
Citation: Bureneva, O.; Mironov, S.

Fast FPGA-Based Multipliers by

Constant for Digital Signal

Processing Systems. Electronics 2023,

12, 605. https://doi.org/10.3390/

electronics12030605

Academic Editors: Chiper Doru

Florin and Constantin Paleologu

Received: 28 December 2022

Revised: 23 January 2023

Accepted: 24 January 2023

Published: 26 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Fast FPGA-Based Multipliers by Constant for Digital Signal
Processing Systems
Olga Bureneva * and Sergey Mironov

Department of Computer Science and Engineering, Saint Petersburg Electrotechnical University “LETI”,
Saint Petersburg 197022, Russia
* Correspondence: oibureneva@etu.ru

Abstract: Traditionally, the usual multipliers are used to multiply signals by a constant, but multipli-
cation by a constant can be considered as a special operation requiring the development of specialized
multipliers. Different methods are being developed to accelerate multiplications. A large list of
methods implement multiplication on a group of bits. The most known one is Booth’s algorithm,
which implements two-digit multiplication. We propose a modification of the algorithm for the
multiplication by three digits at the same time. This solution reduces the number of partial products
and accelerates the operation of the multiplier. The paper presents the results of a comparative
analysis of the characteristics of Booth’s algorithm and the proposed algorithm. Additionally, a
comparison with built-in FPGA multipliers is illustrated.

Keywords: fast multiplier; efficient implementation of multiplication; multiplication by constant;
multiplication by group of bits; booth algorithm; FPGA multipliers

1. Introduction

Traditionally, multimedia applications require high data processing speed due to
the need to process the large amounts of data in real time. The performance of digital
filters, windowing and Fourier transform blocks, and other arithmetic processors is mainly
determined by the speed of the multipliers; so, the development of high-speed multipliers
is relevant [1–3]. The situation is similar when implementing the convolutional neural
networks; the number of multipliers on each layer can be very large [4–7]. The hard-
ware implementation of signal processing systems for many applications is based on the
Field-Programmable Gate Array (FPGA). FPGA architecture allows for the continuous
processing of input data due to the maximum parallelization of the calculations. FPGAs
have embedded hardware multipliers, but multiplication can also be implemented using
the logic cells. In some cases, the use of the logical cells is preferable. This is because the
number of multipliers in an FPGA is limited, and their location and digit capacity are fixed.
Moreover, the logic cells of modern FPGAs have an improved architecture which increases
the performance of the arithmetic circuits [8].

To increase the multiplication speed, various algorithmic methods have been devel-
oped. The first group of methods is based on decreasing the number of partial products
by processing several digits of a multiplier simultaneously. These methods are based on
Booth’s algorithm [9], which performs multiplication by two digits at once, halving the
number of partial products. A modified Booth’s algorithm [10] is also used. It reduces the
number of partial products by less than half but does not require any preliminary operations
to compute the partial products. Subsequent modifications of Booth’s multipliers dealt with
improving accuracy [11,12], minimizing the complexity of the design [13], and accelerating
the operation [13–15]. There are also known extensions of Booth’s algorithm to perform
more complex operations, such as the multiplication of three arguments [16,17]. The second
group of multiplication optimization methods is related to paralleling the summation of
partial products because the classical methods of summation (iterative and linear) are slow.

Electronics 2023, 12, 605. https://doi.org/10.3390/electronics12030605 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12030605
https://doi.org/10.3390/electronics12030605
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12030605
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12030605?type=check_update&version=2

Electronics 2023, 12, 605 2 of 19

One of the most effective methods of acceleration is based on the Wallace tree [18], which
implements the addition of different bits of partial products at the same time. Wallace tree
implementations are also constantly being modified to minimize hardware costs [19] and
delays [20–22]. Pipelining is used to improve the performance of multipliers [23]. Often, all
of these methods are used simultaneously [24–26].

The improvement of the time characteristics of multipliers can be achieved by using
tabular methods [27,28]. The choice of a specific optimization method depends on the
hardware implementation technology. For FPGA-based digital design, tabular methods
are most often used [29–31], as well as the methods focused on paralleling computational
operations [32–34]. This makes it possible to obtain simple, fast computational blocks.

Constant coefficient multipliers are a special class of multipliers; these units perform
multiplication by a fixed constant. These multipliers are often found in many signal
processing applications where one of the multiplication arguments is constant. They can
be filter coefficients, window function values, Fourier transform coefficients, and weights
of a neural network. Traditionally the usual multipliers are used for signal multiplication
by a constant, i.e., the multiplication is performed according to the same algorithm as the
multiplication of one signal by another with an unknown value. At the same time, the
constant coefficient multipliers can be optimized to be simpler and faster than the general
purpose multipliers.

The configurable logic blocks of FPGAs designed to implement logic functions consist
of a look-up table (LUT) with 4–6 inputs, depending on the FPGA family, the flip-flops,
and the multiplexers. Due to this structural feature, when implementing arithmetic on an
FPGA it is possible to use table methods based on the different table algorithms. These
are, for example, the constant factor multiplier method based on canonical recoding,
using the special algorithms to find the optimal chains of adders, subtractors, and shift
elements [35]; the constant factor multiplier construction method, using fine-grained FPGA
memory resources and the special table search method [36]; and the method using the
pre-computation of partial products [37].

In our paper, we have integrated different approaches to building the fast multipliers
and evaluated the possibilities and effectiveness of their implementations in FPGA tech-
nologies. This paper is structured as follows. In Section 2, we consider the multiplication
acceleration method based on Booth’s algorithm (multiplication by two digits at a time)
with maximal parallelization of partial product addition. We also propose the modification
of this algorithm by the multiplication by three digits at a time. Section 3 describes the
implementation of the considered methods of multiplying two input binary codes as well
as the input binary code by a constant on the FPGA. The results of the development are
discussed in Section 4, and the conclusion is given in Section 5.

2. Materials and Methods

Analysis of the traditional matrix multiplier shows that the largest delay in the calcula-
tion is caused by the summation of partial products (PPs). Reducing their number reduces
the summation time. Booth’s method of implementing multiplication by groups of bits is
widely spread in practice. The hardware implementation of this method is known both on
the basis of the FPGA and on the application-specific integrated circuit (ASIC) [13,15,23].

2.1. Mathematical Basis of Booth’s Algorithm

Booth’s algorithm can be constructed based on the following reasoning. Suppose it is
necessary to calculate the following product:

P = A ∗ B = A ∗ (b n−12n−1+bn−22n−2+ . . . + b020
)

.

Electronics 2023, 12, 605 3 of 19

The implementation of this expression is related to the generation of PPs of the form
A ∗ bi2i for i = 0, 1, . . . , n − 1. The number of such products is equal to the digit of the
multiplier n. Let us convert bi2i as follows:

bi2i = bi2i(2 − 1) = bi2i+1 − 2
2

bi2i = bi2i+1 − 2bi2i−1.

This expression shows how one can reduce the number of PPs by decomposing
the partial product i into the partial products i + 1 and i − 1. Figure 1 illustrates the
decomposition of the even PPs into odd ones.

Electronics 2023, 12, 605 3 of 20

The implementation of this expression is related to the generation of PPs of the form

A * bi2
i for i = 0, 1, … , n−1. The number of such products is equal to the digit of the

multiplier n. Let us convert bi2
i as follows:

bi2
i = bi2

i(2 − 1) = bi2
i+1 −

2

2
bi2

i = bi2
i+1 − 2bi2

i−1.

This expression shows how one can reduce the number of PPs by decomposing the

partial product i into the partial products i + 1 and i − 1. Figure 1 illustrates the

decomposition of the even PPs into odd ones.

Figure 1. Decomposition of even bits into their neighbors when calculating partial products.

The considered approach allows the exclusion of the even (or odd) powers. This will

change the values of the PPs and reduce their number by about half since each even (odd)

bit will be “distributed over the neighboring” bits. This decrease in the PP number will

reduce the time required to perform the summation. To correctly process bit 0 (with power

20), the bit grid should be extended by introducing the summand b−12
−1. The remaining

partial products have the following form:

Ri = A ∗ (−2bi+1 + bi + bi−1)2
i, (1)

and the result of the multiplication is described by the following equation:

P = A ∗ (−2b1 + b0 + b−1)2
0 + A ∗ (−2b3 + b2 + b1)2

2 + A ∗ (−2b5 + b4 + b3)2
4…

= A ∗∑(−2b2i+1 + b2i + b2i−1)2
2i

n
2
−1

i=0

As the number of the PPs has decreased by about a factor of two, we can talk about

multiplication by two digits simultaneously. Based on the expression in the parentheses

in (1), we can write the table (Table 1) for the partial products for all the combinations

(bi+1, bi, bi−1).

Table 1. Table of operations to form PPs for Booth’s algorithm.

𝒃𝒊+𝟏, 𝒃𝒊, 𝒃𝒊−𝟏 Code Value 𝑹𝒊/𝟐
𝒊 Actions to Calculate 𝑹𝒊/𝟐

𝒊

000 0 0 Zero out

001 1 A Copy A

010 1 A Copy A

011 2 2A Copy A and shift to the left

100 −2 −2A Copy A, shift it to the left, and convert to an two’s complement code

101 −1 −A Copy A and convert to an two’s complement code

110 −1 −A Copy A and convert to an two’s complement code

111 0 0 Zero out

The considered algorithm can be implemented in the hardware. On the basis of the

multiplicand A, all the possible variants of the partial products that require

transformations (−A, 2A, −2A) should be generated beforehand. Furthermore, depending

on the triplets of the analyzed digits of multiplier B (bi+1, bi, bi−1), the needed variant of

Figure 1. Decomposition of even bits into their neighbors when calculating partial products.

