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Abstract: Today’s wireless activity recognition research still needs to be practical, mainly due to
the limited sensing range and weak through-wall effect of the current wireless activity recognition
based on Wi-Fi, RFID (Radio Frequency Identification, RFID), etc. Although some recent research has
demonstrated that LoRa can be used for long-range and wide-range wireless sensing, no pertinent
studies have been conducted on LoRa-based wireless activity recognition. This paper proposes
applying long-range LoRa wireless communication technology to contactless wide-range wireless
activity recognition. We propose LoRa and deep learning for contactless indoor activity recognition
for the first time and propose a more lightweight improved TPN (Transformation Prediction Network,
TPN) backbone network. At the same time, using only two features of the LoRa signal amplitude and
phase as the input of the model, the experimental results demonstrate that the effect is better than
using the original signal directly. The recognition accuracy reaches 97%, which also demonstrate that
the LoRa wireless communication technology can be used for wide-range activity recognition, and
the recognition accuracy can meet the needs of engineering applications.

Keywords: wireless activity recognition; sense distance; LoRa; contactless; TPN

1. Introduction

With the large-scale application of IoT technology, numerous wireless signals have
been explored for contactless sensing in recent years, and wireless recognition has at-
tracted much attention. Wireless activity recognition does not depend on specific hardware.
The existing wireless radio frequency signal can achieve contactless user activity recog-
nition, which is conducive to large-scale deployment and effectively avoids personal
privacy leakage.

There has been extensive research based on wireless recognition. Some researchers
have researched sleep sound recognition and breath detection based on RFID (Radio
Frequency Identification, RFID) [1–3]. Wi-Fi technology is a widely used LAN wireless
communication technology with an extensive user base. Most current research based
on Wi-Fi wireless signals uses CSI (Channel Statement Information, CSI) data [4]. The
leading applications are breath detection, multi-person tracking, and finger trajectory
tracking [5–12]. FMCW (Frequency-modulated continuous-wave, FMCW) radar has the
advantages of easy implementation, simple structure, and low cost. It has been widely
used in both civil and military fields, and some researchers have proposed breath detection
and motion tracking based on the FMCW radar [13,14]. The above RFID technologies
require tags to be deployed in the environment when used and are not suitable for activity
recognition in the home environment. Wireless sensing technologies based on Wi-Fi signals
have problems such as poor wall penetration ability and occupy communication resources.
At the same time, the high hardware cost of FMCW is not particularly suitable for activity
recognition in the home environment. More importantly, all the above wireless sensing
technologies have a limited sensing distance (as shown in Table 1).
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Table 1. Several common wireless protocol parameters.

Wireless Protocol Sensing Range Deployment The Effect of
Through-Wall

RFID [15] 4 m General General
Wi-Fi [16] 3.7 m Easy Bad

FMCW radar [17] 8 m Easy Bad
LoRa [18] 25 m Easy Great

LoRa is a long-range communication technology based on CSS (Chirp Spread Spec-
trum, CSS) modulation, which extends the range of the traditional wireless RF communica-
tion by 3–5 times with the same power consumption (as shown in Table 1). Furthermore,
the existing wireless sensing solutions require at least one of the transceivers to be close
to the target, which may not be feasible in specific scenarios. LoRa is a long-range com-
munication technology based on CSS (Chirp Spread Spectrum, CSS) modulation, which
extends the range of traditional wireless RF communication by 3–5 times with the same
power consumption.

In this paper, we propose to solve the problems of short sensing distance and poor wall
penetration of current wireless activity recognition by LoRa’s reasonable sensing distance
and wall penetration ability to increase the ubiquity of wireless activity recognition. We
analyzed the LoRa signal reflected from the target, as shown in Figure 1: the amplitude
signals of both walking and picking activities, the closer the target is to the signal transceiver,
the higher the amplitude of the received signal; the faster the activity speed, the higher
the frequency of the received signal amplitude. These different waveforms allow us to
extract information about the activity characteristics from the signal at the receiving end.
This experiment builds a LoRa-based wireless activity recognition test environment and
establishes data samples for six activities, including standing, walking, jogging, squatting,
picking, and emptying. According to the previous work [18], two receiver antennas are
set up in this experiment to eliminate the effect of the baseband signal by the ratio of the
received data from the two antennas.

