sample and the red star
represents the negative samples. Table 1 describes the attributes of the dataset. The
hyperplanes of linear SVM, LDM, and EMD-SVM are displayed in Figure 1.

Table 1. The attributes of the synthetic dataset.

Samples Gaussian Distribution Num Mean Covariance

Positive Gaussian distribution P 200 [0; 5] [0.3,0; 0,5]

Negative Gaussian distribution N1 180 [6; 8] [1,0; 0,0.5]
Gaussian distribution N2 20 [3; 2] [1.5,0; 0,1.5]
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As can be seen from Figure 1, the positive class has a vertical distribution and the
negative class is composed of two horizontal Gaussian distributions. Moreover, the distri-
bution N1 has more samples than N2. It can be seen from Figure 1 that due to the neglect
of the structural information, SVM cannot compete with a complex structured dataset;
Specifically, SVM ignores the cluster N2 which has fewer samples than cluster N1. The
hyperplane only focuses on the separability between cluster P and cluster N1. LDM adopts
margin mean and variance to characterize the margin distribution and optimizes it to
achieve a better generalization performance. On the other hand, considering the structured
distance information and the separability between the two distributions, the proposed
EMD-SVM can also obtain a more reasonable hyperplane.

4.2. Recognition Performance of EMD-SVM with Hand-Crafted Classifier on UCI Datasets

In this section, we verify the performance of the proposed EMD-SVM on UCI datasets.
The attributes of these datasets are presented in Table 2.



Electronics 2023, 12, 645 8 of 14

Table 2. Attributes of experimental datasets.

Dataset Feature Num Class

Sonar 60 208 2
Breast 9 277 2

Cryotherapy 6 90 2
Fertility 9 100 2
Wdbc 30 569 2

Ionosphere 34 351 2
Hepatitis 19 155 2

Spectf 44 267 2
Pima 8 768 2
Heart 13 303 2

Tae 5 151 3
Iris 4 150 3

We randomly selected half of the samples as the training set and the rest as the testing
set. In the linear case, for ODM, the parameter D is selected from the set [0, 0.1, · · · , 0.5],
the regularization parameter C1 and C2 are selected from the set

[
2−8, · · · , 28], for SVM,

SRSVM, EMD-SVM and LDM, the parameter C is selected from the set
[
10−3, · · · , 103], and

parameters λ, λ1 and λ2 are selected from the set
[
2−8, · · · , 28]. For ELM, the number of

hidden neurons is defined as 1000, and the activation function is Sigmoid. In the nonlinear
case, the RBF kernel k

(
xi, xj

)
= exp

(
− 1

2σ2 ‖xi − xj‖2
)

is used for all algorithms. The width

of the RBF kernel is selected from
[
2−8, · · · , 28]. Experiments were repeated 10 times with

different data partitions.
We compared the average accuracy of all the algorithms. Table 3 shows the accuracy

result with linear kernel and Table 4 shows the accuracy result with RBF kernel.

Table 3. Accuracy comparisons with linear kernel.

Dataset SVM SRSVM LDM ODM ELM EMD-SVM

Sonar 77.11 ± 3.84 77.40 ± 1.50 76.83 ± 3.80 76.35 ± 4.30 78.26 ± 3.79 77.69 ± 4.12
Breast 70.86 ± 2.78 71.80 ± 2.20 70.72 ± 2.06 70.58 ± 2.26 57.62 ± 6.64 71.80 ± 2.65

Cryotherapy 83.91 ± 5.10 85.35 ± 5.92 70.39 ± 4.99 68.77 ± 7.98 78.77 ± 7.33 85.64 ± 6.24
Fertility 86.80 ± 3.55 86.80 ± 3.55 86.80 ± 3.55 86.80 ± 3.55 74.2 ± 4.36 87.00 ± 4.02
Wdbc 95.12 ± 1.13 96.63 ± 0.99 94.88 ± 1.11 91.68 ± 1.83 87.75 ± 2.09 96.04 ± 1.14

Ionosphere 87.10 ± 1.69 87.84 ± 1.76 84.03 ± 2.74 84.49 ± 2.40 80.85 ± 2.05 87.73 ± 2.3
Hepatitis 80.75 ± 7.64 83.75 ± 4.28 83.75 ± 3.58 85.50 ± 4.68 76.25 ± 2.71 83.75 ± 4.28