The considered approach allows the exclusion of the even (or odd) powers. This will
change the values of the PPs and reduce their number by about half since each even (odd)
bit will be “distributed over the neighboring” bits. This decrease in the PP number will
reduce the time required to perform the summation. To correctly process bit 0 (with power
20), the bit grid should be extended by introducing the summand b−12−1. The remaining
partial products have the following form:

Ri = A∗(−2bi+1 + bi + bi−1)2i, (1)

and the result of the multiplication is described by the following equation:

P = A∗(−2b1 + b0 + b−1)20 + A∗(−2b3 + b2 + b1)22 + A∗(−2b5 + b4 + b3)24 . . .

= A∗
n
2 −1
∑

i=0
(−2b2i+1 + b2i + b2i−1)22i

As the number of the PPs has decreased by about a factor of two, we can talk about
multiplication by two digits simultaneously. Based on the expression in the parentheses
in (1), we can write the table (Table 1) for the partial products for all the combinations
(bi+1, bi, bi−1).

Table 1. Table of operations to form PPs for Booth’s algorithm.

bi+1,bi,bi−1 Code Value Ri/2i Actions to Calculate Ri/2i

000 0 0 Zero out
001 1 A Copy A
010 1 A Copy A
011 2 2A Copy A and shift to the left
100 −2 −2A Copy A, shift it to the left, and convert to an two’s complement code
101 −1 −A Copy A and convert to an two’s complement code
110 −1 −A Copy A and convert to an two’s complement code
111 0 0 Zero out

The considered algorithm can be implemented in the hardware. On the basis of the
multiplicand A, all the possible variants of the partial products that require transformations
(−A, 2A, −2A) should be generated beforehand. Furthermore, depending on the triplets of

Electronics 2023, 12, 605 4 of 19

the analyzed digits of multiplier B (bi+1, bi, bi−1), the needed variant of the partial product
is chosen and summed up, taking into account the shift corresponding to the position of
the analyzed triplet.

2.2. Multiplication Algorithm for Three Digits at a Time

We propose to develop the considered Booth’s algorithm by implementing multiplica-
tion for three digits at a time.

2.2.1. Mathematical Basis for the Implementation of Three Digit Multiplication

Suppose it is necessary to calculate the following product:

P = A ∗ B = A ∗ (b n−12n−1+bn−22n−2+ . . . b121+b020
)

.

To determine the method of reducing the number of PPs, let us perform the following
transformations:

P = A ∗ (b n−12n−1+bn−22n−2+ . . . + (2b828 − b828) + b727 + b626 + (2b525 − b525) + b424 + b323 + (2b222

−b222) + b121+b020+b−12−1) (2)

To correctly process bit 0 (with power 20), the bit grid has to be expanded by intro-
ducing the summand b−12−1. The introduction of this summand does not violate the
expression because the zero bit is used for expansion, i.e., b−1 = 0. The brackets in expres-
sion (2) do not change the order of operations but illustrate the representation of each bit
with numbers from the row {2, 5, 8, 11, . . . , 3i–1} for 0 ≤ i ≤ n/3–1. Next, let us perform
the regrouping of the summands. The regrouping is also shown in the parentheses in the
following expression:

P = A ∗ (4b n−12n−1+2bn−22n−2+ . . . + (−4b826 + 2b726 + b626 + b526) + (−4b523 + 2b423 + b323 + b223)
+(−4b220 + 2b120 + b020 + b−12−1))

= A ∗ ((4b n−1 + 2bn−2+bn−3+bn−4
)
2n−3+ . . . + (−4b8 + 2b7 + b6 + b5)26 + (−4b5 + 2b4 + b3 + b2)23

+(−4b2 + b1 + b0 + b−1)20) = A ∗ ∑
3
n
i=0(−4b3i+2 + 2b3i+1+b3i+b3i−1)23i

(3)

According to expression (3), every third bit of the series {0, 3, 6, 9, 12, . . . } is counted
in two adjacent groups. Figure 2 shows this formation of the power sequence in the sum of
the partial products.

Electronics 2023, 12, 605 4 of 20

the partial product is chosen and summed up, taking into account the shift corresponding

to the position of the analyzed triplet.

2.2. Multiplication Algorithm for Three Digits at a Time

We propose to develop the considered Booth’s algorithm by implementing

multiplication for three digits at a time.

2.2.1. Mathematical basis for the implementation of three digit multiplication

Suppose it is necessary to calculate the following product:

P=A ∗ B=A ∗ (bn−12
n−1+bn−22

n−2+…b12
1+b02

0).

To determine the method of reducing the number of PPs, let us perform the following

transformations:

P=A ∗ (bn−12
n−1+bn−22

n−2+…+(2b82
8 − b82

8)+b72
7+b62

6 + (2b52
5 − b52

5)+b42
4+b32

3 + (2b22
2

− b22
2) + b12

1+b02
0+b−12

−1)
(2)

To correctly process bit 0 (with power 20), the bit grid has to be expanded by

introducing the summand b−12
−1. The introduction of this summand does not violate the

expression because the zero bit is used for expansion, i.e., b−1 = 0 . The brackets in

expression (2) do not change the order of operations but illustrate the representation of

each bit with numbers from the row {2, 5, 8, 11, ..., 3i–1} for 0 ≤ i ≤ n/3–1. Next, let us

perform the regrouping of the summands. The regrouping is also shown in the

parentheses in the following expression:

P=A ∗ (4bn−12
n−1+2bn−22

n−2+…+(−4b82
6 + 2b72

6+b62
6+b52

6) + (−4b52
3+2b42

3+b32
3 + b22

3)

+ (−4b22
0 + 2b12

0+b02
0+b−12

−1))

=A ∗ ((4bn−1+2bn−2+bn−3+bn−4)2n−3+…+(−4b8+2b7+b6 + b5)2
6 + (−4b5+2b4+b3 + b2)2

3

+ (−4b2 + 2b1+b0+b−1)20) = 𝐴 ∗∑ (−4b3i+2 + 2b3i+1+b3i + b3i−1)2
3i

𝑛
3

𝑖=0

(3)

According to expression (3), every third bit of the series {0, 3, 6, 9, 12,...} is counted in

two adjacent groups. Figure 2 shows this formation of the power sequence in the sum of

the partial products.

Figure 2. Integration of bits when calculating partial products for multiplication by three digits at a

time.

Equation (3) is valid for the case when n is divisible by 3 without a remainder.

Otherwise, it is necessary to supplement the code B with the necessary number of high

zero digits.

The proposed approach reduces the number of partial products by a factor of about

three, allowing us to talk about multiplication by three digits simultaneously. This will

reduce the time required to perform summation, as compared to the modified Booth’s

algorithm. The partial products used to calculate the result have the following form:

Ri = A ∗ (−4b3i+2 + 2b3i+1+b3i + b3i−1)2
3i, (4)

Based on the expression in the brackets in formula (4) we compiled the table (Table

2) for the partial products for all the combinations (bi+2, bi+1, bi, bi−1).

Figure 2. Integration of bits when calculating partial products for multiplication by three digits at a time.

Equation (3) is valid for the case when n is divisible by 3 without a remainder. Other-
wise, it is necessary to supplement the code B with the necessary number of high zero digits.

The proposed approach reduces the number of partial products by a factor of about
three, allowing us to talk about multiplication by three digits simultaneously. This will
reduce the time required to perform summation, as compared to the modified Booth’s
algorithm. The partial products used to calculate the result have the following form:

Ri = A∗(−4b3i+2 + 2b3i+1 + b3i + b3i−1)23i, (4)

Based on the expression in the brackets in formula (4) we compiled the table (Table 2)
for the partial products for all the combinations (bi+2, bi+1, bi, bi−1).

Electronics 2023, 12, 605 5 of 19

Table 2. Table of operations to form partial products for multiplication by three digits.

bi+2,bi+1bi,bi−1 Code Value Ri/2i Actions to Calculate Ri/2i

0000 0 0 Zero out

0001 1 A Copy A
0010 1 A

0011 2 2A Copy A and shift to the left
0100 2 2A

0101 3 3A Copy A, move it to the left and add A
0110 3 3A

0111 4 4A Copy A, shift it to the left by two bits

1000 −4 −4A Copy A, shift it to the left by 2 bits and convert it to an two’s
complement code

1001 −3 −3A Copy A, shift it to the left, add A
1010 −3 −3A and convert to an two’s complement code

1011 −2 −2A Copy A, shift it to the left, and
1100 −2 −2A convert to an two’s complement code

1101 −1 −A Copy A
1110 −1 −A and convert to an two’s complement code

1111 0 0 Zero out

High performance of the hardware implementation of the algorithm is achieved by
generating the PPs simultaneously. Based on the multiplicand A, all possible variants of
the PPs that require transformations should be generated beforehand: −4A, −3A, −2A,
−A, 2A, 3A, and 4A. Subsequently, depending on the four analyzed bits of the multiplier B,
the desired variant of the partial product is selected and summarized, taking into account
the shift corresponding to the position of the analyzed four bits, bi+2, bi+1bi, bi−1. The
operation of multiplying the argument A by 3 may present some difficulty. To implement
it, it is proposed to shift the argument A to the left by one position (shifting bits to the left
corresponds to multiplying by 2) and to add A. This combination of simple operations
corresponds to multiplication by 3. The proposed version of the algorithm is focused
on the operations with direct binary codes, i.e., with positive numbers. To multiply the
signed numbers, it is possible to generate a sign digit separately using an XOR operation
for the sign bits of the arguments. If the arguments come in complementary codes, the
considered multiplier can be supplemented by converters from the complementary code to
the direct binary code at the argument’s inputs and by the direct-to-complementary code
converter at the outputs. It is also possible to adapt the proposed algorithm to work with
the complementary codes.