(a) Walk (b) Pickup

Figure 1. Amplitude of walk and pickup activity.

Neural networks are widely used in activity recognition research [19–21]; however,
most of the neural networks used are deep, complex, and computationally intensive. More-
over, their large model sizes and complex structures implemented in devices with limited
hardware resources are challenging. Furthermore, for most of the temporal classification
problems using LSTM (Long Short-Term Memory, LSTM) networks [22], the parallelism
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of LSTM is less effective, and the model is time-consuming. Therefore, for the study
of wireless activity recognition, there is a need to develop highly accurate models with
lightweight architecture and reasonable computational costs. At the same time, LoRa is an
edge device with associated resource constraints; LoRa activity recognition requires a more
lightweight model. In this paper, we propose to use the TPN [23] backbone network for
activity recognition. The TPN backbone network has a simple structure and good scalability,
which is suitable for applications in the field of activity recognition. Moreover, we use
only two features, amplitude and phase, as inputs to the model. For the characteristics of
long length and high spatio-temporal correlation of the LoRa activity data, we introduce
the ECA-Net (Efficient Channel Attention, ECA) [24] attention module to improve the
TPN backbone network. The attention mechanism module avoids degradation and allows
for cross-channel interaction. In contrast, the module structure is lightweight, ensuring
the original efficiency of the TPN backbone network while also improving the overall
network effectiveness.

To verify the effectiveness of the proposed improved TPN (Transformation Prediction
Network, TPN) backbone network, we conduct the training validation on deep learning
models such as GRU (Gate Recurrent Unit, GRU), LSTM, and several standard machine
learning models (KNN, SVM, and Decision Tree). The experimental results demonstrate
that the test accuracy of the proposed improved TPN backbone network reaches 97%.
Furthermore, the comparison experiments also verify that the proposed method outper-
forms deep learning models such as GRU, LSTM, and traditional machine learning models.
The proposed method indicates that the LoRa wireless communication technology can be
used for wide-range activity recognition, and that the recognition accuracy can meet the
requirements of engineering applications.

We summarize the main works of this paper as follows:

1. This is the first time that loRa and deep learning are used to achieve contactless
indoor activity recognition, and a more lightweight and improved version of the TPN
backbone network model is proposed;

2. We propose to use two features of the LoRa signal, amplitude and phase, as the inputs
of the model, and experimentally find that it works better than using the original
signal directly, and the recognition accuracy reaches 97%.

2. Related Work

The related work in wireless activity recognition can be divided into two main cate-
gories: Radar-based activity recognition, and RF signal-based activity recognition.

Radar-based activity recognition: Ultra-wideband (UWB) pulse radar. UWB pulse
radar works by first sending a train of pulses in the direction of the target, after which the
received signal can be observed in the frequency domain. Ref. [25] investigate using the
ultra-wideband (UWB) Doppler radar in order to identify the daily life activities in smart
homes. However, the enormous bandwidth of UWB raises the hardware requirements and
system complexity. Frequency-modulated continuous-wave (FMCW) radar. FMCW radar
radiates continuous transmission power but linearly increases the operating frequency of
the transmitted signal during the measurement within a wide bandwidth. By comparing
the frequency of the received signal bounced off the human body to the transmission
signal, the FMCW radar can directly measure the distance of the reflection body from
the device. Ref. [26] detected fall events using micro-Doppler signatures exploiting the
frequency-modulated continuous-wave (FMCW) radar. However, FMCW hardware costs
are typically much higher, making these solutions less practical for everyday home use.

RF signal-based activity recognition: Wi-Fi has a large user base, easy deployment,
and cheap hardware. Ref. [6] develop a device-free fitness assistant system for home/office
scenarios by utilizing the existing Wi-Fi infrastructure without active user participation.
The system can differentiate individuals to enable personalized fitness assistance with
comprehensive workout analysis and competent workout assessment. Ref. [7] develop
a CSI-ratio model that establishes the relationship between human movement and CSI



