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Abstract: Networks are essential components in the surveillance applications of control systems. In
unmanned surveillance applications, numerous agents are employed to provide unmanned services.
These agents secure large areas and communicate with a control system, checks their status and
sends/receives data via multiple networks. These networks need to assign roles based on the
application characteristics. In this study, we propose the design of a multiple-network-based control
system for large surveillance areas. To this end, an interface for transmitting mission commands to
agents needs to be developed because it can allow users to monitor and assign tasks to all agents.
The proposed system is developed as a test bed connected to fixed/mobile agents using LoRa, Wi-Fi,
Bluetooth, and LTE communication methods; moreover, its usability was tested in a real environment.

Keywords: control system; multiple networks; unmanned surveillance system

1. Introduction

Recently, owing to the Fourth Industrial Revolution, interest in unmanned services pro-
vided by multiple agents has been increasing. Numerous studies have been conducted to
autonomously perform missions using fixed and mobile agents. As these services enhance
human convenience, their use is increasing in various fields, including social, medical,
security, information, care, manufacturing, maritime, aviation, and disaster fields [1,2]. In
particular, security services are major autonomous services that can reduce social anxiety
and monitor high-risk, unattended areas. Currently, most surveillance systems mainly
detect intruders or monitor fires based on images [3,4]. With the development of communi-
cation technology, surveillance systems composed of only fixed camera devices are being
replaced with those composed of robots and cameras [5–7]. However, most surveillance
systems are used in indoor environments or limited areas and mainly perform single-sided
image transmission for surveillance [8]. In order to compensate for these shortcomings,
more active security services using ground or air agents are required [9]. This improved
service must utilize a multiple communication method, be capable of direct and rapid
intervention through fixed and mobile agents, and monitor through a communication
system [10,11]. The existing data collection system that uses multi-band communication is
difficult to apply to robot services [12]. Moreover, the fusion system with multiple data-
sharing methods, although originally designed to enable high-speed connection, can be
used with a large number of databases [13]. Data and transmission security is always a con-
sideration [14,15]. Nevertheless, for the unmanned security robot service, a communication
system capable of bidirectional communication and covering large areas is required.

Meanwhile, the control system must provide a useful interface for the user. To perform
security missions, the user must be able to interact with agents on the interface; therefore,
the interface must be designed with the objective of facilitating the monitoring of trans-
mission and reception data (e.g., agent status). The interface of the monitoring system is
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intended for user-centered interaction such as gestures [16,17]. Although an interface with
a monitoring-robot system using wireless communication exists, its application to actual
sites is limited in a wide space, or by data size [18]. Therefore, surveillance systems and
interfaces are required to analyze the actual security mission and define and design the nec-
essary tools. Herein, we propose a control system that incorporates various communication
techniques; with this system, numerous robots can communicate in both directions in large
outdoor areas. This system employs four types of communication methods, namely, long
range (LoRa) [19], wireless fidelity (Wi-Fi), Bluetooth, and long-term evolution (LTE), for
communication between the control system and fixed/mobile agents. Further, it provides
an interface that enables users to monitor the image data received from the agents in real
time and command the defined mission by selecting a surveillance area. For performance
analysis, unmanned security mission tests were conducted by installing the proposed
system at two different sites.

This study presents a multiple network-based control system for unmanned surveil-
lance applications. The system performed 48 h continuous guarding and collected data for
more than 6 months. The contributions of this paper are as follows:

• The long-term cost scenario demonstrated using multiple networks.
• We realized a real-time unmanned security system by simultaneously using fixed and

mobile agents.
• We present examples of applying this system to multiple sites at the same time.

The rest of this paper is structured as follows. The roles of the configuration and
communication method of the multiple-network system and data transmission code are
detailed in Section 2. The control system and interface are introduced in Section 3. The
results of building the control system are presented in Section 4. Finally, the conclusions
are presented in Section 5.

