
Citation: Bureneva, O.; Mironov, S.

Fast FPGA-Based Multipliers by

Constant for Digital Signal

Processing Systems. Electronics 2023,

12, 605. https://doi.org/10.3390/

electronics12030605

Academic Editors: Chiper Doru

Florin and Constantin Paleologu

Received: 28 December 2022

Revised: 23 January 2023

Accepted: 24 January 2023

Published: 26 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Fast FPGA-Based Multipliers by Constant for Digital Signal
Processing Systems
Olga Bureneva * and Sergey Mironov

Department of Computer Science and Engineering, Saint Petersburg Electrotechnical University “LETI”,
Saint Petersburg 197022, Russia
* Correspondence: oibureneva@etu.ru

Abstract: Traditionally, the usual multipliers are used to multiply signals by a constant, but multipli-
cation by a constant can be considered as a special operation requiring the development of specialized
multipliers. Different methods are being developed to accelerate multiplications. A large list of
methods implement multiplication on a group of bits. The most known one is Booth’s algorithm,
which implements two-digit multiplication. We propose a modification of the algorithm for the
multiplication by three digits at the same time. This solution reduces the number of partial products
and accelerates the operation of the multiplier. The paper presents the results of a comparative
analysis of the characteristics of Booth’s algorithm and the proposed algorithm. Additionally, a
comparison with built-in FPGA multipliers is illustrated.

Keywords: fast multiplier; efficient implementation of multiplication; multiplication by constant;
multiplication by group of bits; booth algorithm; FPGA multipliers

1. Introduction

Traditionally, multimedia applications require high data processing speed due to
the need to process the large amounts of data in real time. The performance of digital
filters, windowing and Fourier transform blocks, and other arithmetic processors is mainly
determined by the speed of the multipliers; so, the development of high-speed multipliers
is relevant [1–3]. The situation is similar when implementing the convolutional neural
networks; the number of multipliers on each layer can be very large [4–7]. The hard-
ware implementation of signal processing systems for many applications is based on the
Field-Programmable Gate Array (FPGA). FPGA architecture allows for the continuous
processing of input data due to the maximum parallelization of the calculations. FPGAs
have embedded hardware multipliers, but multiplication can also be implemented using
the logic cells. In some cases, the use of the logical cells is preferable. This is because the
number of multipliers in an FPGA is limited, and their location and digit capacity are fixed.
Moreover, the logic cells of modern FPGAs have an improved architecture which increases
the performance of the arithmetic circuits [8].

To increase the multiplication speed, various algorithmic methods have been devel-
oped. The first group of methods is based on decreasing the number of partial products
by processing several digits of a multiplier simultaneously. These methods are based on
Booth’s algorithm [9], which performs multiplication by two digits at once, halving the
number of partial products. A modified Booth’s algorithm [10] is also used. It reduces the
number of partial products by less than half but does not require any preliminary operations
to compute the partial products. Subsequent modifications of Booth’s multipliers dealt with
improving accuracy [11,12], minimizing the complexity of the design [13], and accelerating
the operation [13–15]. There are also known extensions of Booth’s algorithm to perform
more complex operations, such as the multiplication of three arguments [16,17]. The second
group of multiplication optimization methods is related to paralleling the summation of
partial products because the classical methods of summation (iterative and linear) are slow.
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One of the most effective methods of acceleration is based on the Wallace tree [18], which
implements the addition of different bits of partial products at the same time. Wallace tree
implementations are also constantly being modified to minimize hardware costs [19] and
delays [20–22]. Pipelining is used to improve the performance of multipliers [23]. Often, all
of these methods are used simultaneously [24–26].

The improvement of the time characteristics of multipliers can be achieved by using
tabular methods [27,28]. The choice of a specific optimization method depends on the
hardware implementation technology. For FPGA-based digital design, tabular methods
are most often used [29–31], as well as the methods focused on paralleling computational
operations [32–34]. This makes it possible to obtain simple, fast computational blocks.

Constant coefficient multipliers are a special class of multipliers; these units perform
multiplication by a fixed constant. These multipliers are often found in many signal
processing applications where one of the multiplication arguments is constant. They can
be filter coefficients, window function values, Fourier transform coefficients, and weights
of a neural network. Traditionally the usual multipliers are used for signal multiplication
by a constant, i.e., the multiplication is performed according to the same algorithm as the
multiplication of one signal by another with an unknown value. At the same time, the
constant coefficient multipliers can be optimized to be simpler and faster than the general
purpose multipliers.