Electronics 2023, 12, 629 4 of 18

ratio changes, laying the foundation to guide fine-grained sensing. Ref. [8] propose a
precise sensing boundary determination method called WiBorder, which takes advantage
of common walls in our daily lives. Moreover, [9] achieve multi-person breath perception.
Most current studies on Wi-Fi mainly use CSI data [5–9] as the input to the model. However,
the Wi-Fi signal penetration is poor, and long-distance wireless activity recognition is
easily affected by obstacle occlusion. RFID technology has the characteristics of openness,
easy recognition, and good scalability. Ref. [1] presents a non-intrusive automatic user
identification and authentication system through human motions captured from their daily
activities based on RFID. Ref. [2] propose the concept of the two-layer sensing based on
RFID that employs respiration sensing information as the basic first-layer information,
which is applied to obtain a further rich second-layer sensing information, including a snore,
cough and somniloquy. Lungtrack [3] uses multiple RFID tags to solve the possible ’dead
zone’ problem of Wi-Fi-based breath sensing and can detect two people simultaneously.
However, the deployment of electronic tags is inconvenient, and the perception range
needs to be more significant.

An effective sensing range, deployment difficulty, and signal penetration through
walls are essential for measuring wireless sensing systems. LoRa has an outstanding
sensing range and wall penetration, easy deployment, and inexpensive hardware, and it
is widely used in long-range IoT communication. For example, Michele Luvisotto et al.
applied LoRa to indoor industrial monitoring [27] by setting up multiple nodes indoors
to form a LoRa signal communication-based network to monitor indoor scenes. Ref. [28]
successfully demonstrates the advantages of LoRa for pipeline monitoring applications.
Ref. [29] presents an innovative, power-efficient, and highly scalable IoT agricultural
system based on the LoRaWAN network for long range and low power consumption data
transmission from the sensor nodes to the cloud services. Ref. [30] deal with the LoRa-based
application performance in outdoor scenarios; they implemented a module to study the
performance of a LoRa-based IoT network in a typical urban scenario. The simulation
results demonstrate that a LoRa network can scale well, achieving packet success rates
above 95% in the presence of end devices in the order of 104.

Moreover, Ref. [31] aims to study the usability of the Long Range (LoRa) Wide Area
Network (LoRaWAN) protocol in the context of vehicular networks. In addition, the results
demonstrate the robustness of LoRaWAN in case of the transmissions taking place in mo-
tion, with limited signal degradation in the case of the highest speed values. LoRa enables
low-power and long-range, with a wide-area sensing without the need for tags. Some
experimental work has demonstrated that LoRa can be applied to wireless sensing [18,32].
In summary, we propose wireless activity recognition based on LoRa signals.

3. Related Theories

LoRa is a low-power local area network wireless communication standard developed
by Semtech, which adopts spread spectrum technology and can rely on the spread spectrum
to obtain a processing gain. The LoRa signal reaches the receiver via multipath propagation
from the transmitter. The active target affects the signal during the propagation, causing
the signal to change accordingly in amplitude, phase, and frequency, providing a scientific
basis for the LoRa wireless activity identification. In the LoRa wireless activity recognition
experimental scenario, the variation of LoRa signals in terms of the amplitude for both
walking and picking activities is shown in Figure 1: It can be observed that the signal
of the walking activity has a more significant variation in amplitude than that of the
picking activity.

LoRa uses the chirped spread spectrum (CSS) modulation, also called linear frequency
modulation (LFM). In one cycle, the frequency of the signal increases linearly with time,
and the signal can be expressed as follows:

f = fc + kt (1)
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where fc represents the carrier frequency, k represents the rate of change of linear FM,
k = B/T, B is the sweep bandwidth, and T is the time of one sweep cycle. The complex
frequency domain expression for the LFM (linear frequency modulation, LFM) signal is
as follows:

S(t) = exp
{

j2π fct + jπkt2
}

(2)

The wireless signal goes from the transmitter to the receiver through N different paths
(both direct paths and multiple reflected paths from surrounding objects). Assuming that
the propagation delay of the nth path is τn(t), the signal received by a single antenna can
be expressed as follows [15]:

Rx
′
(t) = ej(πkt2+θc+θs)