2. Multiple-Network System
2.1. Four Types of Communication Methods

Figure 1 shows the four types of communication methods (LoRa, Wi-Fi, Bluetooth, and
LTE) that play a role in the consideration of each characteristic for the mobile agents. The
proposed system uses Bluetooth communication (first priority) for direct user control, LoRa
communication (second priority) for emergencies, Wi-Fi communication (third priority) for
normal performance, and LTE communication for sensor data transmission. The flowchart
of the control data for the mobile agent is shown in Figure 2. The fixed agent sends sensor
and cognitive data through one-way communication using the Internet.
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Therefore, the mobile agents execute control commands according to the priority
of each communication method. First, Bluetooth is employed for short-distance control,
because the operation of multiple robots requires reliable communication. Second, normal
control and status communication are performed to cover a large outdoor area using
multiple Wi-Fi modules. Finally, the mobile agent is configured to transmit sensor data
using LTE with a wide bandwidth. Details of the communication methods used are
as follows:

• Bluetooth (controller): short-range (within 20 m) wireless control (mode (manual/auto-
nomous/remote), linear speed, angular speed, speed increase, speed decrease);

• LoRa (emergency): emergency start/stop, return command, reboot command when
communication is impossible in normal status;

• Wi-Fi (usual): mission command (robot mission (patrol, monitoring), target point list,
mission start, emergency stop) and normal message (robot current position, previous
target point, current target point, robot status message), remote control (start/stop,
linear speed, angular speed, speed increase, speed decrease);

• LTE (for sensor data): multimodal sensor module-based image data (three types: color,
night vision, thermal image) and 10 Hz 3D LiDAR Point Cloud data.

2.2. Implementation of the Network System

Table 1 lists the details of each communication module constituting the system used
with the multiple communication method. For LoRa, two models for transmission and
reception are used, both of which employ frequencies in the range of 917–923 MHz and
have a bandwidth of 125 kHz. Although this method has a narrow bandwidth, it is suitable
for communicating control commands in emergencies because a coverage of ≥10 km is
possible, even in an urban environment. The communication method is implemented
following the transmission protocol and using send/receive messages; the details are
presented in Table 2 and Figure 3.
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Table 1. Comparison of the communication module specifications.

Method Model
Specifications

Distance Frequency Bandwidth

LoRa
uLory 10 km 917–923 MHz 125 kHz
LoryG 10 km 917–923 MHz 125 kHz

Wi-Fi Spider 500 m
(Hand over) 5 GHz 20 MHz

LTE ME-Y51Wl 100 km 8,502,600 MHz 100 MHz

Bluetooth Logitechf710 10 m 2.4 GHz 1–2 MHz

Table 2. LoRa transmission protocol.

Variable Name Type Contents

Robot ID uint16 Robot identification

Timestamp int32 Time

Millisecond uint16 Time

Message ID uint16 Message identification

cmd int32

0: mission stop
1: mission start

2: surveillance start
3: return start
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By contrast, the Wi-Fi communication module has the advantage of enabling handover—with
a coverage of 500 m and performance of 300 Mbps—as shown in Figure 4. Since reception
and transmission are possible with a single module, it can be mounted onto mobile agents
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to easily address blind spots. To transmit robot control commands via Wi-Fi communi-
cation, message queuing telemetry transport (MQTT) is used. This method follows the
TCP/IP protocol and is very useful for operating multiple agents in a manner that focuses
on embedded devices. Table 3 and Figure 5 present the protocols for communication using
this method. In other words, it is possible to transmit and receive control commands
through communication between the control system (cloud or local server) and agents.
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Table 3. MQTT transmission protocol.

Variable Name Type Contents

Path Count int32 Path Amount

Robot path protocol Path info (100) double
Map coordinate
(x, y, heading)

Robot mission
protocol cmd int32

0: mission stop
1: mission start

2: surveillance start
3: return start
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Figure 5. Code for the MQTT transmission protocol.

Next, the LTE module transmits three types of image data (color, thermal image, and night
vision) using the multimodal sensor module [20] mounted onto the fixed and mobile agents
and the ME-Y51WL model. It is constructed on the security site using several agents (e.g., three
fixed and three mobile), and sensor data are transmitted as a file at a speed of 10 fps to monitor
and recognize abnormal situations; the details are shown in Figure 6. Finally, Bluetooth allows
the user to control the robot with direct control commands using a wireless controller.
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Figure 6. LTE transmission for sensor data. (a) The upper 3-view from mobile agents and lower 3-view
from fixed agents that can select the type of sensor data (color, night vision, thermal image), (b) agent
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3. Unmanned Surveillance Control System