Spectf 78.81 ± 3.75 79.85 ± 3.50 79.18 ± 2.32 79.10 ± 2.25 63.88 ± 5.34 79.78 ± 2.84
Pima 76.07 ± 1.88 76.11 ± 1.84 66.90 ± 1.94 67.14 ± 2.09 60.91 ± 2.48 76.30 ± 1.84
Heart 83.09 ± 2.63 83.28 ± 3.15 83.36 ± 2.15 82.76 ± 2.14 68.94 ± 4.48 83.42 ± 3.05

Tae 48.68 ± 3.59 51.04 ± 4.94 44.73 ± 5.10 44.87 ± 4.51 50.52 ± 4.85 51.45 ± 3.89
Iris 97.60 ± 2.41 97.80 ± 1.56 97.07 ± 1.24 97.07 ± 1.39 77.06 ± 6.85 97.87 ± 1.05

Note: the bold value indicates the best accuracy on each dataset.

From the results, we can draw the following conclusions,

(1) The EMD-SVM combines the earth mover’s distance with standard SVM, which can
introduce the data distribution information into the traditional SVM. The outstand-
ing performance of EMD-SVM on most datasets further validates the necessity of
distribution information for the classifier’s design.

(2) Although SRSVM can achieve comparable recognition results with EMD-SVM, its
recognition performance is highly affected by the clustering method, as SRSVM
is based on the clustering structure. In practical applications, different clustering
methods must be used for different problems.

(3) LDM and ODM use the margin mean and variance to describe the margin distribution,
while the first- and second-order statistics are often used to characterize Gaussian-
distributed data, which has certain limitations. In contrast, EMD-SVM adopts EMD
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distance instead of Euclidean distance to describe the data distribution. The distri-
bution information is then incorporated into the SVM object function in the form of
regular terms, thus guiding SVM to learn the optimal classification boundary under
this distribution metric.

Table 4. Accuracy comparisons with RBF kernel.

Dataset SVM SRSVM LDM ODM ELM EMD-SVM

Sonar 87.88 ± 2.44 87.40 ± 1.84 87.5 ± 2.26 86.54 ± 2.36 86.25 ± 2.31 87.98 ± 2.36
Breast 72.52 ± 3.50 74.39 ± 3.00 74.60 ± 2.81 74.68 ± 3.50 74.31 ± 3.01 74.46 ± 3.31

Cryotherapy 84.00 ± 4.29 85.33 ± 5.36 83.11 ± 8.32 82.22 ± 7.33 82.66 ± 7.96 85.33 ± 6.21
Fertility 87.00 ± 4.02 86.80 ± 3.55 87.00 ± 4.02 86.80 ± 3.55 86.80 ± 3.55 87.00 ± 4.02
Wdbc 94.63 ± 1.44 94.60 ± 1.15 91.61 ± 1.51 91.65 ± 1.37 91.64 ± 1.37 94.35 ± 0.89

Ionosphere 94.71 ± 1.56 94.89 ± 1.20 94.94 ± 1.05 94.94 ± 1.05 94.94 ± 1.05 95.28 ± 1.11
Hepatitis 83.75 ± 4.28 83.75 ± 4.29 78.5 ± 4.74 78.25 ± 4.42 78.25 ± 4.41 84.00 ± 4.74

Spectf 80.22 ± 2.31 79.78 ± 3.25 76.27 ± 2.16 76.34 ± 2.33 76.26 ± 2.16 80.30 ± 2.86
Pima 76.33 ± 1.34 76.74 ± 1.70 76.84 ± 1.88 76.77 ± 1.77 76.85 ± 1.97 76.82 ± 1.47
Heart 83.22 ± 2.65 83.88 ± 3.44 84.14 ± 3.37 84.01 ± 3.22 84.14 ± 2.76 84.41 ± 2.68

Tae 47.63 ± 5.71 46.32 ± 3.33 50.92 ± 7.07 50.92 ± 7.07 41.57 ± 3.73 50.92 ± 7.07
Iris 97.73 ± 1.26 97.87 ± 1.59 97.06 ± 1.64 98.00 ± 1.13 92.00 ± 3.92 98.00 ± 1.13

Note: the bold value indicates the best accuracy on each dataset.