Table 3 shows the work of the algorithm for the multiplication of the two arguments
A = (11001101)2 = (205)10 and B = (10101101)2 = (173)10.

Table 3. Multiplication of two arguments A = (11001101)2 and B = (10101101)2 according to the
proposed algorithm.

Step i bi+2,bi+1bi,bi−1 Ri/2i Ri/2i

1 0 1010 −3A (1101 1001 1001)2 = −(615)10
2 3 1011 −2A (1110 0110 0110) 2 = −(410)10
3 6 0101 3A (0010 0110 0111) 2 = (615)10

P = (1101 1001 1001)2 + (1110 0110 0110) 2 × 8 + (0010 0110 0111) 2 × 64 = (35,465)10 = 205 × 173.

Figure 3 shows a comparison of the proposed algorithm with the traditional multipli-
cation algorithm and Booth’s algorithm for multiplication A × B.

Electronics 2023, 12, 605 6 of 19Electronics 2023, 12, 605 6 of 20

(a)

(b)

(c)

Figure 3. Example of multiplication of two numbers A = (11001101)2 and B = (10101101)2 using

different algorithms: (a) traditional multiplication algorithm; (b) Booth’s algorithm; (c) proposed

algorithm.

Analysis of the example in Figure 3 shows that the number of PPs when multiplying

8-bit arguments for the traditional algorithm is 8; for Booth’s algorithm, it is 4; and for the

proposed algorithm, it is 3. With the increasing of the digit capacity of the arguments, the

difference will grow. For example, for the considered algorithms the number of PPs is 16,

8, and 6, respectively, for the multiplication of 16-bit arguments. Reducing the number of

partial products decreases the number of adders needed.

2.2.2. Hardware Implementation of the Algorithm

Figure 4 shows the architecture of the unit implementing the proposed algorithm for

fast multiplication by three digits at a time.

1 1 0 0 1 1 0 1

1 0 1 0 1 1 0 1

1 1 0 0 1 1 0 1

0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 1

1 1 0 0 1 1 0 1

0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 1

0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 1

1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1

Figure 3. Example of multiplication of two numbers A = (11001101)2 and B = (10101101)2 using different
algorithms: (a) traditional multiplication algorithm; (b) Booth’s algorithm; (c) proposed algorithm.

Analysis of the example in Figure 3 shows that the number of PPs when multiplying
8-bit arguments for the traditional algorithm is 8; for Booth’s algorithm, it is 4; and for the
proposed algorithm, it is 3. With the increasing of the digit capacity of the arguments, the
difference will grow. For example, for the considered algorithms the number of PPs is 16,
8, and 6, respectively, for the multiplication of 16-bit arguments. Reducing the number of
partial products decreases the number of adders needed.

2.2.2. Hardware Implementation of the Algorithm

Figure 4 shows the architecture of the unit implementing the proposed algorithm for
fast multiplication by three digits at a time.

In this scheme, the multiplicand A arrives at a number of transducers, producing all
possible variants of the partial products: 2A, 3A, 4A, −4A, −3A, −2A, and −A, except for
A itself and zero, because they do not require circuit implementation. The bits of multiplier
B go to the address inputs of the multiplexers to select one or the other variant of the partial
product. The final result is obtained by summing the PPs, taking into account their mutual
arrangement in the bit grid, which is ensured by shifting the partial product to the left by
3i digits, where 0 ≤ i ≤ n/3–1.

Electronics 2023, 12, 605 7 of 19
Electronics 2023, 12, 605 7 of 20

Figure 4. Architecture of the unit implementing the proposed algorithm for fast multiplication by

three digits at a time.

In this scheme, the multiplicand A arrives at a number of transducers, producing all

possible variants of the partial products: 2A, 3A, 4A, −4A, −3A, −2A, and −A, except for A

itself and zero, because they do not require circuit implementation. The bits of multiplier

B go to the address inputs of the multiplexers to select one or the other variant of the

partial product. The final result is obtained by summing the PPs, taking into account their

mutual arrangement in the bit grid, which is ensured by shifting the partial product to the

left by 3i digits, where 0 ≤ i ≤ n/3–1.

3. Designing a Multiplier on the FPGA Basis

To determine the efficiency of the proposed method, we compared its characteristics

with the implementation of the modified Booth’s algorithm, performing multiplication by

two digits at a time, as presented in Section 2.1. We also analyzed the characteristics of the

multipliers with an embedded FPGA multiplier. All the compared variants of the

multiplier per constant were described in the Verilog HDL language; the RTLs were

generated for Cyclone 10 LP chips using Intel® Quartus® Prime. Altera’s ModelSim was

used to simulate the synthesized multipliers. The frequency response analysis of the

developed circuits was performed using the TimeQuest Timing Analyzer (Intel®

Quartus® Prime utility). For the correct timing analysis, we used the test setup shown in

Figure 5.

Figure 4. Architecture of the unit implementing the proposed algorithm for fast multiplication by
three digits at a time.

3. Designing a Multiplier on the FPGA Basis

To determine the efficiency of the proposed method, we compared its characteristics
with the implementation of the modified Booth’s algorithm, performing multiplication by
two digits at a time, as presented in Section 2.1. We also analyzed the characteristics of the
multipliers with an embedded FPGA multiplier. All the compared variants of the multiplier
per constant were described in the Verilog HDL language; the RTLs were generated for
Cyclone 10 LP chips using Intel® Quartus® Prime. Altera’s ModelSim was used to simulate
the synthesized multipliers. The frequency response analysis of the developed circuits was
performed using the TimeQuest Timing Analyzer (Intel® Quartus® Prime utility). For the
correct timing analysis, we used the test setup shown in Figure 5.

Electronics 2023, 12, 605 8 of 20

(a) (b)

Figure 5. Multiplier test setup: (a) multiplier of two signals, (b) multiplier of signal by constant.

The proposed architecture is used to determine the Fmax; this frequency is calculated

only for the paths where the source and target registers or ports are controlled by the same

clock.

3.1. Hardware Implementation of the Modified Booth’s Algorithm

To perform the research, the modified Booth’s algorithm was implemented in two

variants: the multiplication of two arguments and the multiplication of an argument by a

constant.

3.1.1. Implementation of Two Binary Code Multiplication

For the investigation, we used a parameterized description of the multiplier,

allowing for a rapid change in its digit capacity. Figure 6 shows the result of compiling

the prepared Verilog HDL description with a bit size of n = 8.

Figure 6. RTL hardware implementation of the modified Booth’s algorithm synthesized by Quartus

Prime for n = 8.

The multiplier uses partial product generation modules (modules Gen_3) based on

the three bits of the multiplier. These modules generate PPs according to the rules shown

in Table 1. The summation of the PPs is performed pairwise; three adders are used for the

8-bit multiplier. In the study, we evaluated the change in the maximum frequency of the

module, as well as the required resources of the FPGA Cyclone 10 LP for multiplication

as a function of the digit capacity of the codes to be multiplied. The results are presented

in Table 4.

Figure 5. Multiplier test setup: (a) multiplier of two signals, (b) multiplier of signal by constant.

Electronics 2023, 12, 605 8 of 19

The proposed architecture is used to determine the Fmax; this frequency is calculated
only for the paths where the source and target registers or ports are controlled by the
same clock.

3.1. Hardware Implementation of the Modified Booth’s Algorithm

To perform the research, the modified Booth’s algorithm was implemented in two
variants: the multiplication of two arguments and the multiplication of an argument by
a constant.

3.1.1. Implementation of Two Binary Code Multiplication

For the investigation, we used a parameterized description of the multiplier, allowing
for a rapid change in its digit capacity. Figure 6 shows the result of compiling the prepared
Verilog HDL description with a bit size of n = 8.

Electronics 2023, 12, 605 8 of 20

(a) (b)

Figure 5. Multiplier test setup: (a) multiplier of two signals, (b) multiplier of signal by constant.

The proposed architecture is used to determine the Fmax; this frequency is calculated

only for the paths where the source and target registers or ports are controlled by the same

clock.

3.1. Hardware Implementation of the Modified Booth’s Algorithm

To perform the research, the modified Booth’s algorithm was implemented in two

variants: the multiplication of two arguments and the multiplication of an argument by a

constant.

3.1.1. Implementation of Two Binary Code Multiplication

For the investigation, we used a parameterized description of the multiplier,

allowing for a rapid change in its digit capacity. Figure 6 shows the result of compiling

the prepared Verilog HDL description with a bit size of n = 8.

Figure 6. RTL hardware implementation of the modified Booth’s algorithm synthesized by Quartus

Prime for n = 8.

The multiplier uses partial product generation modules (modules Gen_3) based on

the three bits of the multiplier. These modules generate PPs according to the rules shown

in Table 1. The summation of the PPs is performed pairwise; three adders are used for the

8-bit multiplier. In the study, we evaluated the change in the maximum frequency of the

module, as well as the required resources of the FPGA Cyclone 10 LP for multiplication

as a function of the digit capacity of the codes to be multiplied. The results are presented

in Table 4.

Figure 6. RTL hardware implementation of the modified Booth’s algorithm synthesized by Quartus
Prime for n = 8.

The multiplier uses partial product generation modules (modules Gen_3) based on
the three bits of the multiplier. These modules generate PPs according to the rules shown
in Table 1. The summation of the PPs is performed pairwise; three adders are used for the
8-bit multiplier. In the study, we evaluated the change in the maximum frequency of the
module, as well as the required resources of the FPGA Cyclone 10 LP for multiplication as
a function of the digit capacity of the codes to be multiplied. The results are presented in
Table 4.