The architecture of operating an integrated control system for guarding an outdoor
environment using multiple robots is shown in Figure 7. It comprises four layers: the
network layer that uses the four types of communication methods mentioned in Section 2;
the system layer that includes middleware for connecting with several agents; and the
UI that enables monitoring, reporting, commands, and mobile agent control. Further, it
comprises an application layer and a data layer for storing monitoring data. Therefore,
the system is designed to perform various security missions. Moreover, monitoring and
positioning interfaces are added for access to the status information of the mobile agents
(e.g., battery level, number of agents available, working hours, and agent failure).
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To perform the different security missions, allocating a path for each mobile agent mis-
sion is necessary. Therefore, the control system assigns missions (e.g., patrol, surveillance,
and guidance), receives sensor data and status information from fixed and mobile agents,
confirms with the administrator, and configures the interface to perform the task, as shown
in Figure 8. In the COMMAND modal window, the function to give control commands
to the robot is included. In the ROBOT ENABLE modal window, the user can select the
mobile agent they want to control on the security site. In the WORK modal window, the
user can send commands such as: patrol, monitoring, guidance, emergency, access control,
return to all, and stop all tasks, to the mobile agent. Finally, in the MISSION modal window,
the user can select mission stop, mission start, watch start, and return. Therefore, the
control system has an interface that the user can utilize to comprehensively control the
agent’s mission (e.g., surveillance, patrol, guidance, and return) and to select the numbers
of agents and the mission of each agent. Further, the user can control the agents at any time
while monitoring.
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Figure 8. Mission assignment graphical user interface (GUI).

Moreover, the control system configures the Map UI by receiving the user’s input,
such that the user can allocate the mission and route information to command the mobile
agents to perform the mission. Further, it uses the coordinates on the map to perform the
mission and transfers it to the global path-planning algorithm [8]; thereafter, it displays
the individual routes received on the map, allowing the administrator to intuitively set the
mission (Figure 9).
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Control monitoring is possible using real-time location information received from a
robot while performing a given mission. In Figure 10, this is achieved using Google API,
and the real-time location of the robot can be displayed on Google Maps through the label
function; consequently, the progress of the security mission can be known. Furthermore,
by managing the state of multiple mobile agents based on the status information, the cost
efficiency for covering the large security area is improved by simultaneously linking with
other agents as they have autonomous charge. In Figure 11, the upper part is a window to
check the communication status of the control system and the status of each robot, and the
lower part displays the working time, work type, fault status, and battery level.
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4. Control System Implementation

The proposed control system in the outdoor environment based on multiple fixed and
mobile agents created a unique tag for message transmission between the sending and
receiving agents. Each agent was connected to one agent core and transmitted a message
by recognizing the tag, regardless of the IP and port number, as shown in Figure 12. When
creating an agent, the ID was registered in the agent core, and when the sending agent
transmitted the message, the agent core separated the message and transmitted it to the
receiving agent.
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Figure 12. Multi-agent framework for the control system.

With the control system built using the agent core-based framework, it was possible
to communicate with an agent using Linux (communication server) and Windows (UI
and status check). Therefore, by integrating the data of the agents, an integrated control
system was built on two locations; this allowed the user to check the agent status, mission
information, and abnormal situation information or to assign tasks to multiple agents
(Figure 13).
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Figure 14 shows the proposed system performing repeatedly over a long period of
time (Continuous 48 h or 6 months long term).
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5. Conclusions and Future Works

We proposed a system that can be used to control multiple agents (fixed and mobile
agents) using multiple communication methods. Further, this system can also be used
to provide security services. An efficient UI and control system for security services in
large outdoor environments was developed, and the necessary factors were analyzed. The
proposed system was applied to two sites (Pohang and Gwangju). The multimodal sensor
dataset built using the proposed system is used openly [21] and the data are stored in the
form of a probability map to learn and respond to abnormal situations [22]. This system
is expected to be used not only for practical application of domestic robots and surveil-
lance systems but also to impact related research areas. Further, different communication
methods will have to be developed to suit various purposes.

In future, this application will be expanded to a wide-area space communication
system in an extreme environment. To this end, we are developing a long-distance Wi-fi
module (communication distance greater than 50 km) that can be used in Antarctica by
applying Iridium communication to replace LoRa and by working to minimize latency to
enable real-time remote control.
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