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Abstract: Torque-based impedance control, a kind of classical active compliant control, is widely
required in human–robot interaction, medical rehabilitation, and other fields. Adaptive impedance
control effectively tracks the force when the robot comes in contact with an unknown environment.
Conventional adaptive impedance control (AIC) introduces the force tracking error of the last moment
to adjust the controller parameters online, which is an indirect method. In this paper, joint friction in
the robot system is first identified and compensated for to enable the excellent performance of torque-
based impedance control. Second, neural networks are inserted into the torque-based impedance
controller, and a neural adaptive impedance control (NAIC) scheme with directly online optimized
parameters is proposed. In addition, NAIC can be deployed directly without the need for data
collection and training. Simulation studies and real-world experiments with a six link rotary robot
manipulator demonstrate the excellent performance of NAIC.

Keywords: neural adaptive impedance control; online optimization; force tracking; friction
identification

1. Introduction

In the last few years, compliant control has been widely used in polishing, assembly,
dual-arm coordination, human–robot interaction, and other fields. Classical compliant
control methods include hybrid or parallel force/position control, impedance, and ad-
mittance control. Compared with the passive compliance with mechanical structures,
active compliant control realized within software is applied in a wider field of robotics [1].
Impedance control, as a typical active compliant control method, has been evolving since
its first proposal by Hogan in 1985 [2]. In contrast to position-based admittance control,
impedance control is a torque-based control method. However, there are usually unknown
dynamics such as friction, modeling uncertainties, and external disturbances in robotics
system, which can significantly limit the precision of impedance control.

Friction feedforward compensation plays a vital role in robot dynamics control, such
as collision detection [3,4] and sensorless kinesthetic teaching [5]. Stribeck [6] is a kind of
nonlinear friction effect resulting from friction. Over the past decades, the friction model
has evolved from Coulomb/viscous friction to the LuGre model [7,8] and smooth tanh
function [9,10]. Both of the latter two methods can overcome the Stribeck effect. The LuGre
model is piecewise continuous and therefore non-differentiable, whereas the friction model
based on tanh is smooth and can be made a time derivative. Nevertheless, the friction
model may also depict natural friction. Alongside the mathematical friction model studied,
the joint torque sensor has been designed and utilized to sense the friction in LWR iiwa [11].
In this paper, measured results reveal that the friction torque is not entirely symmetrical
concerning the positive and negative directions of the joint motor. Thus, the piecewise
continuous LuGre friction model is adopted.

By establishing a virtual mass-spring-damping contact dynamic, classical impedance
control can implement force control when the environment is known. In order to track
the desired force when the robot is in contact with an unknown environment, adaptive
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impedance control [12,13] was developed. In [14], the contact force model of the robot
end-effector (EE) and the environment were analyzed, and a kind of adaptive impedance
control law was proposed. In [15], an adaptive target impedance control scheme for the
dual collaborative robotic arm was proposed, such that the controller exhibits different
supple behaviors depending on the magnitude of the interaction with the environment.
In [16], a discrete robust position control law based on Cartesian impedance control law
was discussed, and the control input of the robot manipulator was explicitly converted to
joint torque. In [17], a cascaded position–torque control loop for impedance control was
designed, and the goal of the adaptive control law was to achieve adaptive assistance based
on human force. These methods often achieve the adaptive effect by introducing other
terms in the impedance controller but do not update the impedance parameters online.

In addition to the aforementioned adaptive control schemes, some scholars have
also used neural networks to implement variable impedance control due to the dramatic
increase in computer arithmetic power [18]. Neural network techniques can be applied to
both torque-based impedance control and position-based admittance control [19]. In fact,
the optimization of controller parameters with neural networks has been widely used.
In [20], radius basis network (RBF) is utilized in both position-loop and force-loop to deal
with the uncertainties of the manipulator in the grinding task. In [21], PID controller
parameters were optimized online with the neural network. Except for neural networks,
reinforcement learning has also been studied to design variable impedance control [22].
However, large-scale data acquisition requires expensive human and material resources for
most neural networks or reinforcement learning methods.