4.3. Experiments on Caltech101 Dataset

In this subsection, we conduct an experiment on the Caltech101 dataset. Caltech101 is
a digital image dataset provided by the California Institute of Technology, which contains a
total of 9146 images divided into 101 attributes (including face, plane, animal, etc.) and
a background category. We chose nine types of images for this experiment: airplanes,
bonsai, cars, dolphins, electric guitars, easy faces, helicopters, leopards, and motorbikes.
The features of SIFT, LBP, and PHOG are extracted from these images and the attributes are
presented in Table 5.

Table 5. Attributes of Caltech101 feature.

Caltech101 Feature Feature Num Class

LBP 37 720 9
SIFT 300 720 9

PHOG 40 720 9

We randomly selected 80 images from each category as datasets, 64 of them as training
samples and the remaining 16 as test samples. Ten independent experiments were con-
ducted to evaluate the performance of the proposed EMD-SVM. We used linear kernel in
the experiment and the parameters were selected in a similar way as in the UCI dataset
experiments. For multi-class problems, the “one-to-one” strategy is adopted. We compared
the average accuracy of all the algorithms and the results are shown in Table 6.

Table 6. Accuracy comparisons with linear kernel.

Dataset SVM SRSVM LDM ODM ELM EMD-SVM

LBP 60.34 ± 3.58 60.87 ± 2.18 40.90 ± 4.78 49.09 ± 2.49 60.55 ± 4.93 61.11 ± 1.96
SIFT 82.36 ± 2.14 82.43 ± 2.75 74.24 ± 3.16 78.12 ± 3.37 78.75 ± 1.83 83.26 ± 3.14

PHOG 50.69 ± 2.99 51.59 ± 3.60 41.46 ± 3.43 45.35 ± 3.63 44.03 ± 6.08 51.94 ± 3.87
Note: the bold value indicates the best accuracy on each dataset.

It is clear that the EMD-SVM achieves better accuracy than the SVM, SRSVM, LDM,
ODM and ELM methods in the multi-class classification problem. This indicates that distri-
bution information can help to determine a better discriminant boundary. Moreover, the
performance of LDM and ODM on the Caltech101 dataset further shows that characterizing
the data distribution with first- and second-order statistics still has some limitations.
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4.4. Recognition Performance of EMD-SVM Based on Deep Convolutional Features

In this section, we discuss the performance of EMD-SVM and other algorithms on
deep convolutional features. We adopted the classical AlexNet as the pretrained CNN
model, which contains five convolutional layers and three fully connected layers, and
further details of the network can be referred to in [40]. The DSLR and Amazon datasets
were used to verify the effectiveness of EMD-SVM in the deep feature. The CNN model
was pretrained by the ImageNet dataset and fine-tuned by the DSLR and Amazon datasets.
Then, we extracted the fine-tuned deep features Fc6 and Fc7 as the inputs of the above five
algorithms for classification, respectively. Table 7 shows the details of the four deep features.

Table 7. Details of the four deep features.

Dataset CNN Feature Num Class

DSLR-Fc6 4096 157 10
DSLR-Fc7 4096 157 10

Amazon-Fc6 4096 958 10
Amazon-Fc7 4096 958 10

In the experiment, we randomly chose 50% of the samples as the training set and the
rest as the testing set. Ten independent experiments were conducted to achieve a more
stable result. A linear kernel was used in the experiment and the parameters were selected
in a similar way as in the UCI dataset experiments. Table 8 compares the accuracy results
of EMD-SVM and other methods.

Table 8. Accuracy comparisons with linear kernel.

Dataset SVM SRSVM LDM ODM ELM EMD-SVM

DSLR-Fc6 93.92 ± 2.31 94.05 ± 3.16 95.18 ± 2.58 95.44 ± 2.54 94.55 ± 2.31 96.45 ± 2.04
DSLR-Fc7 94.93 ± 2.05 94.93 ± 2.60 96.20 ± 2.06 96.32 ± 2.26 94.81 ± 3.29 96.96 ± 1.99

AMAZON-Fc6 94.07 ± 0.75 94.17 ± 0.66 94.53 ± 0.83 94.34 ± 0.66 91.19 ± 0.63 94.47 ± 0.69
AMAZON-Fc7 94.55 ± 0.91 94.82 ± 0.80 94.90 ± 0.82 94.92 ± 0.75 92.88 ± 1.04 95.01 ± 0.81

Note: the bold value indicates the best accuracy on each dataset.