The table shows the maximum possible frequencies of the multiplier. These frequencies
were calculated using the Slow1 and Slow2 models corresponding to the different operating
parameters (voltage and temperature) considered in the static time analysis. The following
characteristics are used: Slow1—1200 mV, 100 ◦C.; Slow 2—1200 mV, −40 ◦C. The models
are based on determining the lowest speed-up for the different paths; the model is built for
the chip with the worst speed-up. For both models, there is a decreasing trend in frequency
with the minor spikes.

Electronics 2023, 12, 605 9 of 19

Table 4. Characteristics of modified Booth’s multiplier for multiplication of two binary codes.

Digit Capacity Fmax, MHz Slow1 Fmax, MHz Slow2 Total Logic Elements Total Combinational
Functions Total Registers

8 126.01 145.65 178 162 32
10 109.9 125.44 268 248 40
12 106.26 123.08 372 348 48
14 85.06 97.89 495 467 56
16 97.76 113.3 629 597 64
18 80.89 93.74 785 749 72
20 74.48 85.61 953 913 80
22 76.76 88.69 1140 1096 88
24 76.04 89.09 1338 1290 96
26 71.85 82.82 1559 1507 104
28 68.57 79.34 1791 1735 112
30 62.23 72.11 2042 1982 120
32 66.58 77.63 2307 2243 128
34 60.24 69.94 2593 2252 136
36 60.88 71.4 2891 2819 144
38 57.39 66.56 3206 3130 152
40 56.75 33.25 3533 3453 160

3.1.2. Implementation of the Constant Coefficient Multiplier

Figure 7 shows the RTL of the 8-bit constant coefficient multiplier (CCM). The FPGA
distributed memory is used to store the constants. The basis of distributed memory is
LUTs; in most FPGA families, they have six inputs and allow for the storage of 64 bits.
This type of memory is quite flexible and supports a variety of data widths, unlike block
memory, where the bit depth of the stored words and their number can take certain values
depending on the type of block memory. The flexibility of distributed memory and its high
speed make it ideal for storing partial products.

Electronics 2023, 12, 605 10 of 20

Figure 7. RTL of a modified Booth’s algorithm implementing multiplication by a constant and

synthesized by Quartus Prime for n = 8.

The partial product generation modules (Gen_3) for the CCM are designed using

distributed FPGA memory, which stores the pre-calculated partial products for the

constant multiplicand. The modules Gen_3 select the partial product from the memory

according to the value of three bits of the multiplier. The maximum frequency Fmax of

the multiplier and the required FPGA resources were analyzed during the study of this

module. Table 5 shows the dependence of the analyzed parameters on the digit capacity

of the arguments.

Table 5. Characteristics of a combinational multiplier per constant implementing the modified

Booth algorithm.

Digit Capacity Fmax, MHz Slow1 Fmax, MHz Slow2
Total Logic

Elements

Total Combinational

Functions
Total Registers

8 167.22 193.76 52 41 24

10 136 158.5 69 53 30

12 133.4 153.75 87 68 36

14 111.93 129.77 104 80 42

16 114.51 131.49 126 100 48

18 112.6 130.86 144 113 54

20 104.54 122 162 127 60

22 109.84 128.68 180 141 66

24 109.15 128.3 201 159 72

26 99.42 115.46 219 172 78

28 102.45 120.92 240 190 84

30 90.83 106.56 258 203 90

32 95.35 110.27 284 227 96

34 81.43 94.89 303 241 102

36 85.7 99.67 321 254 108

38 81.12 94.63 339 268 114

40 80.39 94.63 360 286 120

Analysis of the RTL multiplier presented in Figure 7 shows that it can be easily

pipelined. Figure 8 illustrates a pipeline implementation of the Booth’s multiplier. The

productivity of the pipeline circuit depends on the number of stages and the ratio of the

Figure 7. RTL of a modified Booth’s algorithm implementing multiplication by a constant and
synthesized by Quartus Prime for n = 8.

The partial product generation modules (Gen_3) for the CCM are designed using
distributed FPGA memory, which stores the pre-calculated partial products for the constant

Electronics 2023, 12, 605 10 of 19

multiplicand. The modules Gen_3 select the partial product from the memory according to
the value of three bits of the multiplier. The maximum frequency Fmax of the multiplier
and the required FPGA resources were analyzed during the study of this module. Table 5
shows the dependence of the analyzed parameters on the digit capacity of the arguments.

Table 5. Characteristics of a combinational multiplier per constant implementing the modified
Booth algorithm.

Digit Capacity Fmax, MHz Slow1 Fmax, MHz Slow2 Total Logic Elements Total Combinational
Functions Total Registers

8 167.22 193.76 52 41 24
10 136 158.5 69 53 30
12 133.4 153.75 87 68 36
14 111.93 129.77 104 80 42
16 114.51 131.49 126 100 48
18 112.6 130.86 144 113 54
20 104.54 122 162 127 60
22 109.84 128.68 180 141 66
24 109.15 128.3 201 159 72
26 99.42 115.46 219 172 78
28 102.45 120.92 240 190 84
30 90.83 106.56 258 203 90
32 95.35 110.27 284 227 96
34 81.43 94.89 303 241 102
36 85.7 99.67 321 254 108
38 81.12 94.63 339 268 114
40 80.39 94.63 360 286 120

Analysis of the RTL multiplier presented in Figure 7 shows that it can be easily
pipelined. Figure 8 illustrates a pipeline implementation of the Booth’s multiplier. The
productivity of the pipeline circuit depends on the number of stages and the ratio of the
combinational and the register parts performance. It tends to the value t/m, where t is the
working time of the original circuit, and m is the number of pipeline steps.

Electronics 2023, 12, 605 11 of 20

combinational and the register parts performance. It tends to the value t/m, where t is the

working time of the original circuit, and m is the number of pipeline steps.

Figure 8. RTL of a pipeline multiplier implementing multiplication by a constant based on the

modified Booth’s algorithm for n = 8.

The increment of the hardware costs to implement the pipeline method of processing

depends on the number of registers entered. The maximum effect is given by the

pipelining of the summing. Although pipelining leads to additional hardware, it speeds

up the multiplication operation by 2–3 times. Table 6 shows the characteristics of the

pipelined constant coefficient of the Booth’s multiplier.

Table 6. Characteristics of the pipelined CCM implementing the modified Booth’s algorithm.

Digit

Capacity

Fmax, MHz

Slow1

Fmax, MHz

Slow2

Total Logic

Elements

Total Combinational

Functions
Total Registers

Number

of Pipeline Steps

8 306 337.95 61 41 61 3

10 294.5 337.84 86 53 86 4

12 236.46 267.24 106 68 106 4

14 200.28 222.72 128 82 128 4

16 205.47 235.57 151 100 151 4

18 266.06 296.12 185 113 185 5

20 164.04 188.61 205 127 205 5

22 204.58 228.52 227 141 227 5

24 162.18 188.22 250 159 250 5

26 189.21 214.04 281 172 281 5

28 178.95 206.36 308 190 308 5

30 165.78 191.86 323 206 323 5

32 144.07 163.85 349 227 349 5

34 191.17 218.96 405 241 405 6

36 159.54 181.03 429 254 429 6

38 214.36 248.02 442 268 442 6

40 173.73 200.6 479 286 479 6

3.2. Hardware Implementation of the Proposed Algorithm for Multiplying by Three Bits at a

Time

The proposed multiplication algorithm for multiplying by three bits at a time has also

been implemented and investigated in two variants: the multiplication of two arguments

and the multiplication of an argument by a constant.

Figure 8. RTL of a pipeline multiplier implementing multiplication by a constant based on the
modified Booth’s algorithm for n = 8.

Electronics 2023, 12, 605 11 of 19

The increment of the hardware costs to implement the pipeline method of processing
depends on the number of registers entered. The maximum effect is given by the pipelining
of the summing. Although pipelining leads to additional hardware, it speeds up the
multiplication operation by 2–3 times. Table 6 shows the characteristics of the pipelined
constant coefficient of the Booth’s multiplier.

Table 6. Characteristics of the pipelined CCM implementing the modified Booth’s algorithm.

Digit
Capacity

Fmax, MHz
Slow1

Fmax, MHz
Slow2

Total Logic
Elements

Total Combinational
Functions

Total
Registers

Number of
Pipeline Steps

8 306 337.95 61 41 61 3
10 294.5 337.84 86 53 86 4
12 236.46 267.24 106 68 106 4
14 200.28 222.72 128 82 128 4
16 205.47 235.57 151 100 151 4
18 266.06 296.12 185 113 185 5
20 164.04 188.61 205 127 205 5
22 204.58 228.52 227 141 227 5
24 162.18 188.22 250 159 250 5
26 189.21 214.04 281 172 281 5
28 178.95 206.36 308 190 308 5
30 165.78 191.86 323 206 323 5
32 144.07 163.85 349 227 349 5
34 191.17 218.96 405 241 405 6
36 159.54 181.03 429 254 429 6
38 214.36 248.02 442 268 442 6
40 173.73 200.6 479 286 479 6

3.2. Hardware Implementation of the Proposed Algorithm for Multiplying by Three Bits at a Time

The proposed multiplication algorithm for multiplying by three bits at a time has also
been implemented and investigated in two variants: the multiplication of two arguments
and the multiplication of an argument by a constant.

3.2.1. Implementation of Two Binary Code Multiplication

The parameterized description was used to investigate the three-bits-at-a-time multi-
plier (TBTM). The parametrization makes it possible to easily change the digit capacity of
the arguments and to analyze the evolution of the maximum frequency Fmax of the unit and
to estimate the hardware cost of the multiplier implementation. Figure 9 shows the result
of the compiling of the prepared Verilog HDL description for the eight-bit implementation.