In this paper, we propose a kind of neural adaptive impedance control to track the
desired force when the robot is in contact with an unknown environment. By embedding the
neural network into the traditional impedance control, the performance of the controller is
improved. Compared to some recent results, the contributions of this study are summarized
as follows:

(1) A kind of adaptive impedance control method based on the neural network is proposed.
This method is simple and easy to implement. Although some modern control ap-
proaches have also been proposed, their design procedures are more difficult or complex.

(2) The impedance parameters of the controller are directly adjusted online, which im-
proves the performance of the controller.

(3) The proposed method can be deployed without any data collection or training process.
In addition, its simple structure does not require a large amount of computing resources.

The remainder of this article is organized as follows. The dynamic model of the robot
and friction is introduced as preliminaries in Section 2. The neural adaptive impedance
control method and stability analysis are given in Section 3. Several simulation scenarios
are shown in Section 4, and the real-world experiment is validated in Section 5. Finally,
conclusions are presented in Section 6.

2. Preliminaries

The dynamic model of a six degrees of freedom robot can be described as

M(q)q̈ + C(q, q̇)q̇ + G(q) + τf (q, q̇) = τ + τext (1)

where q, q̇, and q̈ ∈ R6 denote the joint position, velocity, and acceleration, respectively;
M(q) ∈ R6×6 is the positive definite inertia matrix; C(q, q̇) ∈ R6×6 is the Coriolis matrix;
G(q) ∈ R6 represents gravity; τf (q, q̇) ∈ R6 is a column vector resulting from joint friction;
τ ∈ R6 denotes the joint driving torque; and τext ∈ R6 is the external torque resulting from
an external wrench Fext ∈ R6

τext = JT(q)Fext (2)
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where J(q) ∈ R6×6 represents the Jacobian matrix and symbol T means transpose. Equation (1)
shows the dynamic model of the robot in joint space, and it can be transformed to Cartesian
space with the Jacobian matrix.

DẌ + h + Ff = F− Fext (3)

where D = J−TMJ−1, and h = J−T(C(q, q̇)q̇ + G(q))− DJ̇J−1Ẋ; X ∈ R6 denotes the pose
of the end-effector (EE). Dynamic parameters of the robot can be determined from carefully
designed identification experiments [23].

The compensation of joint friction plays a pivotal and important role in robot dynamics
control. In general, the ith joint friction torques τf i can be modeled as

τf i = fcisgn(q̇) + fvi q̇ (4)

where sgn(·) denotes the sign function, fci represents the Coulomb friction coefficient,
and fvi is the viscous friction coefficient. However, this model does not reflect the actual
joint friction at low speeds very well. To solve this problem, the Stribeck effect is introduced
in LuGre friction.

τf i =

[
fai + ( fbi − fai)e

−( q̇i
qsi

)2
]

sgn(q̇i) + fvi q̇i (5)

where fai, fbi, qsi, and fvi are parameters to be identified.

3. Neural Adaptive Impedance Control

This section proposes a kind of neural adaptive impedance control law based on
backpropagation, and the stability is analyzed.

3.1. Traditional Adaptive Impedance Control Law

The goal of impedance control is to present the robot with a spring-like effect when
interacting with the environment. To track the external force in Cartesian space, impedance
control law can be designed as{

F = DV + h + Ff + Fext

V = Ẍd + M−1
d
[
Bd(Ẋd − Ẋ) + K(Xd − X)− Fext

] (6)

where Xd ∈ R6 represents the desired trajectory.
Substituting (6) into (3), the target impedance relationship (7) can be obtained.

Fext = MdË + BdĖ + KdE (7)

where E = Xd − X represents the position error between desired robot position Xd and
measured EE position X.

The new impedance function (8) can be acquired by subtracting the desired force Fd
from Fext.