N

∑
n=1

an(t)e−j2π fcτn(t) (3)

where fc is the center frequency, an(t) represents the attenuation coefficient of the nth
path, τn(t) is the time delay of the nth path, θc represents the carrier frequency offset of
the signal, θs represents the sampling frequency offset of the signal, and e−j2π fcτn(t) is
the phase change of the nth path. According to the above analysis, the term ej(πkt2+θc+θs)

in Equation (3) represents the amount of signal variation caused by the baseband signal.
The term ∑N

n=1 an(t)e−j2π fcτn(t) represents the amount of signal variation caused by the
multipath signal. Therefore, the multipath signal can be further divided into two compo-
nents, the static path and dynamic path, with Hs = ∑i∈Ps aie−j2π fcτi(t) denoting the static
component; the dynamic component consists of reflections caused by moving objects, and
is denoted by Hd = a(t)e−j2π fcτ(t).

The dynamic signal component can quantitatively analyze the effect of human activity
on the wireless RF signal, and in this paper, referring to the method proposed in the
literature [32], the signal ratio of the two receiving antennas can be eliminated from the
baseband signal. The expression of the signal ratio is as follows:

SR(t) =
Rx1(t)
Rx2(t)

=
Hs1 + a1(t)e−j 2πd(t)

λ

Hs2 + a2(t)e−j 2π(d(t)+∆s)
λ

(4)

where Rx1(t) and Rx2(t) represent the signals on the two received antennas, respectively.
Hs1 and Hs2 represent the static components of the two received signals, respectively. a1(t)
and a2(t) are the attenuation coefficients of the dynamic components in the signals of the
two antennas; ∆s is the distance between the two receiving antennas and is much smaller
than the signal path length d(t).

It is discovered that the dynamic path modification’s effect on the phase change

of the signal’s dynamic component can be described as η = e−j 2πd(t)
λ . Let a = a1(t),

b = a2(t)e−j 2π∆s
λ ; then, the signal at the final receiving end can be expressed as follows:

SR(η) =
Hs1 + aη

Hs2 + bη
(5)

From Equation (5), it can be observed that the signal ratio is a fractional linear trans-
formation of the original signal about η. The data obtained by the signal ratio eliminates
the effect of the baseband.

4. Methods

The proposed LoRa and deep learning based activity recognition framework is shown
in Figure 2: it contains a data acquisition module, a data processing module, a feature ex-
traction module, and an activity classification module. The received data first goes through
the data processing module to remove any particular noise. Finally, the classification
module will identify all the different activity data to obtain the final result.
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Figure 2. The proposed LoRa and deep learning-based activity recognition framework.

4.1. Data Pre-Processing and Feature Extraction

As an example, the signal amplitude received by the two receiving antennas is shown
in Figure 3. Dual receiving antennas and transmitting antennas are placed parallel in the
same direction. One antenna receives a stronger signal strength than the other, and the
signal amplitude received by antenna A in the figure is significantly more potent than that
of antenna B.

(a) RXA Received data (b) RXB Received data

Figure 3. The signal amplitude received by the two receiving antennas.

The effect of the background noise is reduced by the method described in Section 2
of this paper. After obtaining the signal ratio for the two received antenna signals shown
in Figure 4, the results are shown in Figure 4, where it can be observed that most of the
background noise has been eliminated and the active body waveform is visible.

For the improved TPN backbone network proposed in this paper, we want to use as
few feature sizes as possible to achieve higher model accuracy. We compared two common
signal characteristics and data statistics (raw data, amplitude, phase, mean absolute devia-
tion, variance, and first-order difference) as inputs to the improved TPN backbone network.
As in Table 2, the highest model accuracy is achieved when the features are only amplitude
and phase. The precision represents the precision of the improved TPN backbone network.
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Figure 4. The signal ratio of the two receiving antennas.

Table 2. Recognition effects of different features and statistics.

Raw Data Amplitude Phase
Mean

Absolute
Deviation

Variance Frst-Order
Difference Precision

X 0.92
X 0.89

X 0.92
X 0.55

X 0.51
X 0.89

X X 0.94
X X 0.86
X X 0.92
X X 0.93
X X 0.91

! ! 0.97
X X 0.90
X X 0.91
X X 0.91

X X 0.94
X X 0.91
X X 0.91

X X 0.64
X X 0.85

X X 0.88

Unlike most end-to-end deep learning methods that use raw data processing directly,
this experiment extracts the amplitude and phase of the LoRa signal as the input to the
model. The amplitude and phase features are extracted for the signal shown in Figure 4,
and the results are shown in Figure 5a.
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(a) Magnitude and phase before filtering (b) Magnitude and phase after filtering

Figure 5. Waveforms of data before and after filtering of amplitude and phase.

