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Abstract: In recent years, researchers have focused on improving the efficiency of photovoltaic
systems, as they have an extremely low efficiency compared to fossil fuels. An obvious issue
associated with photovoltaic systems (PVS) is the interruption of power generation caused by changes
in solar radiation and temperature. As a means of improving the energy efficiency performance of
such a system, it is necessary to predict the meteorological conditions that affect PV modules. As part
of the proposed research, artificial neural networks (ANNs) will be used for the purpose of predicting
the PV system’s current and voltage by predicting the PV system’s operating temperature and
radiation, as well as using JAYA-SMC hybrid control in the search for the MPP and duty cycle single-
ended primary-inductor converter (SEPIC) that supplies a DC motor. Data sets of size 60538 were
used to predict temperature and solar radiation. The data set had been collected from the Department
of Systems Engineering and Automation at the Vitoria School of Engineering of the University of the
Basque Country. Analyses and numerical simulations showed that the technique was highly effective.
In combination with JAYA-SMC hybrid control, the proposed method enabled an accurate estimation
of maximum power and robustness with reasonable generality and accuracy (regression (R) = 0.971,
mean squared error (MSE) = 0.003). Consequently, this study provides support for energy monitoring
and control.

Keywords: JAYA algorithm; forecasting; artificial neural networks; sliding mode control; PEMFC;
MPPT; SEPIC chopper

1. Introduction

Nowadays, the prediction of the developments that will occur in all areas is becoming
a critical necessity. Therefore, the techniques that have merged to predict a future result or
ensure the so-called forecasting are increasingly being demanded. Among such techniques,
the artificial neural network (ANN) has been used as a forecasting tool in many applications.
Indeed, it has been used in the tourism sector to forecast the number of tourists or hotel
stays in a country [1]. It has also been used in the financial trading [2] and energy sector,
including power usage and especially renewable energy [3-5]. The literature has shown
many published studies highlighting the performance of neural network-based methods
compared to other forecasting methods, particularly with high-frequency data. The present
investigation focuses onrenewable energies application because it is among the most
important fields attracting the researchers worldwide. This is justified by the fact that such
energies are sustainable and preserving the ecosystem. Solar energy and wind energy are
the most important and widely used renewable energy sources. Solar energy resources are
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considered an efficient source of sustainable energy. Photovoltaic solar energy is converted
into electricity using photovoltaic cells. Today, the energy extracted from photovoltaic
(PV) power plants can be off-grid or integrated into the electrical grid [6], especially
when they are connected to other energy sources to form a hybrid system [7,8]. As an
innovative forecasting framework, FE-SVR-mFFO has been proposed as a hybrid technique
for improving strategic decision making in smart grid applications [9]. Based on the FE-
SVR-mFFO results, it has been demonstrated that it is effective in terms of stability, accuracy,
and convergence rate.

To achieve the sizing of the photovoltaic generator, its produced energy under con-
tinuous weather changes should be estimated. Consequently, weather changes should be
predicted in order to facilitate the PV system control and monitoring. There are two types
of forecasting methods: the qualitative methods based on sensory emotions, doubts, experi-
ences, and opinions; and the quantitative methods depending entirely on mathematical
calculations. In relation to the studied application of PV systems, the second method is the
most commonly used method to predict the temperature and the solar irradiation.

Despite the advantages of solar energy, photovoltaic generators have some drawbacks,
such as a lower efficiency compared to fossil energy sources, as well asan instability of the
produced energy since it is influenced by the changes in the atmospheric conditions. This
issue seriously affects the grid stability. The energy produced by a photovoltaic generator
changes with sunlight and temperature and can also provide a better energy conversion
at a specified operating point. This point is called the maximum power point (MPP). The
researchers designed several techniques for tracking the MPP to achieve voltage and current
regulation [10]. It has been mentioned in [11,12] that the maximum power point tracking
(MPPT) control techniques based on electric current measurement are used; however, they
have some drawbacks related to employed analogue controllers. However, digital MPPT
controllers are designed by algorithms, as investigated in [7,11,13,14]. In the literature,
many methods to search the MPP point have been proposed. The most famous one is the
perturb and observe (P&O) algorithm, which is the oldest and simplest one. In [15], it
has been indicated that the algorithm (P&O) is generally dependent on initial conditions
and exhibits fluctuations throughout the optimum point. Otherwise, this method has
a bad performance in the case of sudden changes in meteorological conditions [16-20].
Taking that into consideration, another MPPT technique called incremental conductance
(IC) has been proposed to overcome the limits of the P&O algorithm. The IC is considered
more complex than the P&O [21]. The algorithms based on the measurement of the open
circuit voltage (Voc) or the short circuit current (Isc) are veritably simple and easy to apply.
Nevertheless, their main problem is the power loss and the transmission interruption
during Voc and Isc measurement [22,23].