The configurable logic blocks of FPGAs designed to implement logic functions consist
of a look-up table (LUT) with 4–6 inputs, depending on the FPGA family, the flip-flops,
and the multiplexers. Due to this structural feature, when implementing arithmetic on an
FPGA it is possible to use table methods based on the different table algorithms. These
are, for example, the constant factor multiplier method based on canonical recoding,
using the special algorithms to find the optimal chains of adders, subtractors, and shift
elements [35]; the constant factor multiplier construction method, using fine-grained FPGA
memory resources and the special table search method [36]; and the method using the
pre-computation of partial products [37].

In our paper, we have integrated different approaches to building the fast multipliers
and evaluated the possibilities and effectiveness of their implementations in FPGA tech-
nologies. This paper is structured as follows. In Section 2, we consider the multiplication
acceleration method based on Booth’s algorithm (multiplication by two digits at a time)
with maximal parallelization of partial product addition. We also propose the modification
of this algorithm by the multiplication by three digits at a time. Section 3 describes the
implementation of the considered methods of multiplying two input binary codes as well
as the input binary code by a constant on the FPGA. The results of the development are
discussed in Section 4, and the conclusion is given in Section 5.

2. Materials and Methods

Analysis of the traditional matrix multiplier shows that the largest delay in the calcula-
tion is caused by the summation of partial products (PPs). Reducing their number reduces
the summation time. Booth’s method of implementing multiplication by groups of bits is
widely spread in practice. The hardware implementation of this method is known both on
the basis of the FPGA and on the application-specific integrated circuit (ASIC) [13,15,23].

2.1. Mathematical Basis of Booth’s Algorithm

Booth’s algorithm can be constructed based on the following reasoning. Suppose it is
necessary to calculate the following product:

P = A ∗ B = A ∗ (b n−12n−1+bn−22n−2+ . . . + b020
)

.
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The implementation of this expression is related to the generation of PPs of the form
A ∗ bi2i for i = 0, 1, . . . , n − 1. The number of such products is equal to the digit of the
multiplier n. Let us convert bi2i as follows:

bi2i = bi2i(2 − 1) = bi2i+1 − 2
2

bi2i = bi2i+1 − 2bi2i−1.

This expression shows how one can reduce the number of PPs by decomposing
the partial product i into the partial products i + 1 and i − 1. Figure 1 illustrates the
decomposition of the even PPs into odd ones.
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The considered approach allows the exclusion of the even (or odd) powers. This will
change the values of the PPs and reduce their number by about half since each even (odd)
bit will be “distributed over the neighboring” bits. This decrease in the PP number will
reduce the time required to perform the summation. To correctly process bit 0 (with power
20), the bit grid should be extended by introducing the summand b−12−1. The remaining
partial products have the following form:

Ri = A∗(−2bi+1 + bi + bi−1)2i, (1)

and the result of the multiplication is described by the following equation:

P = A∗(−2b1 + b0 + b−1)20 + A∗(−2b3 + b2 + b1)22 + A∗(−2b5 + b4 + b3)24 . . .

= A∗
n
2 −1
∑

i=0
(−2b2i+1 + b2i + b2i−1)22i

As the number of the PPs has decreased by about a factor of two, we can talk about
multiplication by two digits simultaneously. Based on the expression in the parentheses
in (1), we can write the table (Table 1) for the partial products for all the combinations
(bi+1, bi, bi−1).

Table 1. Table of operations to form PPs for Booth’s algorithm.

bi+1,bi,bi−1 Code Value Ri/2i Actions to Calculate Ri/2i

000 0 0 Zero out
001 1 A Copy A
010 1 A Copy A
011 2 2A Copy A and shift to the left
100 −2 −2A Copy A, shift it to the left, and convert to an two’s complement code
101 −1 −A Copy A and convert to an two’s complement code
110 −1 −A Copy A and convert to an two’s complement code
111 0 0 Zero out

The considered algorithm can be implemented in the hardware. On the basis of the
multiplicand A, all the possible variants of the partial products that require transformations
(−A, 2A, −2A) should be generated beforehand. Furthermore, depending on the triplets of
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the analyzed digits of multiplier B (bi+1, bi, bi−1), the needed variant of the partial product
is chosen and summed up, taking into account the shift corresponding to the position of
the analyzed triplet.

2.2. Multiplication Algorithm for Three Digits at a Time

We propose to develop the considered Booth’s algorithm by implementing multiplica-
tion for three digits at a time.

2.2.1. Mathematical Basis for the Implementation of Three Digit Multiplication

Suppose it is necessary to calculate the following product:

P = A ∗ B = A ∗ (b n−12n−1+bn−22n−2+ . . . b121+b020
)

.