Fext − Fd = MdË + BdĖ + KdE (8)

The interaction process between the robot and the environment can be recognized as a
two-phase control algorithm: the first phase is free-space when the robot is approaching the
environment, and the second phase is contact-space control in which the EE is in contact
with the environment [16]. In the first phase, the contact force Fext = 0. In the second
phase, to satisfy the controller’s stability, Kd = 0 is set. Adaptive impedance control (AIC)
is often used to solve the uncertainty of robot interaction with unknown environments.
The traditional AIC law [14] can be designed as
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fext(t)− fd(t) = md ë(t) + (bd + ∆bd(t))ė(t)

∆bd(t) =
bd

ė(t)
Φ(t)

Φ(t) = Φ(t− λ) + σ
fd(t− λ)− fext(t− λ)

bd

(9)

where λ is the sampling period of the controller and σ is the update rate.

Remark 1. Without loss of generality, a lowercase letter indicates one of the corresponding upper-
case letters in (9) and similarly hereinafter. For example, md is an element on the main diagonal of
matrix Md ∈ R6×6, and fd is an element of the vector Fd ∈ R6×1.

3.2. Neural Adaptive Impedance Control

Integrating the three equations in (9) yields

fext(t)− fd(t) = md ë(t) + bd ė(t) + bdΦ(t− λ) + σ[ fd(t− λ)− fext(t− λ)] (10)

Unlike classic impedance control, the error between the desired force and the environ-
ment force at the last moment is explicitly introduced into the adaptive impedance control
law (10). In addition, the sum of the desired and environmental force errors for the last
time is also included in (10), which can be considered an integral action. The parameters
md, bd, and σ do not change, which limits its adaptive capability. This is an indirect method
of optimizing the controller parameters.

Because of the nonlinear fitting ability and adaptive features, neural networks have
been widely used in the design of adaptive controllers. Figure 1 shows the neural adaptive
impedance controller (NAIC) we proposed. Let e f (t) = fext(t)− fd(t) denote the error
between the desired force and environment force. Therefore, a neural adaptive impedance
controller based on backpropagation is proposed. This network is designed skillfully.
The input layer has four neurons corresponding to ë, ė, Φ(t− λ), and e f (t− λ). The hidden
layer has three neurons, and the output layer has one neuron. This gives exactly three
neuron weights from the hidden layer to the output layer, which is consistent with the
number of impedance parameters. The output of the neural adaptive impedance controller
is e f (t), and the weights of the output layer are the parameters of the NAIC.

   Inverse
 Dynamics

  Forward
Kinematics

     Adaptive
Impedance Law

6D F/T
Sensor

Figure 1. NAIC structure. The neural network consists of three layers: input layer, hidden layer,
and output layer. The input contains ë, ė, Φ(t− λ), and e f (t− λ). The output is the force error e f (t).
The dark blue dashed line denotes the back propagation. The parameters of the AIC are updated
with the neural network.

Let fi denote the output of the ith neuron in the hidden layer. The relationship from
input layer to hidden layer can be described as in (11):
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 f1
f2
f3

 =

1 0 0 0
0 1 1 0
0 0 0 1




ë
ė

Φ(t− λ)
e f (t− λ)

 (11)

Let wi ∈ {md, bd, σ}(i = 1, 2, 3) represent the weight of the ith neuron in the hidden
layer to the output layer. Therefore, the impedance parameters are denoted with the weight
of the neural network. The mapping relationship from the hidden layer to the output layer
is shown in (12):

e f (t) =
3

∑
i=1

wi fi (12)

The loss function is selected as
L =

1
2

e2
f (13)

The derivative of the loss function with respect to the output neuron weights can be
obtained by utilizing the chain rule of derivatives.

∂L
∂wi

=
∂L
∂e f
·

∂e f

∂wi
= e f · fi (14)

Finally, the update law of the output weight is

wi(t) = wi(t− λ) + ∆wi(t) = wi(t− λ)− γ
∂L(t)
∂wi(t)

0 ≤ γ ≤
2

3

∑
i=1

f 2
i (t)

3

∑
i=1

f 4
i (t)

(15)

where γ is the learning rate. Obviously, when γ = 0, NAIC will be reduced to a classical
adaptive impedance controller.

Theorem 1. Based on the classical adaptive impedance controller (9), the NAIC is asymptotically
stable with the parameters update law (12)∼(15).