To further remove the noise from the data, the S-G filter (Savitzky-Golay Filter) was
used to perform a smoothing filtering operation on the data with the background effects
removed. The filtered data are shown in Figure 5b. As can be observed in the figure,
the signal is more apparent in Figure 5b compared to Figure 5a. According to Nyquist’s
sampling theorem, the signal can be restored without distortion when the sampling fre-
quency equals twice the baseband signal frequency. However, the human motion frequency
is around 0.1 Hz to 0.33 Hz, which is much lower than the signal frequency; thus, the
sampling frequency can take a smaller value to reduce the amount of data when obtaining
the waveform of human activity on the wireless signal. Based on the previous work [18,32],
we set the sampling rate to 900 kHz, considering the amount of data to be processed. In
addition, the experiments are configured with a Head file data length of 5 × 106 data points,
with 2 × 5 × 106 data points for one sample from both amplitude and phase dimensions. To
make the sample signal waveform smoother and also to improve the training efficiency of
the model, the data is compressed into the form of 2500 × 2 by finding the mean value once
for every 2000 data points; thus, the format of the data is the number of samples × data
points × the number of features.

Figure 6 is a plot of the data waveform after averaging every 2000 points. After a
series of processing, the active signal data is much smoother, removing most of the noise
while retaining the characteristic waveform of the activity.

4.2. The Proposed Classification Deep Learning Module

Most temporal classification tasks use LSTM models [33], but even after a series of
operations such as data smoothing and filtering, our data length is still up to 2500. LSTM is
still unsuitable for processing data with such a long data length. It also has a poor parallel
effect, meaning the calculation will be relatively time-consuming if the network is deep.
LoRa is an edge device with limited CPU, memory, and other related resources. The high
complexity model is unsuitable for LoRa-based activity recognition research, and LoRa
activity recognition needs a more lightweight model.

We propose to use the TPN backbone network as an activity classification model. TPN
backbone network has a lightweight structure and has achieved good results in many
current sensor-based activity recognition studies [22,23,34]. As illustrated in Figure 7, The
TPN backbone network starts with three identical structures containing a 1D convolutional
layer and a ReLU, followed by a dropout layer. The Global max pooling layer is the next,
followed by the fully connected layer for classification.
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Figure 6. The data waveform after averaging the filtered signals of amplitude and phase.

Figure 7. TPN backbone network structure.

In order to better utilize the feature information of LoRa signals at spatial and temporal
scales and combine the characteristics of the TPN backbone networks, we introduce the
ECA-Net (Efficient Channel Attention, ECA) [24] attention module. Given the aggregated
features obtained by global average pooling, ECA generates channel weights by performing
a fast 1D convolution of size k, where k is adaptively determined via a mapping of the
channel dimension C. Furthermore, a sigmoid activation function is used after the one-
dimensional convolutional layer. We insert ECA-Net after the last convolutional structure
of the TPN backbone network as a way to improve the stability of the TPN backbone
network. ECA-Net can avoid data degradation, enable cross-channel interaction, and have
a lightweight structure, ensuring the original efficiency of the TPN backbone network while
improving the overall network effectiveness.

As shown in Figure 8, the improved TPN backbone network contains three 1D convo-
lutional layers consisting of 16, 32, and 64 feature maps with kernel sizes of 48, 32, and 16,
respectively, and has a stride of 1. Dropout is used after each of the layers with a rate of
0.1. ECA-Net is inserted after three 1D convolutional layers, with global average pooling
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followed by a fast 1D convolution layer consisting of one feature map with a kernel size of
k, where k is adaptively determined via a mapping of channel dimension C. Moreover, a
sigmoid activation function is used after the one-dimensional convolutional layer. Global
max pooling is used after the ECA-Net to aggregate high-level discriminative features.
Moreover, the output layer comprises a fully-connected layer of 64 hidden units followed
by normalization with an std of 0.01 for classification. We use ReLU as non-linearity in all
the convolutional layers (except the output and ECA-Net) and train a network with the
Adam optimizer [23] for a maximum of 500 epochs, with a learning rate of 0.0003 unless
stated otherwise. All model parameters were based on the TPN backbone network and
obtained by experimental tuning.