To overcome this problem, an experimental cell of the same nature as the PV panel
cells is used. In addition, locating the optimal operating point is particularlychallenging.
Therefore, these methods are only approximations that do not give enough precision, and
therefore, the system does not necessarily operate at the optimal point. In this context,
the technique based on fuzzy logic control (FLC) theory is important and effective [24].
Indeed, this technique works at the optimal point without oscillations [25]. However, the
implementation of the FLC technique is more complex than classical algorithms and its
efficiency depends largely on the rule table.

In a more developed context, many optimization techniques, some based on the
heuristic approach and others on the meta-heuristic approach, have been used for the
implementation of MPPT techniques. Swarm-based algorithms (particle swarm, artificial
bee colony,...), and trajectory-based algorithms (Tabu search, hill climbing,...), as well as
evolutionary algorithms (genetic algorithm,...) have been suggested [26,27]. In particular,
the evolutionary intelligence and swarm based algorithms are probabilistic algorithms
that require common control parameters and are very efficient for MPP point tracking.
Therefore, the choice of a reliable and consistent MPPT technique was targeted towards the
JAYA algorithm [28]. This algorithm was formulated by RAO in 2016 to solve constrained
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and unconstrained optimization problems, based on the concept that the solution obtained
for a given problem should move towards the best solution and should avoid the worst
solution [29]. The JAYA algorithm is a definitive, parameter-free algorithm.

In contrast to other meta-heuristic algorithms, the JAYA algorithm does not require
any special parameters. Compared to, for instance, GA, PSO, CPSO, and GWO, each
algorithm requires careful selection of parameters. It is because they affect the accuracy of
the search for the optimal value. A further advantage of JAYA is that it has a very simple
structure and has been shown to be effective at solving optimization problems [30,31].
Since SMC has a simple algorithm and a high degree of robustness, it has been widely
used for nonlinear control systems [32]. As a result of the simplicity of both methods, as
well as their effectiveness, JAYA and SMC have been combined in this work. It has been
shown in [33] that gradient optimization techniques are combined with the PI controller
to determine the optimal point and control for SEPIC. However, due to the complexity of
this controller, it is difficult to extract the PI gains. Furthermore, the gradient optimization
method requires special parameters to reduce error, which are difficult to determine. In
this way, hybridization between JAYA and SMC provides a simple and robust means for
controlling and determining the optimal point.

In this paper, the JAYA algorithm has been exploited to control the DC-DC converter
and ensure MPP point tracking. To control the duty cycle, there are many control methods.
Among the best-known methods are those that use PID or PI controllers [33,34]. These
methods are simple and easy to use as their parameters (P proportional, D derivative,
P integral) are relatively easy to measure. However, these methods are not practical in
industrial or energy environments as they have many non-constant inputs that change
continuously with the weather and external factors. As a result, these methods provide
limited performance in the presence of external disturbances and uncertainties. On the
other hand, sliding mode control (SMC) is an important technology in many dynamic
and complex domains, mainly because of its significant ability to reject uncertainties and
exclude external disturbances. SMC has been widely used for non-linear control systems
due to its simple algorithm and high robustness.

By predicting the operating temperature and radiation of the PVS, the proposed
research makes use of artificial neural network (ANN) technology to predict the current
and voltage. Further, the JAYA-SMC hybrid control system is designed to determine the
MPP and duty cycle of the single-ended primary-inductor converter (SEPIC) that supplies
the DC motor.

Even with the constant evolution of photovoltaic panel technology in the field of elec-
tricity generation, the storage of electrical energy for later use or to reduce the fluctuation of
solar production remains a great challenge for users of this technology when not supplied
by the grid. Possible solutions include batteries for storage, which are expensive and
difficult to maintain safely and need to be replaced frequently. To this end, other new and
more viable technologies for energy storage, such as systems that rely on hydrogen storage,
have become available due to their significant advantages over battery systems [35-37].
The underlying technology that makes this possible is hydrogen electrolysis, which is the
process where the use of low voltages is used to create reactions in various solutions. This
is the electrolytic process, which can be used to split a molecule of water into hydrogen
and oxygen [38].

Energy is of the utmost importance, as mentioned above, as such it is imperative to
develop management methods, the most notable of which are forecasting techniques and
MPPT detection. Recent years have seen the development of these methods. In this respect,
choosing the most appropriate MPPT method and making a prediction can be a challenge,
since each method has its own advantages and disadvantages. In light of these factors, it is
imperative to select simple, effective, and straightforward methods, particularly when there
are unpredictable weather conditions that can prevent some methods from performing
properly, e.g., GA and PSO. For control and monitoring, critical evaluation and analysis
are key. A specific idea presented in this paper is combining robust control and simple
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optimization techniques for energy prediction and control, while maintaining robustness
and accuracy.