Electronics 2023, 12, 605 12 of 20

3.2.1. Implementation of Two Binary Code Multiplication

The parameterized description was used to investigate the three-bits-at-a-time

multiplier (TBTM). The parametrization makes it possible to easily change the digit

capacity of the arguments and to analyze the evolution of the maximum frequency Fmax

of the unit and to estimate the hardware cost of the multiplier implementation. Figure 9

shows the result of the compiling of the prepared Verilog HDL description for the eight-

bit implementation.

Figure 9. RTL of TBTM multiplying the two input codes (multiplier and multiplicand) synthesized

by Quartus Prime for n = 8.

The multiplier uses partial product generation modules (Gen_4) based on the four

analyzed bits of the multiplier. These modules generate PPs for the multiplicand

according to the rules presented in the Table 2. The summation of the three PPs is

performed using two adders.

A comparison of Figures 6 and 9 shows the reduction in the blocks for the formation

of the PPs with some of their complications, as well as the reduction in the number of

adders. The multiplication of the eight-digit arguments requires three PPs and

consequently needs two adders for their addition. The implementation of Booth’s

algorithm forms four PPs and requires three adders. The characteristics of the multiplier

realizing the proposed algorithm for the different argument digit capacities are presented

in Table 7.

Table 7. Characteristics of the TBTM of two codes.

Digit Capacity
Fmax, MHz

Slow1

Fmax, MHz

Slow2

Total Logic

Elements

Total Combinational

Functions
Total Registers

8 116.08 131.51 267 251 34

10 106.95 122.91 418 398 42

12 101.48 115.23 466 442 50

14 81.41 93.53 655 627 58

16 84.35 96.72 887 855 66

18 77.23 88.68 943 907 74

20 79.29 90.18 1204 1164 82

22 74.29 85.18 1520 1476 90

24 70.95 81.96 1586 1538 98

26 62.17 71.3 1914 1862 106

28 61.63 71.05 2308 2252 114

30 58.88 67.41 2381 2321 122

32 58.49 67.5 2805 2741 130

34 58.65 67.29 3250 3182 138

36 57 66.19 3333 3261 146

38 56.73 65.68 3834 3758 154

Figure 9. RTL of TBTM multiplying the two input codes (multiplier and multiplicand) synthesized
by Quartus Prime for n = 8.

Electronics 2023, 12, 605 12 of 19

The multiplier uses partial product generation modules (Gen_4) based on the four
analyzed bits of the multiplier. These modules generate PPs for the multiplicand according
to the rules presented in the Table 2. The summation of the three PPs is performed using
two adders.

A comparison of Figures 6 and 9 shows the reduction in the blocks for the formation of
the PPs with some of their complications, as well as the reduction in the number of adders.
The multiplication of the eight-digit arguments requires three PPs and consequently needs
two adders for their addition. The implementation of Booth’s algorithm forms four PPs and
requires three adders. The characteristics of the multiplier realizing the proposed algorithm
for the different argument digit capacities are presented in Table 7.

Table 7. Characteristics of the TBTM of two codes.

Digit Capacity Fmax, MHz Slow1 Fmax, MHz Slow2 Total Logic Elements Total Combinational
Functions Total Registers

8 116.08 131.51 267 251 34
10 106.95 122.91 418 398 42
12 101.48 115.23 466 442 50
14 81.41 93.53 655 627 58
16 84.35 96.72 887 855 66
18 77.23 88.68 943 907 74
20 79.29 90.18 1204 1164 82
22 74.29 85.18 1520 1476 90
24 70.95 81.96 1586 1538 98
26 62.17 71.3 1914 1862 106
28 61.63 71.05 2308 2252 114
30 58.88 67.41 2381 2321 122
32 58.49 67.5 2805 2741 130
34 58.65 67.29 3250 3182 138
36 57 66.19 3333 3261 146
38 56.73 65.68 3834 3758 154
40 54.76 64.13 4351 4271 162

3.2.2. Implementation of the Constant Coefficient Multiplier

Figure 10 shows the RTL of the hardware implementation of the proposed algorithm
that performs multiplication by a constant.

Electronics 2023, 12, 605 13 of 20

40 54.76 64.13 4351 4271 162

3.2.2. Implementation of the Constant Coefficient Multiplier

Figure 10 shows the RTL of the hardware implementation of the proposed algorithm

that performs multiplication by a constant.

Figure 10. RTL of the 8-bit hardware implementation of the proposed algorithm that realizes

multiplication by a constant.

The Gen_4 modules of the CCM implement a selection of the partial product stored

in the FPGA’s distributed memory. The address for the selection is generated based on

the four bits of the multiplier. Table 8 shows the characteristics of the CCM that implement

the proposed algorithm for the different digit capacities of the arguments.

Table 8. Characteristics of the CCM, implementing the proposed algorithm of multiplication.

Digit Capacity Fmax, MHz Slow1 Fmax, MHz Slow2
Total Logic

Elements

Total Combinational

Functions
Total Registers

8 173.58 198.53 44 33 24

10 169.92 201.49 61 47 30

12 133.67 154.58 78 60 36

14 127.28 148.92 90 67 42

16 124.25 141.12 107 81 48

18 119.53 137.89 118 87 54

20 112.57 130.43 138 104 60

22 117.12 137.34 158 121 66

24 111.64 128.85 170 128 72

26 103.61 120.69 189 142 78

28 100.73 117.45 206 156 84

30 99.95 116.13 217 162 90

32 96.64 113.12 237 179 96

34 94.11 109.46 257 196 102

36 93.85 109.69 269 203 108

38 86.08 100.73 289 219 114

40 87.41 101.77 309 236 120

4. Discussion

This paper presents an analysis of several variants of the implementation of the input

code multipliers by a constant. One is based on Booth’s algorithm, the other implements

multiplication by three digits at once. The comparison was made for the variant of

multiplication of two codes and a code by a constant because the implementations of these

methods on the FPGA basis were different. To ensure a correct comparison, we disabled

the optimization when compiling in Quartus Prime. This guaranteed that all of the

elements provided in the Verilog HDL description were preserved.

Figure 10. RTL of the 8-bit hardware implementation of the proposed algorithm that realizes multi-
plication by a constant.

The Gen_4 modules of the CCM implement a selection of the partial product stored in
the FPGA’s distributed memory. The address for the selection is generated based on the
four bits of the multiplier. Table 8 shows the characteristics of the CCM that implement the
proposed algorithm for the different digit capacities of the arguments.

Electronics 2023, 12, 605 13 of 19

Table 8. Characteristics of the CCM, implementing the proposed algorithm of multiplication.

Digit Capacity Fmax, MHz Slow1 Fmax, MHz Slow2 Total Logic Elements Total Combinational
Functions Total Registers

8 173.58 198.53 44 33 24
10 169.92 201.49 61 47 30
12 133.67 154.58 78 60 36
14 127.28 148.92 90 67 42
16 124.25 141.12 107 81 48
18 119.53 137.89 118 87 54
20 112.57 130.43 138 104 60
22 117.12 137.34 158 121 66
24 111.64 128.85 170 128 72
26 103.61 120.69 189 142 78
28 100.73 117.45 206 156 84
30 99.95 116.13 217 162 90
32 96.64 113.12 237 179 96
34 94.11 109.46 257 196 102
36 93.85 109.69 269 203 108
38 86.08 100.73 289 219 114
40 87.41 101.77 309 236 120

4. Discussion

This paper presents an analysis of several variants of the implementation of the input
code multipliers by a constant. One is based on Booth’s algorithm, the other implements
multiplication by three digits at once. The comparison was made for the variant of mul-
tiplication of two codes and a code by a constant because the implementations of these
methods on the FPGA basis were different. To ensure a correct comparison, we disabled the
optimization when compiling in Quartus Prime. This guaranteed that all of the elements
provided in the Verilog HDL description were preserved.

Table 9 integrates the characteristics of the two code multipliers and the constant
code multipliers realized by Booth’s algorithm and by the proposed algorithm for the
multiplication of three digits at once. The table shows the maximum frequency Fmax for
the Slow1 model and the total number of logic elements (LE) used. The results of the Slow2
timing analysis model and the number of combinational functions have the same trends.
The number of registers is constant for all the multipliers because, according to Figure 5,
the registers are used to fix the arguments and results, and their number does not depend
on the realized algorithm.

Table 9. Comparison characteristics of the multipliers.