Figure 8. The improved TPN backbone network structure.

5. Experiment

This section first introduces the software environment and hardware environment of
the experiment, the data acquisition process and data set of this experiment, conducts the
experiment, and evaluates the results according to different situations.

5.1. Experimental Environment

The main equipment of the LoRa wireless signal transceiver experimental platform is
shown in Figure 9, which contains a signal transmitter, a signal receiver, and a back-end pro-
cessing computer. The signal transmitter is composed of the Arduino Uno R3 [35], SX1276
LoRa node and a one directional transmitting antenna; the signal receiver is composed
of USRP (Universal Software Radio Peripheral) B210 [36] and two directional receiving
antennas; the signal receiver is connected to the back-end processing computer and runs
Gnuradio [37] software on the computer to receive data from USRP.

The LoRa modulation employs different types of physical layer packets, with different
lengths in time, parametrized by the so-called Spreading Factor (SF), which can take values
SF from 7 to 12. The higher the SF, the longer the packet will last, and its reception will
be more reliable. The coding rate (CR) is the percentage of the applicable information
portion of the data stream after the sampling, quantization, and coding of the analog
signal is completed. The LoRa device in this experiment set SF to 7 and CR to 4/5 by
default. According to the LoRaWan protocol, the number of channels in the frequency
band of 915 MHz with a bandwidth of 125 kHz is 64, and due to the legal requirements
in China, the duty cycle of the band needs to be <1%, so we take a duty cycle of 1%. Due
to the operating characteristics of LoRa, it is suitable for applications that do not require
continuous packet transmission or harsh environments and cannot cover mobile signals.
Since our experiments do not need to focus on the packet content, our packet content is the
default ’hello’ character, and our LoRa signal transmitter sends packets at an interval of 1 s.
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(a) Arduino Uno R3 (b) LoRa signal transmitter module (c) USRP B210

Figure 9. Experiment apparatus.

The transmitter and receiver antenna are placed as shown in Figure 10b, 80 cm apart
and side by side in the same direction, and two File Sink modules are specified in the
Gnuradio software to save the data received by the two receiver antennas. The signal
transmitter and receiver are configured as follows: the LoRa signal center frequency is set
to 915 MHz, the bandwidth is 125 KHz, the antenna’s band range is 850–960 MHz, and the
gain is 6 dBi.

(a) Experimental layout diagram (b) Equipment site placement diagram

Figure 10. Experimental site layout diagram.

The back-end processing computer receives USRP data through Gnuradio software,
which mainly configures the flow chart of the receiving end and configures parameters
such as sampling frequency, center frequency, signal bandwidth, etc. Figure 11 shows the
configured receiving flow chart.

The hardware configuration for model training, validation, and testing are: Intel Core
i9-10900KF+64RAM; GPU is the NVIDIA GeForce GTX 3090 graphics card; OS ubuntu
20.04.3 LTS; code environment Python 3.8.8 + Cuda 11.2 + Pytorch 1.8.2.

5.2. Data Set

The volunteers for this experiment were eight people aged between 22 and 26 years:
six men and two women. We set up six activity scenarios: standing, walking, jogging,
squatting, picking up, and emptying. All activities were collected and completed in the
same laboratory, and the laboratory layout and experimental equipment deployment are
shown in Figure 10. The test rules for the six activities are as follows: (1) Two activities,
walking and jogging, were tested by volunteers along the path shown by the dotted line
between the two circles in Figure 10a; (2) for the three activities of squatting, picking, and
standing, volunteers stood at the triangular position (4 m from the transmitting antenna)
in Figure 10a for the test.; (3) empty activity is the reference data in the absence of testers.
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Figure 12 shows the waveforms of the wireless signal amplitude and phase data under
different activity scenarios.

Figure 11. Flow chart of the signal received by GnuRadio.

(a) Jogging (b) Walking

(c) Pickup (d) Squat

(e) Stand (f) Empty

Figure 12. Waveforms of amplitude and phase data for different activities.
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The experiment required collecting 2392 data samples, each containing one of the six
specified activities. Table 3 lists the quantity and percentage of each activity in the data set.