To determine the method of reducing the number of PPs, let us perform the following
transformations:

P = A ∗ (b n−12n−1+bn−22n−2+ . . . + (2b828 − b828) + b727 + b626 + (2b525 − b525) + b424 + b323 + (2b222

−b222) + b121+b020+b−12−1) (2)

To correctly process bit 0 (with power 20), the bit grid has to be expanded by intro-
ducing the summand b−12−1. The introduction of this summand does not violate the
expression because the zero bit is used for expansion, i.e., b−1 = 0. The brackets in expres-
sion (2) do not change the order of operations but illustrate the representation of each bit
with numbers from the row {2, 5, 8, 11, . . . , 3i–1} for 0 ≤ i ≤ n/3–1. Next, let us perform
the regrouping of the summands. The regrouping is also shown in the parentheses in the
following expression:

P = A ∗ (4b n−12n−1+2bn−22n−2+ . . . + (−4b826 + 2b726 + b626 + b526) + (−4b523 + 2b423 + b323 + b223)
+(−4b220 + 2b120 + b020 + b−12−1))

= A ∗ ((4b n−1 + 2bn−2+bn−3+bn−4
)
2n−3+ . . . + (−4b8 + 2b7 + b6 + b5)26 + (−4b5 + 2b4 + b3 + b2)23

+(−4b2 + b1 + b0 + b−1)20) = A ∗ ∑
3
n
i=0(−4b3i+2 + 2b3i+1+b3i+b3i−1)23i

(3)

According to expression (3), every third bit of the series {0, 3, 6, 9, 12, . . . } is counted
in two adjacent groups. Figure 2 shows this formation of the power sequence in the sum of
the partial products.
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Equation (3) is valid for the case when n is divisible by 3 without a remainder. Other-
wise, it is necessary to supplement the code B with the necessary number of high zero digits.

The proposed approach reduces the number of partial products by a factor of about
three, allowing us to talk about multiplication by three digits simultaneously. This will
reduce the time required to perform summation, as compared to the modified Booth’s
algorithm. The partial products used to calculate the result have the following form:

Ri = A∗(−4b3i+2 + 2b3i+1 + b3i + b3i−1)23i, (4)

Based on the expression in the brackets in formula (4) we compiled the table (Table 2)
for the partial products for all the combinations (bi+2, bi+1, bi, bi−1).
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Table 2. Table of operations to form partial products for multiplication by three digits.

bi+2,bi+1bi,bi−1 Code Value Ri/2i Actions to Calculate Ri/2i

0000 0 0 Zero out

0001 1 A Copy A
0010 1 A

0011 2 2A Copy A and shift to the left
0100 2 2A

0101 3 3A Copy A, move it to the left and add A
0110 3 3A

0111 4 4A Copy A, shift it to the left by two bits

1000 −4 −4A Copy A, shift it to the left by 2 bits and convert it to an two’s
complement code

1001 −3 −3A Copy A, shift it to the left, add A
1010 −3 −3A and convert to an two’s complement code

1011 −2 −2A Copy A, shift it to the left, and
1100 −2 −2A convert to an two’s complement code

1101 −1 −A Copy A
1110 −1 −A and convert to an two’s complement code

1111 0 0 Zero out

High performance of the hardware implementation of the algorithm is achieved by
generating the PPs simultaneously. Based on the multiplicand A, all possible variants of
the PPs that require transformations should be generated beforehand: −4A, −3A, −2A,
−A, 2A, 3A, and 4A. Subsequently, depending on the four analyzed bits of the multiplier B,
the desired variant of the partial product is selected and summarized, taking into account
the shift corresponding to the position of the analyzed four bits, bi+2, bi+1bi, bi−1. The
operation of multiplying the argument A by 3 may present some difficulty. To implement
it, it is proposed to shift the argument A to the left by one position (shifting bits to the left
corresponds to multiplying by 2) and to add A. This combination of simple operations
corresponds to multiplication by 3. The proposed version of the algorithm is focused
on the operations with direct binary codes, i.e., with positive numbers. To multiply the
signed numbers, it is possible to generate a sign digit separately using an XOR operation
for the sign bits of the arguments. If the arguments come in complementary codes, the
considered multiplier can be supplemented by converters from the complementary code to
the direct binary code at the argument’s inputs and by the direct-to-complementary code
converter at the outputs. It is also possible to adapt the proposed algorithm to work with
the complementary codes.

Table 3 shows the work of the algorithm for the multiplication of the two arguments
A = (11001101)2 = (205)10 and B = (10101101)2 = (173)10.

Table 3. Multiplication of two arguments A = (11001101)2 and B = (10101101)2 according to the
proposed algorithm.