Proof of Theorem 1. In order to stabilize the system with the NAIC, the Lyapunov stability
theorem is used here. The Lyapunov function is defined as

V(t) =
1
2

e2
f (t) (16)

Thus, the change of the Lyapunov function is

∆V(t) = ∆V(t + λ)− ∆V(t) =
1
2
(e2

f (t + λ)− e2
f (t)) (17)

According to the NAIC structure shown in Figure 1, (18) can be obtained by utilizing
Taylor expansion.

∆e f (t) = e f (t + λ)− e f (t) =
3

∑
i=1

∂e f (t)
∂wi(t)

∆wi(t) (18)

From (12), one has

∂e f (t)
∂wi(t)

= fi(t) (19)
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Based on the back-propagation update law (15), we have

∆wi(t) = −γ
∂L

∂wi(t)
= −γe f (t) fi(t) (20)

Substituting (18)∼(20) into (17), yields

∆V(t) =
1
2

[
e f (t + λ) + e f (t)

][
e f (t + λ)− e f (t)

]
=

[
e f (t) +

1
2

∆e f (t)
]

∆e f (t)

= e f (t)
3

∑
i=1

[
− fi(t)γe f (t) fi(t)

]
+

1
2

3

∑
i=1

[
− fi(t)γe f (t) fi(t)

]2

= −γe2
f (t)

3

∑
i=1

f 2
i (t) +

1
2

γ2e2
f (t)

3

∑
i=1

f 4
i (t)

= γe2
f (t)

3

∑
i=1

(
1
2

γ f 4
i (t)− f 2

i (t)
)

(21)

According to the Lyapunov stability theorem, only if ∆V(t) ≤ 0 in any sampling
time t will the stability of the system with NAIC be guaranteed. In (21), γ ≥ 0, e2

f (t) ≥ 0,

and f 2
i (t) ≥ 0. Therefore, one can conclude the sufficient condition for ∆V(t) ≤ 0 is that

learning rate γ satisfies (15).

4. Simulation Studies

In this section, the proposed control algorithm is tested by simulating the tracking
performance with a six degrees of freedom collaborative robot manipulator JK5. The simu-
lation environment is based on open source physics engine MuJoCo. The simulation can
be regarded as a two-phase motion: the first phase is free-space when the robot moves
towards the environment, and the second phase is the robot contact-phase in which the EE
is in contact with the environment.

4.1. Flat Surface Tracking

In this simulation, the environment is set as a flat plane, shown in Figure 2. When
the robot is in contact with the environment, the control objective is force tracking in
the z-direction. The height of the flat surface is set as xenv = 0.08 m. It is easy to
know that ẋenv = ẍenv = 0. In the free-space phase, fext = 0, Md = I ∈ R6, Bd =
diag[500, 500, 40, 500, 500, 500], and Kd = diag[500, 500, 50, 1000, 1000, 1000]. In the contact-
phase, the initial desired contact force is set as fd = 10N, and after 3000 frames the desired
contact force is fd = 20 N. In this phase, initial impedance control parameters are selected
as Md = I, Bd = diag[500, 500, 40, 500, 500, 500], and Kd = diag[100, 100, 0, 1000, 1000, 1000].
When the robot is in contact with the environment, the Z-directional stiffness parameter kd
is set to 0.

In Figure 2, the robot is in contact with the flat surface at t = 0.7 s, and the external
force tries to track the desired force fd = 10 N. When t = 3 s, the desired force suddenly
changes to 20 N. Simulation results show that both NAIC and AIC can track the desired
force, but NAIC converges faster and with less oscillation than AIC.

Consider a case of environmental variable impedance: assume that the stiffness in the
plane is variable. By abruptly changing the surface stiffness ke (N/m) as (22), simulation
results are shown in Figure 3.

ke =


2000, 0 ≤ t < 2
5000, 2 ≤ t < 4
2000, 4 ≤ t < 5

(22)
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Figure 3 illustrates that in the case of unknown environment stiffness, NAIC still ex-
hibits excellent performance compared to AIC if the environment stiffness changes abruptly.
When t = 2 s, the surface stiffness suddenly changes from 2000 N/m to 5000 N/m, and the
NAIC quickly converges to the expected force, whereas the AIC oscillates substantially for
some time.