Table 3. Data distribution.

Activity Categories Number of Samples Percentage

Stand 399 16.6%
Walking 400 16.7%
Jogging 400 16.7%
Squat 394 16.5%

Pickup 399 16.6%
Empty 400 16.7%

In this experiment, the training set and the test set are divided in the ratio of 8:2 for
the data set during the training process.

5.3. Comparison of Training Effect of Improved TPN Backbone Network with Raw Data and
Feature Extraction Data

We compare the training under two data feature methods: the first uses the I/Q
values of the original signal data as data features, and the second extracts the signal
amplitude and phase from the original signal data as data features. The training results of
the improved TPN backbone network are shown under two different data feature methods
in Figure 13. Atest metrics represent the amplitude and phase as data features, and Btest
metrics represent the I/Q values of the original data as data features.

Figure 13. Training process of raw data and amplitude phase.

It can be observed from Figure 13 that the model training results with amplitude/phase
features are better than those with I/Q features. The information on accuracy, recall, F1-
score, and precision on the test set is shown in Table 4 and Figure 14.
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Figure 14. The main metrics of improved TPN backbone network based on amplitude and phase.

Table 4. The main metrics of improved TPN backbone network based on amplitude and phase.

Activity
Categories Precision Recall Rate F1-Score Support

Jogging 1.00 0.91 0.95 80
Walking 0.92 1.00 0.96 80
Pickup 0.99 0.91 0.95 78
Squat 0.94 0.99 0.96 83
Stand 0.97 0.99 0.98 78
Empty 0.99 1.00 0.99 80

Accuracy 0.97 479

5.4. Comparison of the Training Effect of the Improved TPN Backbone Network with Other Models

To further validate the effectiveness of the proposed improved TPN backbone network.
Deep learning models such as GRU, LSTM, BiLSTM, DeepConvLSTM, and several common
machine learning models, such as KNN, SVM, and decision trees, were also trained and
tested. The accuracy of the deep learning and machine learning models on the test set for
this experimental comparison is shown in Table 5. Moreover, the primary metrics of the
comparative experimental model are shown in Figure 15. The activity recognition results
of the improved TPN backbone network were optimal. Moreover, the accuracy values of
the improved TPN backbone network and TPN backbone network were more outstanding
than 0.95 in the activity recognition process, indicating a good classification performance
for all six activities. Furthermore, the activity recognition accuracy of the improved TPN
backbone network reaches 0.97, which has higher activity recognition accuracy than the
TPN backbone network and shows fewer volatility results than the TPN backbone network
in multiple experiments. It demonstrates that the improved TPN backbone network has a
better classification performance.
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(a) KNN (b) SVM

(c) Decision Tree (d) LSTM

(e) BiLSTM (f) GRU

(g) DeepConvLSTM (h) TPN Backbone Network

Figure 15. Main metrics of the experimental model.
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Table 5. Activity classification precision of all experimental models.

Models Precision

KNN 0.70
SVM 0.61

Decision Tree 0.63
LSTM 0.41

BiLSTM 0.54
GRU 0.94

DeepConvLSTM 0.60
TPN Backbone Network 0.95

TPN-ECA 0.97

Relative to the comparison model in this experiment, the improved TPN backbone
network adds an ECA attention module based on the TPN backbone network, improving
activity recognition accuracy while safeguarding the model’s lightweight characteristics.
The accuracies of the above 9 models on the test set are shown in Table 5. Among them, the
improved TPN backbone network gave the best results, achieving 97% test accuracy.

6. Conclusions

In this paper, we have fruitfully explored LoRa wireless activity recognition. We
build a LoRa wireless activity test environment and propose a lightweight and improved
TPN backbone network suitable for LoRa devices. Unlike most direct use of raw data as
the model’s input, we propose using the amplitude and phase as the model’s input to
improve the recognition effect without increasing the data complexity. A total of 2392 data
samples collected for six activities were trained and validated. The test accuracy reached
97%, which is significantly better than the effect of traditional machine learning and deep
learning models such as GRU. In the future, we will continue to expand the LoRa wireless
activity recognition to scenarios where multiple people coexist and study the recognition
of different people’s activities.
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