Step i bi+2,bi+1bi,bi−1 Ri/2i Ri/2i

1 0 1010 −3A (1101 1001 1001)2 = −(615)10
2 3 1011 −2A (1110 0110 0110) 2 = −(410)10
3 6 0101 3A (0010 0110 0111) 2 = (615)10

P = (1101 1001 1001)2 + (1110 0110 0110) 2 × 8 + (0010 0110 0111) 2 × 64 = (35,465)10 = 205 × 173.

Figure 3 shows a comparison of the proposed algorithm with the traditional multipli-
cation algorithm and Booth’s algorithm for multiplication A × B.
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Figure 3. Example of multiplication of two numbers A = (11001101)2 and B = (10101101)2 using different
algorithms: (a) traditional multiplication algorithm; (b) Booth’s algorithm; (c) proposed algorithm.

Analysis of the example in Figure 3 shows that the number of PPs when multiplying
8-bit arguments for the traditional algorithm is 8; for Booth’s algorithm, it is 4; and for the
proposed algorithm, it is 3. With the increasing of the digit capacity of the arguments, the
difference will grow. For example, for the considered algorithms the number of PPs is 16,
8, and 6, respectively, for the multiplication of 16-bit arguments. Reducing the number of
partial products decreases the number of adders needed.

2.2.2. Hardware Implementation of the Algorithm

Figure 4 shows the architecture of the unit implementing the proposed algorithm for
fast multiplication by three digits at a time.

In this scheme, the multiplicand A arrives at a number of transducers, producing all
possible variants of the partial products: 2A, 3A, 4A, −4A, −3A, −2A, and −A, except for
A itself and zero, because they do not require circuit implementation. The bits of multiplier
B go to the address inputs of the multiplexers to select one or the other variant of the partial
product. The final result is obtained by summing the PPs, taking into account their mutual
arrangement in the bit grid, which is ensured by shifting the partial product to the left by
3i digits, where 0 ≤ i ≤ n/3–1.
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three digits at a time.

3. Designing a Multiplier on the FPGA Basis

To determine the efficiency of the proposed method, we compared its characteristics
with the implementation of the modified Booth’s algorithm, performing multiplication by
two digits at a time, as presented in Section 2.1. We also analyzed the characteristics of the
multipliers with an embedded FPGA multiplier. All the compared variants of the multiplier
per constant were described in the Verilog HDL language; the RTLs were generated for
Cyclone 10 LP chips using Intel® Quartus® Prime. Altera’s ModelSim was used to simulate
the synthesized multipliers. The frequency response analysis of the developed circuits was
performed using the TimeQuest Timing Analyzer (Intel® Quartus® Prime utility). For the
correct timing analysis, we used the test setup shown in Figure 5.
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The proposed architecture is used to determine the Fmax; this frequency is calculated
only for the paths where the source and target registers or ports are controlled by the
same clock.

3.1. Hardware Implementation of the Modified Booth’s Algorithm

To perform the research, the modified Booth’s algorithm was implemented in two
variants: the multiplication of two arguments and the multiplication of an argument by
a constant.

3.1.1. Implementation of Two Binary Code Multiplication

For the investigation, we used a parameterized description of the multiplier, allowing
for a rapid change in its digit capacity. Figure 6 shows the result of compiling the prepared
Verilog HDL description with a bit size of n = 8.
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Prime for n = 8.

The multiplier uses partial product generation modules (modules Gen_3) based on
the three bits of the multiplier. These modules generate PPs according to the rules shown
in Table 1. The summation of the PPs is performed pairwise; three adders are used for the
8-bit multiplier. In the study, we evaluated the change in the maximum frequency of the
module, as well as the required resources of the FPGA Cyclone 10 LP for multiplication as
a function of the digit capacity of the codes to be multiplied. The results are presented in
Table 4.

The table shows the maximum possible frequencies of the multiplier. These frequencies
were calculated using the Slow1 and Slow2 models corresponding to the different operating
parameters (voltage and temperature) considered in the static time analysis. The following
characteristics are used: Slow1—1200 mV, 100 ◦C.; Slow 2—1200 mV, −40 ◦C. The models
are based on determining the lowest speed-up for the different paths; the model is built for
the chip with the worst speed-up. For both models, there is a decreasing trend in frequency
with the minor spikes.
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Table 4. Characteristics of modified Booth’s multiplier for multiplication of two binary codes.