(a) Flat surface scene (b) Z-direction damping parameter bz

(c) EE position (d) Contact force

Figure 2. Force tracking simulation in flat surface. (a) Simulation scene. (b) Adaptive effect of
damping parameters in the Z-direction. (c) The legend Desired means the environment position,
which is 0.08 m. (d) Force tracking result. When t = 3 s, the desired force suddenly changes to
fd = 20 N, and the error between EE position and surface height increases.

(a) EE position (b) Contact force

Figure 3. Force tracking with changing environment stiffness. (a) Z position. (b) Contact force
tracking. At t = 2 s, the flat surface stiffness increases, and the error between the robot and the
surface position is reduced to track the desired force.
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4.2. Slope Surface Tracking

Another simulation was carried out for the slope-shaped environment, as shown in
Figure 4a. Compared with flat surface simulation, ẋenv 6= 0 m/s and ẍenv = 0 m/s2 when
the robot is in contact with the environment. The desired force is set to 10 N, and the initial
damping parameter in the Z-direction is 40 N·s/m for both NAIC and AIC.

(a) Slope surface scene (b) Z-direction damping parameter bz

(c) EE position (d) Contact force

Figure 4. Force tracking with the slope surface. (a) Simulation scene. (b) Adaptive effect of damping
parameters in the Z-direction. (c) The legend Desired means the environment position. (d) Force
tracking result. When t = 0.621 s, the robot is in contact with the slope surface at Z = 0.124 m.

Simulation results in Figure 4b–d illustrate that the robot is in contact with the en-
vironment at Z = 0.124 m since t = 0.621 s. For both NAIC and AIC, the contact force
successfully tracks the desired force. However, in the contact phase, the damping parameter
is adaptively adjusted under NAIC and allows the contact force to track more quickly and
smoothly than the AIC to the desired force.

5. Experimental Studies

This section uses a real-world collaborative robot JK5 with six rotational joints. The load
of JK5 is 5 kg, and the control frequency is 1 kHz. The rated torque of the first three joints
of JK5 is 27.27 Nm and of the last three joints is 192.39 Nm.

5.1. Friction Compensation

Joint friction compensation must be performed for a real robot arm to have excellent
control results. According to the friction model in (5), the joint friction is a function of
the angular velocity q̇. Equation (1) shows that the gravity torque is related to the joint
position q. In the experiment, the initial position of the robot is zero position. The six joints
of the robot are controlled to move sequentially at different speeds within a certain range.
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The velocity, joint angle, and the corresponding torque of each joint are measured. The joint
friction moments can be obtained by subtracting the gravity torque from the measured
torque. Taking the sixth joint as an example, the measured velocity and angle are shown
in Figure 5.

(a) Velocity of joint 6 (b) Angle of joint 6

Figure 5. This figure shows the measured data of the sixth joint. For clarity, the figure shows the
duration of data acquisition is 216.023 s, starting at 339.765 s and ending at 555.788 s. (a) Measured
velocity (blue line) from the servo driver is noisy, so median filtering (red line) is required. (b) Mea-
sured position from the servo driver. The limitation angle is ±5◦ when |q̇| < 0.02 rad/s, and the
limitation angle is ±10◦ when |q̇| ≥ 0.02 rad/s.

By calculating the mean value of each set of measured velocities and the mean value
of the friction torque, the relationship between them can be plotted, as shown in Figure 6.
The friction is modeled in (5) by uniformly considering the joint speed for both positive
and negative. However, the measured results in Figure 6 show that the friction torque is
related to the positive and negative joint rotation.

According to the friction model (5) and measured data in Figure 6, the identified
parameters are listed in Table 1. In Table 1, the symbols + and - indicate the movement of
the joint in the positive (q̇ > 0) and negative (q̇ < 0) directions, respectively. The unit of fai
and fbi is Nm, and the unit of fvi is Ns.