Digit
Capacity

Booth’s MUL
Fmax, MHz

TBTM
Fmax, MHz

Booth’s CCM
Fmax, MHz

TBT CCM
Fmax, MHz

Total LE for
Booth’s MUL

Total LE
for TBTM

Total LE for
Booth’s
CCM

Total LE
for TBT

CCM

8 126.01 116.08 167.22 173.58 178 267 52 44
10 109.9 106.95 136 169.92 268 418 69 61
12 106.26 101.48 133.4 133.67 372 466 87 78
14 85.06 81.41 111.93 127.28 495 655 104 90
16 97.76 84.35 114.51 124.25 629 887 126 107
18 80.89 77.23 112.6 119.53 785 943 144 118
20 74.48 79.29 104.54 112.57 953 1204 162 138
22 76.76 74.29 109.84 117.12 1140 1520 180 158
24 76.04 70.95 109.15 111.64 1338 1586 201 170
26 71.85 62.17 99.42 103.61 1559 1914 219 189
28 68.57 61.63 102.45 100.73 1791 2308 240 206
30 62.23 58.88 90.83 99.95 2042 2381 258 217
32 66.58 58.49 95.35 96.64 2307 2805 284 237
34 60.24 58.65 81.43 94.11 2593 3250 303 257
36 60.88 57 85.7 93.85 2891 3333 321 269
38 57.39 56.73 81.12 86.08 3206 3834 339 289
40 56.75 54.76 80.39 87.41 3533 4351 360 309

Electronics 2023, 12, 605 14 of 19

The analysis of the table shows that the maximum possible frequency Fmax when
realizing the multiplication of two arguments in the Booth’s multiplier (in the column
Booth’s MUL Fmax) is higher than in the three-bit multiplier (in the column TBTM Fmax).
This is due to the fact that for the generation of the PPs in the Booth’s multiplier the
elementary operations—shift, inversion, and increment—are sufficient. The proposed
algorithm requires more time-consuming calculations, such as when calculating the partial
products of 3A and −3A. The situation changes when the input code is multiplied by
a constant. As the PPs are pre-calculated, no complex operations are required and the
maximum possible frequency Fmax in the Booth’s multiplier (in the Booth’s CCM Fmax
column) is lower than the Fmax of the three-bit multiplier (in the TBT CCM Fmax column).
In the hardware cost analysis, the situation is the opposite. The generation of the partial
products during computation requires a lot of FPGA resources. If the precalculated partial
products are stored in the distributed memory, the hardware costs are reduced.

Figure 11 shows the growth of the maximum frequency with the increasing digit
capacity. The comparison was made for two timing models (Slow1 and Slow2); as can be
seen in the figure, the frequency trends are the same.

Electronics 2023, 12, 605 15 of 20

(a) (b)

Figure 11. Maximum frequency of multiplier operation: (a) model Slow1, (b) model Slow2. The
presented graphs were obtained for the following conditions: 1—multiplication of two arguments
by Booth’s algorithm; 2—multiplication of two arguments by the proposed algorithm; 3—
multiplication by a constant by Booth’s algorithm; 4—multiplication by a constant by the proposed
algorithm.

Figure 12 shows the dependence of the hardware costs on the multiplier’s digit
capacity.

(a) (b)

Figure 12. Hardware costs for multipliers: (a) total logic elements, (b) total combinational
functions. Figure shows the following graphs: 1—two arguments by Booth’s algorithm; 2—
multiplication of two arguments by the proposed algorithm; 3—multiplication by a constant by
Booth’s algorithm; 4—multiplication by a constant by the proposed algorithm.

The analysis shows that the hardware costs increase significantly when the
multiplication of two arguments is implemented; at the same time, there is a minimal
increase when multiplying by a constant. In other words, it is obvious that if
multiplication by a constant is required, it is necessary to use an appropriate multiplier
and not to replace it with a universal one that multiplies the arguments.

Piping allows the raising of the frequency of the multiplier. Figure 13 illustrates the
frequency change when the multiplier is pipelined. The maximum frequency after
pipelining in the implementation of Booth’s algorithm for some bits exceeds the
frequencies of the device by the proposed algorithm. However, in the proposed algorithm
the reducing of the number of partial products and the corresponding reduction in the
adder numbers leads to a decreasing of the pipeline stages number, as shown in Figure
13b. In most cases, reducing the number of pipeline steps in the TBT multiplier decreases
the time required to obtain a multiplication result.

Figure 11. Maximum frequency of multiplier operation: (a) model Slow1, (b) model Slow2. The
presented graphs were obtained for the following conditions: 1—multiplication of two arguments by
Booth’s algorithm; 2—multiplication of two arguments by the proposed algorithm; 3—multiplication
by a constant by Booth’s algorithm; 4—multiplication by a constant by the proposed algorithm.

Figure 12 shows the dependence of the hardware costs on the multiplier’s digit capacity.

Electronics 2023, 12, 605 15 of 20

(a) (b)

Figure 11. Maximum frequency of multiplier operation: (a) model Slow1, (b) model Slow2. The
presented graphs were obtained for the following conditions: 1—multiplication of two arguments
by Booth’s algorithm; 2—multiplication of two arguments by the proposed algorithm; 3—
multiplication by a constant by Booth’s algorithm; 4—multiplication by a constant by the proposed
algorithm.

Figure 12 shows the dependence of the hardware costs on the multiplier’s digit
capacity.

(a) (b)

Figure 12. Hardware costs for multipliers: (a) total logic elements, (b) total combinational
functions. Figure shows the following graphs: 1—two arguments by Booth’s algorithm; 2—
multiplication of two arguments by the proposed algorithm; 3—multiplication by a constant by
Booth’s algorithm; 4—multiplication by a constant by the proposed algorithm.

The analysis shows that the hardware costs increase significantly when the
multiplication of two arguments is implemented; at the same time, there is a minimal
increase when multiplying by a constant. In other words, it is obvious that if
multiplication by a constant is required, it is necessary to use an appropriate multiplier
and not to replace it with a universal one that multiplies the arguments.

Piping allows the raising of the frequency of the multiplier. Figure 13 illustrates the
frequency change when the multiplier is pipelined. The maximum frequency after
pipelining in the implementation of Booth’s algorithm for some bits exceeds the
frequencies of the device by the proposed algorithm. However, in the proposed algorithm
the reducing of the number of partial products and the corresponding reduction in the
adder numbers leads to a decreasing of the pipeline stages number, as shown in Figure
13b. In most cases, reducing the number of pipeline steps in the TBT multiplier decreases
the time required to obtain a multiplication result.

Figure 12. Hardware costs for multipliers: (a) total logic elements, (b) total combinational functions.
Figure shows the following graphs: 1—two arguments by Booth’s algorithm; 2—multiplication of
two arguments by the proposed algorithm; 3—multiplication by a constant by Booth’s algorithm;
4—multiplication by a constant by the proposed algorithm.

The analysis shows that the hardware costs increase significantly when the multiplica-
tion of two arguments is implemented; at the same time, there is a minimal increase when
multiplying by a constant. In other words, it is obvious that if multiplication by a constant

Electronics 2023, 12, 605 15 of 19

is required, it is necessary to use an appropriate multiplier and not to replace it with a
universal one that multiplies the arguments.

Piping allows the raising of the frequency of the multiplier. Figure 13 illustrates
the frequency change when the multiplier is pipelined. The maximum frequency after
pipelining in the implementation of Booth’s algorithm for some bits exceeds the frequencies
of the device by the proposed algorithm. However, in the proposed algorithm the reducing
of the number of partial products and the corresponding reduction in the adder numbers
leads to a decreasing of the pipeline stages number, as shown in Figure 13b. In most cases,
reducing the number of pipeline steps in the TBT multiplier decreases the time required to
obtain a multiplication result.

Electronics 2023, 12, 605 16 of 20

(a) (b)

Figure 13. Comparison of pipeline implementations of multipliers: (a) comparison of the maximum
frequency, (b) comparison of the pipeline depth. Figure shows the frequencies for the combinatorial
implementation of constant multiplication: 1—by Booth’s algorithm; 2—by the proposed algorithm
and the pipelined constant multipliers; 3—by Booth’s algorithm; and 4—by the proposed algorithm.

We also compared the considered solutions with the characteristics of the devices
designed using embedded FPGA multipliers with different argument digit capacities.
Figure 14 shows a comparison of the TBTM-based and the FPGA embedded multiplier-
based constant coefficient multipliers.

(a) (b)

Figure 14. Comparison of constant multipliers built with the proposed algorithm and assembled on
the basis of built-in FPGA multipliers: (a) comparison of the maximum frequency: 1—multipliers
assembled on the basis of embedded FPGA multipliers, 2—multipliers by a constant built with the
proposed algorithm; (b) number of the embedded FPGA multipliers.

The embedded FPGA multipliers are configured as 9 × 9 or 18 × 18 units. This explains
the nature of the graphs in Figure 14a. Embedded multipliers are fast, and when
multiplying arguments with a digit capacity not greater than 18, they operate at maximum
frequency. This frequency exceeds the frequency of the proposed three-bits-at-a-time
multiplier by about twice. When the multiplier capacity exceeds 18 digits, the frequency
decreases sharply and becomes the same as the frequency of the TBTM. This is due to the
need of the cascading multiplier and the corresponding complication of the FPGA internal
resources routing. In this case, the number of multipliers required increases dramatically.
As Figure 14b shows, seven embedded multipliers are required to multiply two codes
with a bit capacity of more than 18 bits. This is why there are sharp drops in the maximum
frequency (Figure 14a) at the points corresponding to the digit capacities n = 10 and n =
20. That is, when cascading fast embedded multipliers, the time characteristics of the
multiplier device fall sharply. Setting up embedded multipliers for multiplication by a
constant does not change the timing characteristics of the resulting unit.

Multiplication operands based on logical cell tables have no limitations in capacity.
The number and location of the built-in multipliers are fixed, while LUT-based multipliers

Figure 13. Comparison of pipeline implementations of multipliers: (a) comparison of the maximum
frequency, (b) comparison of the pipeline depth. Figure shows the frequencies for the combinatorial
implementation of constant multiplication: 1—by Booth’s algorithm; 2—by the proposed algorithm
and the pipelined constant multipliers; 3—by Booth’s algorithm; and 4—by the proposed algorithm.

We also compared the considered solutions with the characteristics of the devices
designed using embedded FPGA multipliers with different argument digit capacities.
Figure 14 shows a comparison of the TBTM-based and the FPGA embedded multiplier-
based constant coefficient multipliers.

Electronics 2023, 12, 605 16 of 20

(a) (b)

Figure 13. Comparison of pipeline implementations of multipliers: (a) comparison of the maximum
frequency, (b) comparison of the pipeline depth. Figure shows the frequencies for the combinatorial
implementation of constant multiplication: 1—by Booth’s algorithm; 2—by the proposed algorithm
and the pipelined constant multipliers; 3—by Booth’s algorithm; and 4—by the proposed algorithm.