Digit Capacity Fmax, MHz Slow1 Fmax, MHz Slow2 Total Logic Elements Total Combinational
Functions Total Registers

8 126.01 145.65 178 162 32
10 109.9 125.44 268 248 40
12 106.26 123.08 372 348 48
14 85.06 97.89 495 467 56
16 97.76 113.3 629 597 64
18 80.89 93.74 785 749 72
20 74.48 85.61 953 913 80
22 76.76 88.69 1140 1096 88
24 76.04 89.09 1338 1290 96
26 71.85 82.82 1559 1507 104
28 68.57 79.34 1791 1735 112
30 62.23 72.11 2042 1982 120
32 66.58 77.63 2307 2243 128
34 60.24 69.94 2593 2252 136
36 60.88 71.4 2891 2819 144
38 57.39 66.56 3206 3130 152
40 56.75 33.25 3533 3453 160

3.1.2. Implementation of the Constant Coefficient Multiplier

Figure 7 shows the RTL of the 8-bit constant coefficient multiplier (CCM). The FPGA
distributed memory is used to store the constants. The basis of distributed memory is
LUTs; in most FPGA families, they have six inputs and allow for the storage of 64 bits.
This type of memory is quite flexible and supports a variety of data widths, unlike block
memory, where the bit depth of the stored words and their number can take certain values
depending on the type of block memory. The flexibility of distributed memory and its high
speed make it ideal for storing partial products.
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The partial product generation modules (Gen_3) for the CCM are designed using
distributed FPGA memory, which stores the pre-calculated partial products for the constant
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multiplicand. The modules Gen_3 select the partial product from the memory according to
the value of three bits of the multiplier. The maximum frequency Fmax of the multiplier
and the required FPGA resources were analyzed during the study of this module. Table 5
shows the dependence of the analyzed parameters on the digit capacity of the arguments.

Table 5. Characteristics of a combinational multiplier per constant implementing the modified
Booth algorithm.

Digit Capacity Fmax, MHz Slow1 Fmax, MHz Slow2 Total Logic Elements Total Combinational
Functions Total Registers

8 167.22 193.76 52 41 24
10 136 158.5 69 53 30
12 133.4 153.75 87 68 36
14 111.93 129.77 104 80 42
16 114.51 131.49 126 100 48
18 112.6 130.86 144 113 54
20 104.54 122 162 127 60
22 109.84 128.68 180 141 66
24 109.15 128.3 201 159 72
26 99.42 115.46 219 172 78
28 102.45 120.92 240 190 84
30 90.83 106.56 258 203 90
32 95.35 110.27 284 227 96
34 81.43 94.89 303 241 102
36 85.7 99.67 321 254 108
38 81.12 94.63 339 268 114
40 80.39 94.63 360 286 120

Analysis of the RTL multiplier presented in Figure 7 shows that it can be easily
pipelined. Figure 8 illustrates a pipeline implementation of the Booth’s multiplier. The
productivity of the pipeline circuit depends on the number of stages and the ratio of the
combinational and the register parts performance. It tends to the value t/m, where t is the
working time of the original circuit, and m is the number of pipeline steps.
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The increment of the hardware costs to implement the pipeline method of processing
depends on the number of registers entered. The maximum effect is given by the pipelining
of the summing. Although pipelining leads to additional hardware, it speeds up the
multiplication operation by 2–3 times. Table 6 shows the characteristics of the pipelined
constant coefficient of the Booth’s multiplier.

Table 6. Characteristics of the pipelined CCM implementing the modified Booth’s algorithm.

Digit
Capacity

Fmax, MHz
Slow1

Fmax, MHz
Slow2

Total Logic
Elements

Total Combinational
Functions

Total
Registers

Number of
Pipeline Steps

8 306 337.95 61 41 61 3
10 294.5 337.84 86 53 86 4
12 236.46 267.24 106 68 106 4
14 200.28 222.72 128 82 128 4
16 205.47 235.57 151 100 151 4
18 266.06 296.12 185 113 185 5
20 164.04 188.61 205 127 205 5
22 204.58 228.52 227 141 227 5
24 162.18 188.22 250 159 250 5
26 189.21 214.04 281 172 281 5
28 178.95 206.36 308 190 308 5
30 165.78 191.86 323 206 323 5
32 144.07 163.85 349 227 349 5
34 191.17 218.96 405 241 405 6
36 159.54 181.03 429 254 429 6
38 214.36 248.02 442 268 442 6
40 173.73 200.6 479 286 479 6

3.2. Hardware Implementation of the Proposed Algorithm for Multiplying by Three Bits at a Time

The proposed multiplication algorithm for multiplying by three bits at a time has also
been implemented and investigated in two variants: the multiplication of two arguments
and the multiplication of an argument by a constant.

3.2.1. Implementation of Two Binary Code Multiplication

The parameterized description was used to investigate the three-bits-at-a-time multi-
plier (TBTM). The parametrization makes it possible to easily change the digit capacity of
the arguments and to analyze the evolution of the maximum frequency Fmax of the unit and
to estimate the hardware cost of the multiplier implementation. Figure 9 shows the result
of the compiling of the prepared Verilog HDL description for the eight-bit implementation.
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The multiplier uses partial product generation modules (Gen_4) based on the four
analyzed bits of the multiplier. These modules generate PPs for the multiplicand according
to the rules presented in the Table 2. The summation of the three PPs is performed using
two adders.