This paper makes the following major contributions:

e Implementation of artificial neural networks (ANN) to predict temperature and solar
radiation as it is one of the most effective and efficient methods in all fields.

e Implementation of JAYA-SMC based approach to control DC-DC converters according
to the maximum power point tracking concept (MPPT).

The remainder of the paper is organized as follows: In the second section, the method-
ology is discussed, including PV panel modeling, Artificial Neural Network modeling, and
the implementation of JAYA-SMC hybrid controllers for MPP extraction and SEPIC control.
Detailed simulation results and discussions are presented in Section 3. This paper ends
with concluding statements and recommendations for future work.

2. Methodology
The topology of the studied system is depicted in Figure 1.
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Figure 1. Topology of the studied system.
2.1. PV Panel Modeling

The solar cell is a PN junction semiconductor. When exposed to light, it generates a
direct electric current. The generated current varies slightly linearly with solar radiation
variation. The commonly used circuit model of a PV cell consists of a current source that
depends on the values of solar radiation and temperature in parallel with a diode and a
shunt resistor (Rgy,), that are in series with a second resistor (R;) (Figure 2).

1 W

1, R I

v

Figure 2. PV panel equivalent circuit.
According to Kirchhoff’s current law, the generated current I is represented by Equation (1)

g(V+IRs) V + IR

IZIh—IOEW—l (1)
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where V is the voltage at the PV generator terminals, q is the charge of an electron
(1.602 x 1071 C), a is the PV cells ideality factor, Ng is the number of PV cells connected in
series, K is the Boltzmann'’s constant (1.38 x 10723 J/K), Ng is the number of series cells,
Ly is the photocurrent, described by Equation (2), and Iy is the saturation current of the
diode expressed by (3).

Isc + Ki(T — Tsrc)

Gstc

Ip = G @)
where Ggrc and Tsyc are, respectively, the irradiation and temperature under standard
test conditions, G and T are their reel values, Isc is the short-circuit current, and K; is the
temperature coefficient for short-circuit current.

_ Isc +Ki(T — Tsrc)

In —
0 1Voc+Ko(T—Tgrc)]
BT ¥ Fa—

®)

e

where V. is the open-circuit voltage and Ky is the temperature coefficient for open cir-
cuit voltage.

As can be seen in Equation (2), the photocurrent depends mainly on meteorological
conditions such as irradiation and temperature. The mathematical development conducted
in the majority of literature confirms that the irradiance has more effect on the photocurrent
and consequently on the generated current.

2.2. Proposed Artificial Neuro Networks Predictive Modeling

Forecasting allows for predicting the required future steps for different application
areas, such as commercial and industrial fields. This is mandatory for to make the necessary
decisions to improve the future situation and avoid the worst outcomes that could affect
the desired situation. Forecasting is divided into two types: qualitative and quantitative
forecasting. Time series forecasting is the most prominent of these methods. Indeed, time
series are predicted by mathematical forecasting through time-specific historical data. The
historical data are analyzed and strategic decision-making is performed for the future. For
this type of prediction, the analysis must be thorough and evidence-based to ensure that
the future outcome is achievable.

Nowadays, most technologies use artificial intelligence (AI) because of its efficiency.
Among Al techniques, those based on neural networks (NN) are being employed to address
many problems, including prediction problems. The working principle of NNs is based on
an interconnected processing element that depends on biological neurons equivalent to
pieces that carry information and transmit it to other cells in a series of networks [39].

According to Figure 3, the artificial neurons consist of three levels: the first level is the
input, which consists of a number of nodes where each node represents one of the inputs,
and the second level is the hidden level, and its number varies from one network to another
according to the level of input and output. The last level is the output level, which is the
result or the goal to be reached. All the previous levels are connected to each other through
the nodes and contain a group of nodes that receive inputs and outputs called the level,
and each node carries weights that enhance the strength of the neural connection.
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Inputs layers X

Figure 3. Neural network architecture.

A neuron consists of an integrator that performs the weighted sum of its inputs [40].
The result, P, of this sum is then transformed by a transfer function, Y, which produces the
output, S, of the neuron, according to the Equations (4) to (8).

n
P=)Y Wy ;X;—p 4)
j=1

P=WIX-8 (5)
X = [Xl, Xz, ..... ’ Xk]/' W = [Wl,l/ Wl,2 ..... ’ Wl,n] (6)

Wl,l W1,2 ..... Wl,n
W= |W,, Wy, ... Wa, )

Wi Wia ... Wi

To obtain the output of the neuron, the activation function Y is employed:
S=Y(P)=Y(W'X~p) ®)

where

X:input layers.

W:weights.

n: numbers of entries, for our example, n=2.

k: number of neurons in the same layer.

Y: activation equation.

B: bias.