As can be seen, the overall performance of EMD-SVM is better than SVM and other
methods. In addition, as the large margin algorithms LDM and ODM apply the ideas of
maximizing margin mean and minimizing margin variance to the SVM model, compared
with SVM, LDM and ODM are also highly competitive with SVM. The results demon-
strate that considering the distribution of data can improve the classifier’s classification
performance on complex data.

Additionally, we compared EMD-SVM with an MLP with two hidden layers with
1024 and 512 neurons, respectively. The accuracies of EMD-SVM and MLP are shown
in Table 9. It can be seen that MLP can achieve recognition results comparable to those
of linear EMD-SVM, but still somewhat inferior to nonlinear EMD-SVM. Compared to
MLP, EMD-SVM is based on the minimization of structural risk rather than empirical risk,
thus avoiding the overfitting problem. By obtaining a structured description of the data
distribution, it reduces the requirements for the size and distribution of the data, and has
excellent generalization capabilities.

Table 9. Accuracy comparisons with RBF kernel.

Dataset SVM MLP EMD-SVM
(Linear Kernel)

EMD-SVM
(RBF Kernel)

DSLR-Fc6 93.92 ± 2.31 96.71 ± 1.59 96.45 ± 2.04 96.95 ± 3.16
DSLR-Fc7 94.93 ± 2.05 96.89 ± 2.21 96.96 ± 1.99 96.99 ± 1.34

AMAZON-Fc6 94.07 ± 0.75 94.40 ± 0.88 94.47 ± 0.69 94.58 ± 0.94
AMAZON-Fc7 94.55 ± 0.91 95.21 ± 1.21 95.01 ± 0.81 95.26 ± 1.02

Note: the bold value indicates the best accuracy on each dataset.
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4.5. Recognition Performance of EMD-SVM for Radar Emitter Recognition

In order to test the effectiveness of our EMD-SVM in realistic applications, we con-
ducted experiments on radar emitter recognition. The collected data are radar emitter
signals with the same type and parameters. We extracted the FFT, welch power spec-
trum, ambiguous function slice, and cyclic spectrum slice (denoted as Data1, Data2, Data3,
and Data4, respectively). The attributes of these datasets are presented in Table 10. The
corresponding waveforms of class1-class4 signals in Data4 are shown in Figure 2.

Table 10. Attributes of the radar datasets.

Dataset Feature Num Class

Data1 5000 833 27
Data2 8192 833 27
Data3 4999 833 27
Data4 2500 833 27Electronics 2023, 12, x FOR PEER REVIEW 12 of 15 
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To reduce the computation time, the PCA algorithm was utilized to extract 90% of the
energy. We randomly chose the 80% percent samples as the training set and the remaining
20% percent samples as the test set. The experiment was repeated 10 times to generate
10 independent results for each dataset, and we compared the average accuracy and the
standard deviation of all the algorithms. A linear kernel was used in the experiment and
the parameters were selected in a similar way to the UCI dataset experiments. The results
of the four radar datasets are shown in Table 11, and it can be seen that our EMD-SVM still
achieves superior results.
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Table 11. Accuracy comparisons with linear kernel.

Dataset SVM SRSVM LDM ODM ELM EMD-SVM

Data1 54.97 ± 3.65 55.44 ± 3.24 46.23 ± 3.44 50.23 ± 4.05 46.59 ± 2.58 55.51 ± 3.45
Data2 48.02 ± 3.52 48.26 ± 3.30 40.72 ± 3.65 43.29 ± 2.44 45.27 ± 3.89 48.74 ± 3.36
Data3 45.69 ± 3.09 45.69 ± 3.09 43.47 ± 4.28 42.81 ± 1.76 46.29 ± 3.38 46.41 ± 3.27
Data4 50.65 ± 2.43 50.71 ± 2.55 43.89 ± 2.04 45.63 ± 2.59 46.28 ± 3.49 51.14 ± 1.95

Note: the bold value indicates the best accuracy on each dataset.

5. Conclusions

In this paper, we propose a novel SVM classifier with earth mover’s distance, which
can automatically learn the distribution between the classes. The EMD-SVM can be seen as
a generalization of the standard SVM by calculating the EMD distance, and we discuss the
principle of the EMD-SVM in linear and nonlinear cases, respectively. The experimental
results indicate that the proposed EMD-SVM has a superior and robust performance. In
the future, we will pay more attention to overcoming the drawbacks of a long training time
for large-scale datasets and sensitivity to hyper-parameters of kernel functions. It would
also be interesting to generalize the idea of EMD-SVM to other learning settings.
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