A comparison of Figures 6 and 9 shows the reduction in the blocks for the formation of
the PPs with some of their complications, as well as the reduction in the number of adders.
The multiplication of the eight-digit arguments requires three PPs and consequently needs
two adders for their addition. The implementation of Booth’s algorithm forms four PPs and
requires three adders. The characteristics of the multiplier realizing the proposed algorithm
for the different argument digit capacities are presented in Table 7.

Table 7. Characteristics of the TBTM of two codes.

Digit Capacity Fmax, MHz Slow1 Fmax, MHz Slow2 Total Logic Elements Total Combinational
Functions Total Registers

8 116.08 131.51 267 251 34
10 106.95 122.91 418 398 42
12 101.48 115.23 466 442 50
14 81.41 93.53 655 627 58
16 84.35 96.72 887 855 66
18 77.23 88.68 943 907 74
20 79.29 90.18 1204 1164 82
22 74.29 85.18 1520 1476 90
24 70.95 81.96 1586 1538 98
26 62.17 71.3 1914 1862 106
28 61.63 71.05 2308 2252 114
30 58.88 67.41 2381 2321 122
32 58.49 67.5 2805 2741 130
34 58.65 67.29 3250 3182 138
36 57 66.19 3333 3261 146
38 56.73 65.68 3834 3758 154
40 54.76 64.13 4351 4271 162

3.2.2. Implementation of the Constant Coefficient Multiplier

Figure 10 shows the RTL of the hardware implementation of the proposed algorithm
that performs multiplication by a constant.

Electronics 2023, 12, 605 13 of 20 
 

 

40 54.76 64.13 4351 4271 162 

3.2.2. Implementation of the Constant Coefficient Multiplier 

Figure 10 shows the RTL of the hardware implementation of the proposed algorithm 

that performs multiplication by a constant. 

 

Figure 10. RTL of the 8-bit hardware implementation of the proposed algorithm that realizes 

multiplication by a constant. 

The Gen_4 modules of the CCM implement a selection of the partial product stored 

in the FPGA’s distributed memory. The address for the selection is generated based on 

the four bits of the multiplier. Table 8 shows the characteristics of the CCM that implement 

the proposed algorithm for the different digit capacities of the arguments.  

Table 8. Characteristics of the CCM, implementing the proposed algorithm of multiplication. 

Digit Capacity Fmax, MHz Slow1 Fmax, MHz Slow2 
Total Logic 

Elements 

Total Combinational 

Functions 
Total Registers 

8 173.58 198.53 44 33 24 

10 169.92 201.49 61 47 30 

12 133.67 154.58 78 60 36 

14 127.28 148.92 90 67 42 

16 124.25 141.12 107 81 48 

18 119.53 137.89 118 87 54 

20 112.57 130.43 138 104 60 

22 117.12 137.34 158 121 66 

24 111.64 128.85 170 128 72 

26 103.61 120.69 189 142 78 

28 100.73 117.45 206 156 84 

30 99.95 116.13 217 162 90 

32 96.64 113.12 237 179 96 

34 94.11 109.46 257 196 102 

36 93.85 109.69 269 203 108 

38 86.08 100.73 289 219 114 

40 87.41 101.77 309 236 120 

4. Discussion 

This paper presents an analysis of several variants of the implementation of the input 

code multipliers by a constant. One is based on Booth’s algorithm, the other implements 

multiplication by three digits at once. The comparison was made for the variant of 

multiplication of two codes and a code by a constant because the implementations of these 

methods on the FPGA basis were different. To ensure a correct comparison, we disabled 

the optimization when compiling in Quartus Prime. This guaranteed that all of the 

elements provided in the Verilog HDL description were preserved. 

Figure 10. RTL of the 8-bit hardware implementation of the proposed algorithm that realizes multi-
plication by a constant.

The Gen_4 modules of the CCM implement a selection of the partial product stored in
the FPGA’s distributed memory. The address for the selection is generated based on the
four bits of the multiplier. Table 8 shows the characteristics of the CCM that implement the
proposed algorithm for the different digit capacities of the arguments.
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Table 8. Characteristics of the CCM, implementing the proposed algorithm of multiplication.