We also compared the considered solutions with the characteristics of the devices
designed using embedded FPGA multipliers with different argument digit capacities.
Figure 14 shows a comparison of the TBTM-based and the FPGA embedded multiplier-
based constant coefficient multipliers.

(a) (b)

Figure 14. Comparison of constant multipliers built with the proposed algorithm and assembled on
the basis of built-in FPGA multipliers: (a) comparison of the maximum frequency: 1—multipliers
assembled on the basis of embedded FPGA multipliers, 2—multipliers by a constant built with the
proposed algorithm; (b) number of the embedded FPGA multipliers.

The embedded FPGA multipliers are configured as 9 × 9 or 18 × 18 units. This explains
the nature of the graphs in Figure 14a. Embedded multipliers are fast, and when
multiplying arguments with a digit capacity not greater than 18, they operate at maximum
frequency. This frequency exceeds the frequency of the proposed three-bits-at-a-time
multiplier by about twice. When the multiplier capacity exceeds 18 digits, the frequency
decreases sharply and becomes the same as the frequency of the TBTM. This is due to the
need of the cascading multiplier and the corresponding complication of the FPGA internal
resources routing. In this case, the number of multipliers required increases dramatically.
As Figure 14b shows, seven embedded multipliers are required to multiply two codes
with a bit capacity of more than 18 bits. This is why there are sharp drops in the maximum
frequency (Figure 14a) at the points corresponding to the digit capacities n = 10 and n =
20. That is, when cascading fast embedded multipliers, the time characteristics of the
multiplier device fall sharply. Setting up embedded multipliers for multiplication by a
constant does not change the timing characteristics of the resulting unit.

Multiplication operands based on logical cell tables have no limitations in capacity.
The number and location of the built-in multipliers are fixed, while LUT-based multipliers

Figure 14. Comparison of constant multipliers built with the proposed algorithm and assembled on
the basis of built-in FPGA multipliers: (a) comparison of the maximum frequency: 1—multipliers
assembled on the basis of embedded FPGA multipliers, 2—multipliers by a constant built with the
proposed algorithm; (b) number of the embedded FPGA multipliers.

The embedded FPGA multipliers are configured as 9 × 9 or 18 × 18 units. This
explains the nature of the graphs in Figure 14a. Embedded multipliers are fast, and when
multiplying arguments with a digit capacity not greater than 18, they operate at maximum
frequency. This frequency exceeds the frequency of the proposed three-bits-at-a-time
multiplier by about twice. When the multiplier capacity exceeds 18 digits, the frequency
decreases sharply and becomes the same as the frequency of the TBTM. This is due to the

Electronics 2023, 12, 605 16 of 19

need of the cascading multiplier and the corresponding complication of the FPGA internal
resources routing. In this case, the number of multipliers required increases dramatically.
As Figure 14b shows, seven embedded multipliers are required to multiply two codes with
a bit capacity of more than 18 bits. This is why there are sharp drops in the maximum
frequency (Figure 14a) at the points corresponding to the digit capacities n = 10 and n = 20.
That is, when cascading fast embedded multipliers, the time characteristics of the multiplier
device fall sharply. Setting up embedded multipliers for multiplication by a constant does
not change the timing characteristics of the resulting unit.

Multiplication operands based on logical cell tables have no limitations in capacity. The
number and location of the built-in multipliers are fixed, while LUT-based multipliers can be
placed anywhere, and their number is limited only by the size of the reconfigurable matrix.

The effectiveness of the proposed approach of multiplication by a constant using a
combination of three-digit multiplication methods with the tabular generation of partial
products can be illustrated by the FIR filter design. We compared three implementations
of a 32nd order lowpass FIR filter with 20-bit coefficients and 20-bit input codes. In the
first version, the filter coefficients were stored in the distributed memory, and the hardware
implementation of the multiplication was not specified. In the Verilog HDL program, the
multiplication operator was used. In the second version, the multiplication by coefficients
was performed using Booth’s CCM. The third version used the developed three-bits-at-a-
time multipliers to multiply by the coefficients. Table 10 shows the hardware cost of the
filter implementation, and Table 11 presents the frequency characteristics of the three FIR
filter variants considered.

Table 10. Comparison of hardware costs of FIR filter implementations.

Resource Filter Based on the Verilog
Multiplication Command Filter Based on Booth’s CCM Filter Based on TBT CCM

Total logic elements 5394 10,562 5055
—Combinational with no register 3194 9 168

—Register only 266 4839 1699
—Combinational with a register 1934 5714 3188

Logic element usage by number
of LUT inputs

—4 input functions 1506 2 0
—3 input functions 3326 5045 2444

—≤2 input functions 296 676 912
—Register only 266 4839 1699

Logic elements by mode
—normal mode 1894 1828 1183

—arithmetic mode 3234 3895 2173
Total registers 2200 10,553 4887

—Dedicated logic registers 2200 10,553 4887
—I/O registers 0 0 0

I/O pins 84 84 84
Embedded Multiplier 9-bit

elements 0 0 0

Table 11. Comparison of the frequency characteristics of FIR filter implementations.

Resource Filter Based on the Verilog
Multiplication Command Filter Based on Booth’s CCM Filter Based on TBT CCM

Slow1 Fmax, MHz 114.35 181.62 242.9
Slow2 Fmax, MHz 129.6 201.34 277.55 (250 *)

* Restriction due to the characteristics of the FPGA chip.

Electronics 2023, 12, 605 17 of 19

Analysis of the data in the tables shows that the filter built using the proposed three-
bits-at-a-time multipliers has the best frequency and hardware cost characteristics.

5. Conclusions

In the paper, we proposed an approach to the implementation of multiplication
that performs multiplication by three digits. The rate of the multipliers implementing
multiplication on a group of bits depends on the number of grouped bits and the depth of
the tree realizing the parallel summation of the partial products. Our approach reduces the
number of partial products and the depth of the tree, thus increasing the performance of the
module. The proposed solution reduces the performance difference between the embedded
FPGA multipliers and the multipliers implemented on logical cells. A comparison of the
developed multipliers with Altera’s multiplying library of parameterized modules showed
the advantage of the proposed multiplication by three digits at a time.

The paper can be used by designers of digital circuits to select an optimal method of
multiplier implementation on FPGAs with regard to their design constraints.

Further development of the method of multiplication by a group of digits can be
associated with the creation of algorithms and hardware modules multiplying by four, five,
and more digits at a time.

Author Contributions: Conceptualization, O.B. and S.M.; methodology, S.M.; software, O.B.; val-
idation, S.M.; formal analysis, S.M.; investigation, O.B.; writing—original draft preparation, O.B.;
writing—review and editing, S.M.; visualization, O.B. and S.M.; supervision, S.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Higher Education of the Russian
Federation by the Agreement № 075-15-2020-933 dated 13.11.2020 on the provision of a grant in
the form of subsidies from the federal budget for the implementation of state support for the
establishment and development of the world-class scientific center, the «Pavlov center «Integrative
physiology for medicine, high-tech healthcare, and stress-resilience technologies».

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
FPGA Field-Programmable Gate Array
LUT Look-up Table
ASIC Application-Specific Integrated Circuit
PPs Partial Products
RTL Register-Transfer Level
CCM Constant coefficient multiplier
TBTM Three-Bits-at-a-Time Multiplier

References
1. Mallya, S.N.; Revankar, S. Efficient Implementation of Multiplier for Digital FIR Filters. Int. J. Eng. Res. 2015, V4, 1661–1664.

[CrossRef]
2. Shukla, T.; Shukla, P.K.; Prabhakar, H. High speed multiplier for FIR filter design using window. In Proceedings of the

International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 20–21 February 2014; pp. 486–491.
[CrossRef]

3. Umadevi, S.; Vigneswaran, T. Reliability improved, high performance FIR filter design using new computation sharing multiplier:
Suitable for signal processing applications. Clust. Comput. 2018, 22, 13669–13681. [CrossRef]

4. Cariow, A.; Cariowa, G.; Paplinski, J.P. An Algorithm for Fast Multiplication of Kaluza Numbers. Appl. Sci. 2021, 11, 8203.
[CrossRef]

5. Kim, M.S.; Del Barrio, A.A.; Kim, H.; Bagherzadeh, N. The Effects of Approximate Multiplication on Convolutional Neural
Networks. IEEE Trans. Emerg. Top. Comput. 2021, 10, 904–916. [CrossRef]

6. Mironov, S.E.; Bureneva, O.I.; Milakin, A.D. Analysis of Multiplier Architectures for Neural Networks Hardware Implementation.
In Proceedings of the III International Conference on Neural Networks and Neurotechnologies (NeuroNT), Saint Petersburg,
Russia, 16 June 2022; pp. 32–35. [CrossRef]

http://doi.org/10.17577/IJERTV4IS051158
http://doi.org/10.1109/SPIN.2014.6777002
http://doi.org/10.1007/s10586-018-2067-5
http://doi.org/10.3390/app11178203
http://doi.org/10.1109/TETC.2021.3050989
http://doi.org/10.1109/NeuroNT55429.2022.9805564

Electronics 2023, 12, 605 18 of 19

7. Aizaz, Z.; Khare, K. State-of-Art Analysis of Multiplier designs for Image processing and Convolutional Neural Network
Applications. In Proceedings of the International Conference for Advancement in Technology (ICONAT), Goa, India, 21–22
January 2022; pp. 1–11. [CrossRef]

8. Murray, K.E.; Luu, J.; Walker, M.J.P.; McCullough, C.; Wang, S.; Huda, S.; Yan, B.; Chiasson, C.; Kent, K.B.; Anderson, J.; et al.
Optimizing FPGA Logic Block Architectures for Arithmetic. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 1378–1391.
[CrossRef]

9. Booth, A.D. A signed binary multiplication technique. Q. J. Mech. Appl. Math. 1951, 4, 236–240. [CrossRef]
10. Rubinfield, L. A Proof of the Modified Booth’s Algorithm for Multiplication. IEEE Trans. Comput. 1975, C-24, 1014–1015.