(a) Friction torque of joint 1∼3 (b) Friction torque of joint 4∼6

Figure 6. The relationship between friction torque and joint velocity. The dots represent the measured
data, and the solid lines indicate the identified results.
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Table 1. This table shows the identified results of the six joints’ friction parameters in (5).

i f+ai f+bi q+si f+vi RMSE+ f−ai f−bi q−si f−vi RMSE−

1 41.63 17.97 0.2610 30.52 1.259 29.95 16.98 0.2715 5.811 0.8796
2 5.729 5.474 0.0359 22.27 0.2353 2.949 4.469 0.1965 27.48 0.438
3 0.5415 0.6825 0.0049 3.773 0.0721 1.183 1.382 0.004 3.465 0.1905
4 2.254 2.923 0.0660 3.208 0.0439 3.111 3.916 0.036 2.984 0.0714
5 2.63 3.590 0.0069 2.837 0.0899 2.635 2.894 0.010 2.846 0.0636
6 1.97 2.431 0.0170 3.846 0.0608 1.86 2.429 0.018 4.009 0.0649

5.2. Real-World Experiment
5.2.1. Fixed Contact Point Force Tracking

After the identification of joint friction and feedforward compensation, the real-world
experiment with a flat foam surface shown in Figure 7 was conducted to demonstrate the
performance of our method. ATI mini45 is a six-dimensional force/torque sensor and can
acquire data at frequencies up to 7 kHz.

In the experiment, the desired position is the height of the flat foam surface, which is
0.3813 m in the robot base frame. The desired force in the contact phase is set as −10 N.
The robot arm moves from the start point 0.538 m and contacts with the flat foam at
t = 2.826 s. In the contact phase, the robot is controlled by NAIC to track the desired force,
and the result depicts that NAIC works well in this task.

Because the end is a rod rather than a ball [14], the robot will struggle to move in the
x/y direction if the contact force is relatively large.

Foam

JK5

ATI mini45

(a) t = 0 s (b) t = 2.826 s

(c) Measured position in Z-direction (d) Measured force in Z-direction

Figure 7. This figure shows the real-world experiment with the proposed NAIC method: (a) {B}
denotes the robot base frame, and {S} is the force sensor frame; {S} can be obtained by rotating
{B} with 180◦ around the y-axis; (a,b) demonstrate the motion of the robot. (c,d) are the measured
Z-direction position and contact force, respectively.
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5.2.2. Force Tracking under an Unknown Environment

In this experiment, the environment consists of an acrylic plate and foam (see Figure 8a).
It is obvious that the stiffness of the two materials is different. Therefore, this experimental
setup can be used to simulate the interaction between the robot and the unknown environment.

Acrylic plate

JK5

ATI mini45

Foam

(a) t = 0 s (b) t = 3.327 s

(c) t = 4.756 s (d) t = 7.0 s

(e) Measured position in Z-direction (f) Measured force in Z-direction

Figure 8. This figure shows the force tracking under unknown environment with the proposed NAIC
method: (a–d) are the motion of the robot; (e) depicts the measured position of EE in Z-direction;
(f) illustrates the force tracking result. The contact position in the Z-direction is 0.3648 m, and the
desired force is −3 N.

As shown in Figure 8b, the robot is in contact with the hard acrylic plate with greater
stiffness at t = 3.327 s, and a sudden impact is produced. The contact force converges to
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the desired force −3 N before t = 4.756 s. In Figure 8c, the robot moves to the soft foam
plate with smaller stiffness. Due to a sudden change in environmental stiffness, the contact
force also undergoes a sudden change. Subsequently, the contact force tracks the desired
force well under the action of NAIC, as shown in Figure 8f.

6. Conclusions

In this study, a new kind of adaptive impedance control is presented. The neural
network is embedded into the classical adaptive impedance controller to optimize the
parameters directly. Consistent with previous studies of adaptive impedance control law,
NAIC can also track the contact force under an unknown environment. However, it must
be pointed out that our method can explicitly adjust the impedance parameters online.
NAIC can be deployed directly without data collection and training. Simulation proved
that the parameter of the NAIC was updated online in the contact phase. NAIC is excellent
for tracking the desired force with a sudden change and works better than AIC when the
environment stiffness is abruptly changed. Due to friction feedforward compensation,
real-world experiments can also achieve the desired force tracking. In subsequent work,
we will consider the possibility of migrating the method to other network architectures.
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