Digit Capacity Fmax, MHz Slow1 Fmax, MHz Slow2 Total Logic Elements Total Combinational
Functions Total Registers

8 173.58 198.53 44 33 24
10 169.92 201.49 61 47 30
12 133.67 154.58 78 60 36
14 127.28 148.92 90 67 42
16 124.25 141.12 107 81 48
18 119.53 137.89 118 87 54
20 112.57 130.43 138 104 60
22 117.12 137.34 158 121 66
24 111.64 128.85 170 128 72
26 103.61 120.69 189 142 78
28 100.73 117.45 206 156 84
30 99.95 116.13 217 162 90
32 96.64 113.12 237 179 96
34 94.11 109.46 257 196 102
36 93.85 109.69 269 203 108
38 86.08 100.73 289 219 114
40 87.41 101.77 309 236 120

4. Discussion

This paper presents an analysis of several variants of the implementation of the input
code multipliers by a constant. One is based on Booth’s algorithm, the other implements
multiplication by three digits at once. The comparison was made for the variant of mul-
tiplication of two codes and a code by a constant because the implementations of these
methods on the FPGA basis were different. To ensure a correct comparison, we disabled the
optimization when compiling in Quartus Prime. This guaranteed that all of the elements
provided in the Verilog HDL description were preserved.

Table 9 integrates the characteristics of the two code multipliers and the constant
code multipliers realized by Booth’s algorithm and by the proposed algorithm for the
multiplication of three digits at once. The table shows the maximum frequency Fmax for
the Slow1 model and the total number of logic elements (LE) used. The results of the Slow2
timing analysis model and the number of combinational functions have the same trends.
The number of registers is constant for all the multipliers because, according to Figure 5,
the registers are used to fix the arguments and results, and their number does not depend
on the realized algorithm.

Table 9. Comparison characteristics of the multipliers.

Digit
Capacity

Booth’s MUL
Fmax, MHz

TBTM
Fmax, MHz

Booth’s CCM
Fmax, MHz

TBT CCM
Fmax, MHz

Total LE for
Booth’s MUL

Total LE
for TBTM

Total LE for
Booth’s
CCM

Total LE
for TBT

CCM

8 126.01 116.08 167.22 173.58 178 267 52 44
10 109.9 106.95 136 169.92 268 418 69 61
12 106.26 101.48 133.4 133.67 372 466 87 78
14 85.06 81.41 111.93 127.28 495 655 104 90
16 97.76 84.35 114.51 124.25 629 887 126 107
18 80.89 77.23 112.6 119.53 785 943 144 118
20 74.48 79.29 104.54 112.57 953 1204 162 138
22 76.76 74.29 109.84 117.12 1140 1520 180 158
24 76.04 70.95 109.15 111.64 1338 1586 201 170
26 71.85 62.17 99.42 103.61 1559 1914 219 189
28 68.57 61.63 102.45 100.73 1791 2308 240 206
30 62.23 58.88 90.83 99.95 2042 2381 258 217
32 66.58 58.49 95.35 96.64 2307 2805 284 237
34 60.24 58.65 81.43 94.11 2593 3250 303 257
36 60.88 57 85.7 93.85 2891 3333 321 269
38 57.39 56.73 81.12 86.08 3206 3834 339 289
40 56.75 54.76 80.39 87.41 3533 4351 360 309
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The analysis of the table shows that the maximum possible frequency Fmax when
realizing the multiplication of two arguments in the Booth’s multiplier (in the column
Booth’s MUL Fmax) is higher than in the three-bit multiplier (in the column TBTM Fmax).
This is due to the fact that for the generation of the PPs in the Booth’s multiplier the
elementary operations—shift, inversion, and increment—are sufficient. The proposed
algorithm requires more time-consuming calculations, such as when calculating the partial
products of 3A and −3A. The situation changes when the input code is multiplied by
a constant. As the PPs are pre-calculated, no complex operations are required and the
maximum possible frequency Fmax in the Booth’s multiplier (in the Booth’s CCM Fmax
column) is lower than the Fmax of the three-bit multiplier (in the TBT CCM Fmax column).
In the hardware cost analysis, the situation is the opposite. The generation of the partial
products during computation requires a lot of FPGA resources. If the precalculated partial
products are stored in the distributed memory, the hardware costs are reduced.

Figure 11 shows the growth of the maximum frequency with the increasing digit
capacity. The comparison was made for two timing models (Slow1 and Slow2); as can be
seen in the figure, the frequency trends are the same.
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Figure 12 shows the dependence of the hardware costs on the multiplier’s digit capacity.
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The analysis shows that the hardware costs increase significantly when the multiplica-
tion of two arguments is implemented; at the same time, there is a minimal increase when
multiplying by a constant. In other words, it is obvious that if multiplication by a constant
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is required, it is necessary to use an appropriate multiplier and not to replace it with a
universal one that multiplies the arguments.