[CrossRef]
11. Tang, S.-N.; Liao, J.-C.; Chiu, C.-K.; Ku, P.-T.; Chen, Y.-S. An Accuracy-Improved Fixed-Width Booth Multiplier Enabling Bit-Width

Adaptive Truncation Error Compensation. Electronics 2021, 10, 2511. [CrossRef]
12. Chen, Y.-H. Improvement of Accuracy of Fixed-Width Booth Multipliers Using Data Scaling Technology. IEEE Trans. Circuits Syst.

II Exp. Briefs 2021, 68, 1018–1022. [CrossRef]
13. Kuang, S.-R.; Wang, J.-P.; Guo, C.-Y. Modified Booth Multipliers With a Regular Partial Product Array. IEEE Trans. Circuits Syst. II

Express Briefs 2009, 56, 404–408. [CrossRef]
14. Antelo, E.; Montuschi, P.; Nannarelli, A. Improved 64-bit Radix-16 Booth Multiplier Based on Partial Product Array Height

Reduction. IEEE Trans. Circuits Syst. I Regul. Pap. 2016, 64, 409–418. [CrossRef]
15. Venkata Dharani, B.; Joseph, S.M.; Kumar, S.; Nandan, D. Booth Multiplier: The Systematic Study. In Lecture Notes in Electrical

Engineering; Kumar, A., Mozar, S., Eds.; Springer: Singapore, 2021; Volume 698, pp. 943–956. [CrossRef]
16. Asher, Y.B.; Stein, E. Extending Booth algorithm to multiplications of three numbers on FPGAs. In Proceedings of the 2008

International Conference on Field-Programmable Technology, Taipei, Taiwan, 8–10 December 2008; pp. 333–336. [CrossRef]
17. Ben Asher, Y.; Stein, E. Adaptive Booth Algorithm for Three-integers Multiplication for Reconfigurable Mesh. J. Interconnect.

Netw. 2016, 16, 1550009. [CrossRef]
18. Wallace, C.S. A Suggestion for a Fast Multiplier. IEEE Trans. Electron. Comput. 1964, EC-13, 14–17. [CrossRef]
19. Asif, S.; Kong, Y. Low-Area Wallace Multiplier. VLSI Des. 2014, 2014, 1–6. [CrossRef]
20. Fadavi-Ardekani, J. M*N Booth encoded multiplier generator using optimized Wallace trees. IEEE Trans. Very Large Scale Integr.

VLSI Syst. 1993, 1, 120–125. [CrossRef]
21. Ykuntam, Y.D.; Pavani, K.; Saladi, K. Design and analysis of High speed Wallace tree multiplier using parallel prefix adders

for VLSI circuit designs. In Proceedings of the 11th International Conference on Computing, Communication and Networking
Technologies (ICCCNT), Kharagpur, India, 15 October 2020; pp. 1–6. [CrossRef]

22. Ram, G.C.; Rani, D.S.; Balasaikesava, R.; Sindhuri, K.B. Design of delay efficient modified 16 bit Wallace multiplier. In Proceedings
of the 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT),
Bangalore, India, 9 January 2017; pp. 1887–1891. [CrossRef]

23. Tawfeek, R.M.; Elmenyawi, M.A. VHDL implementation of 16x16 multiplier using pipelined 16x8 modified Radix-4 booth
multiplier. Int. J. Electron. 2022, 1–15. [CrossRef]

24. Mukherjee, B.; Ghosal, A. Design and Analysis of a Low Power High-Performance GDI based Radix 4 Multiplier Using Modified
Booth Wallace Algorithm. In Proceedings of the 2018 IEEE Electron Devices Kolkata Conference (EDKCON), Kolkata, India,
24–25 November 2018; pp. 247–251. [CrossRef]

25. Yao, A.; Li, L.; Sun, M. Design of Pipeline Multiplier Based on Modified Booth’s Algorithm and Wallace Tree. In Advanced Research
on Electronic Commerce, Web Application, and Communication. ECWAC 2011. Communications in Computer and Information Science;
Shen, G., Huang, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 143, pp. 67–73. [CrossRef]

26. Farrukh, F.U.D.; Zhang, C.; Jiang, Y.; Zhang, Z.; Wang, Z.; Wang, Z.; Jiang, H. Power Efficient Tiny Yolo CNN Using Reduced
Hardware Resources Based on Booth Multiplier and WALLACE Tree Adders. IEEE Open J. Circuits Syst. 2020, 1, 76–87. [CrossRef]

27. Meher, P.K. Memory-based hardware for resource-constraint digital signal processing system. In Proceedings of the 6th
International Conference on Information, Communications & Signal Processing, Singapore, 10–13 December 2007; pp. 1–4.
[CrossRef]

28. Vinitha, C.S.; Sharma, R.K. An Efficient LUT Design on FPGA for Memory-Based Multiplication. IJEEE 2019, 15, 462–476.
29. Dinechin, F.; Filip, S.-I.; Kumm, M.; Forget, L. Table-Based versus Shift-And-Add Constant Multipliers for FPGAs. In Proceedings

of the IEEE 26th Symposium on Computer Arithmetic (ARITH), Kyoto, Japan, 21 October 2019; pp. 151–158. [CrossRef]
30. Martha, P.; Kajal, N.; Kumari, P.; Rahul, R. An efficient way of implementing high speed 4-Bit advanced multipliers in FPGA.

In Proceedings of the 2nd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech),
Kolkata, India, 4–5 May 2018; pp. 1–5. [CrossRef]

31. Walters, E.G. Array Multipliers for High Throughput in Xilinx FPGAs with 6-Input LUTs. Computers 2016, 5, 20. [CrossRef]
32. Ashour, M.; Saleh, H. An FPGA implementation guide for some different types of serial–parallel multiplier structures. Microelec-

tron. J. 2000, 31, 161–168. [CrossRef]
33. Khurshid, B. Technology-Optimized Fixed-Point Bit-Parallel Multipliers for FPGAs. J. Signal Process. Syst. 2016, 89, 293–317.

[CrossRef]
34. Perri, S.; Spagnolo, F.; Frustaci, F.; Corsonello, P. Parallel architecture of power-of-two multipliers for FPGAs. IET Circuits Devices

Syst. 2020, 14, 381–389. [CrossRef]

http://doi.org/10.1109/ICONAT53423.2022.9726109
http://doi.org/10.1109/TVLSI.2020.2965772
http://doi.org/10.1093/qjmam/4.2.236
http://doi.org/10.1109/T-C.1975.224114
http://doi.org/10.3390/electronics10202511
http://doi.org/10.1109/TCSII.2020.3023429
http://doi.org/10.1109/TCSII.2009.2019334
http://doi.org/10.1109/TCSI.2016.2561518
http://doi.org/10.1007/978-981-15-7961-5_88
http://doi.org/10.1109/FPT.2008.4762411
http://doi.org/10.1142/S0219265915500097
http://doi.org/10.1109/PGEC.1964.263830
http://doi.org/10.1155/2014/343960
http://doi.org/10.1109/92.238424
http://doi.org/10.1109/ICCCNT49239.2020.9225404
http://doi.org/10.1109/RTEICT.2016.7808163
http://doi.org/10.1080/00207217.2022.2068198
http://doi.org/10.1109/EDKCON.2018.8770494
http://doi.org/10.1007/978-3-642-20367-1_11
http://doi.org/10.1109/OJCAS.2020.3007334
http://doi.org/10.1109/ICICS.2007.4449807
http://doi.org/10.1109/ARITH.2019.00037
http://doi.org/10.1109/IEMENTECH.2018.8465375
http://doi.org/10.3390/computers5040020
http://doi.org/10.1016/S0026-2692(99)00110-X
http://doi.org/10.1007/s11265-016-1195-5
http://doi.org/10.1049/iet-cds.2019.0246

Electronics 2023, 12, 605 19 of 19

35. De Dinechin, F.; Lefèvre, V. Constant Multipliers for FPGAs. In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA), Las Vegas, NV, USA, 24–29 June 2000.

36. Wirthlin, M.J. Constant Coefficient Multiplication Using Look-Up Tables. J. Signal Process. Syst. 2004, 36, 7–15. [CrossRef]
37. Walters, E. Reduced-Area Constant-Coefficient and Multiple-Constant Multipliers for Xilinx FPGAs with 6-Input LUTs. Electronics

2017, 6, 101. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1023/B:VLSI.0000008066.95259.b8
http://doi.org/10.3390/electronics6040101

	Introduction
	Materials and Methods
	Mathematical Basis of Booth’s Algorithm
	Multiplication Algorithm for Three Digits at a Time
	Mathematical Basis for the Implementation of Three Digit Multiplication
	Hardware Implementation of the Algorithm

	Designing a Multiplier on the FPGA Basis
	Hardware Implementation of the Modified Booth’s Algorithm
	Implementation of Two Binary Code Multiplication
	Implementation of the Constant Coefficient Multiplier

	Hardware Implementation of the Proposed Algorithm for Multiplying by Three Bits at a Time
	Implementation of Two Binary Code Multiplication
	Implementation of the Constant Coefficient Multiplier

	Discussion
	Conclusions
	References