Piping allows the raising of the frequency of the multiplier. Figure 13 illustrates
the frequency change when the multiplier is pipelined. The maximum frequency after
pipelining in the implementation of Booth’s algorithm for some bits exceeds the frequencies
of the device by the proposed algorithm. However, in the proposed algorithm the reducing
of the number of partial products and the corresponding reduction in the adder numbers
leads to a decreasing of the pipeline stages number, as shown in Figure 13b. In most cases,
reducing the number of pipeline steps in the TBT multiplier decreases the time required to
obtain a multiplication result.
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The embedded FPGA multipliers are configured as 9 × 9 or 18 × 18 units. This
explains the nature of the graphs in Figure 14a. Embedded multipliers are fast, and when
multiplying arguments with a digit capacity not greater than 18, they operate at maximum
frequency. This frequency exceeds the frequency of the proposed three-bits-at-a-time
multiplier by about twice. When the multiplier capacity exceeds 18 digits, the frequency
decreases sharply and becomes the same as the frequency of the TBTM. This is due to the
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need of the cascading multiplier and the corresponding complication of the FPGA internal
resources routing. In this case, the number of multipliers required increases dramatically.
As Figure 14b shows, seven embedded multipliers are required to multiply two codes with
a bit capacity of more than 18 bits. This is why there are sharp drops in the maximum
frequency (Figure 14a) at the points corresponding to the digit capacities n = 10 and n = 20.
That is, when cascading fast embedded multipliers, the time characteristics of the multiplier
device fall sharply. Setting up embedded multipliers for multiplication by a constant does
not change the timing characteristics of the resulting unit.

Multiplication operands based on logical cell tables have no limitations in capacity. The
number and location of the built-in multipliers are fixed, while LUT-based multipliers can be
placed anywhere, and their number is limited only by the size of the reconfigurable matrix.

The effectiveness of the proposed approach of multiplication by a constant using a
combination of three-digit multiplication methods with the tabular generation of partial
products can be illustrated by the FIR filter design. We compared three implementations
of a 32nd order lowpass FIR filter with 20-bit coefficients and 20-bit input codes. In the
first version, the filter coefficients were stored in the distributed memory, and the hardware
implementation of the multiplication was not specified. In the Verilog HDL program, the
multiplication operator was used. In the second version, the multiplication by coefficients
was performed using Booth’s CCM. The third version used the developed three-bits-at-a-
time multipliers to multiply by the coefficients. Table 10 shows the hardware cost of the
filter implementation, and Table 11 presents the frequency characteristics of the three FIR
filter variants considered.

Table 10. Comparison of hardware costs of FIR filter implementations.

Resource Filter Based on the Verilog
Multiplication Command Filter Based on Booth’s CCM Filter Based on TBT CCM

Total logic elements 5394 10,562 5055
—Combinational with no register 3194 9 168

—Register only 266 4839 1699
—Combinational with a register 1934 5714 3188

Logic element usage by number
of LUT inputs

—4 input functions 1506 2 0
—3 input functions 3326 5045 2444

—≤2 input functions 296 676 912
—Register only 266 4839 1699

Logic elements by mode
—normal mode 1894 1828 1183

—arithmetic mode 3234 3895 2173
Total registers 2200 10,553 4887

—Dedicated logic registers 2200 10,553 4887
—I/O registers 0 0 0

I/O pins 84 84 84
Embedded Multiplier 9-bit

elements 0 0 0

Table 11. Comparison of the frequency characteristics of FIR filter implementations.

Resource Filter Based on the Verilog
Multiplication Command Filter Based on Booth’s CCM Filter Based on TBT CCM

Slow1 Fmax, MHz 114.35 181.62 242.9
Slow2 Fmax, MHz 129.6 201.34 277.55 (250 *)

* Restriction due to the characteristics of the FPGA chip.
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Analysis of the data in the tables shows that the filter built using the proposed three-
bits-at-a-time multipliers has the best frequency and hardware cost characteristics.

5. Conclusions

In the paper, we proposed an approach to the implementation of multiplication
that performs multiplication by three digits. The rate of the multipliers implementing
multiplication on a group of bits depends on the number of grouped bits and the depth of
the tree realizing the parallel summation of the partial products. Our approach reduces the
number of partial products and the depth of the tree, thus increasing the performance of the
module. The proposed solution reduces the performance difference between the embedded
FPGA multipliers and the multipliers implemented on logical cells. A comparison of the
developed multipliers with Altera’s multiplying library of parameterized modules showed
the advantage of the proposed multiplication by three digits at a time.

The paper can be used by designers of digital circuits to select an optimal method of
multiplier implementation on FPGAs with regard to their design constraints.

Further development of the method of multiplication by a group of digits can be
associated with the creation of algorithms and hardware modules multiplying by four, five,
and more digits at a time.
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