Various possible forms of the transfer function can be found. There are four popular
activation functions: symmetric threshold, threshold, sigmoid, and linear.

For the present case, the sigmoid function is used to forecast the outputs (T, G),
according to the following input/output relationship (9):

1
= et Y

The NN-based prediction technique of the temperature and the irradiation (T and G)
follows these steps:

e  Stepl: Data assembly, pre-processing, data conversion, and normalization. The data
set used to predict the temperature and solar radiation reflected on the PV under study
was obtained from the Department of Systems Engineering and Automation at the
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Vitoria School of Engineering of the University of the Basque Country. The data was
collected using the irradiance and temperature sensor Si-V-010-T [41].

Step2: Statistical analysis.

Step3: Neural Network objects design.

The Figure 4 shows the structure of the adopted neural network.

3
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Figure 4. The neural network architecture.

Step4: Network training; the algorithm of Levenberg Marquardt has been used for the
training of the network. This choice has been justified by the fact that this algorithm
typically requires more memory but less time. The training automatically stops
when the generalization stops improving, as indicated by an increase in the mean
square error of the validation samples. The Mean Squared Error is the average squared
difference between outputs and targets. Lower values are better, as zero means no error.
This algorithm is also improving the regression, R, and it is the value measuring the
correlation between outputs and targets. A unit, R, value indicates a close relationship,
while 0 denotes a random relationship.

Step5: Simulation of network response to new entries.

Step6: Approval and testing.

The sample data process is divided into three phases: A reasonable result can be

achieved by adjusting the ANN weights during the training phase. The second phase
involves determining the minimum point of error. In the third phase, the accuracy of the

ANN is evaluated.

After presenting the proposed forecasting technique, the following section focuses

on the suggested MPPT-based control of the DC-DC chopper integrated to extract the
maximum available power independently of the meteorological conditions.

The main stages of the temperature and solar radiation prediction algorithm are

displayed in a flowchart in Figure 5.
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Figure 5. Flowchart of the temperature and solar irradiation prediction algorithm.

Hyperparameters have a significant impact on the neural network accuracy. For the
purpose of determining the optimal set of hyper-parameters, Bayesian surrogate gaussi
an processes, gradient boost regression trees, and random forest were used [42]. The
authors in [43] presented a meta-heuristic algorithm for optimizing hyperparameters. A
cross-validation approach was used in this study to train and validate neural networks
with multiple architectures. In this method, weight optimization was performed by finding
the weights that minimized the mean squared errors (MSE) between the obtained outputs
and the desired ones, using a set of training models, and comparing the results at each
epoch against a different set of training models. In the second set, which was generally
referred to as the validation set, training was stopped once the MSE in the validation
set increases. As part of a batch training process, networks were trained using the back-
propagation algorithm with different iterations or epochs. The number of epochs and the
number of neurons in the hidden layer had a significant impact on the performance of
the neural network. Using the hidden layer neural network of two neurons and training
it for 1000 epochs, the smallest MSE validation could be obtained. In this study, 60538
temperature and solar radiation values were collected, of which 70% were recorded for
training and 30% were used for validation and testing. With 20% of the hidden layer’s size,
this was achieved.

In this network, two layers of feed-forward neurons with sigmoid hidden neurons
and linear output neurons were used to perform regression tasks. The neural network was
trained using the Levenberg-Marquardt algorithm, in which training was automatically
stopped when there was no further improvement in generalization. An analysis of the
mean square error (MSE) and regression (R) indicated the completeness of this algorithm.
According to the results of this study, MSE = 0.003 and R = 0.998 were found, indicating a
strong correlation between outputs and objectives.

Concerning the choice of input features, various research works have dealt with this
subject [44]. In the present work, each additional neuron allows for the consideration
of specific profiles of the input neurons. A larger number, therefore, allows for it to be
possible to better adhere to the data presented but reduces the generalization capacity
of the network. At this time, there is no general rule but rules of thumb. A subsequent
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research path would consist of estimating a network comprising of many neurons and
then in simplifying it by analyzing multi-collinearities, by learning rule eliminating useless
neurons, or by defining an architecture considering the structure of the variables identified
beforehand by a principal component analysis.

2.3. JAYA-SMC Hybrid MPPT Control of the SEPIC Chopper
2.3.1. Integrated SEPIC Chopper

The single-ended primary-inductor converter (SEPIC) is a modification of the Basic
Boost and Cuck Converter. It is more performant than other DC-DC converters in terms of
purity and efficiency of the input current since it shows very little bypass or ringing, as well
as a reduced switching loss. The output noise and power phase that can be operated at a
much higher frequency than that of other inverters will also be reduced. The output voltage
achieved by the SEPIC converter is non-inverting. Figure 6 shows the electrical diagram
of a SEPIC converter. The different values of the electronic components are mentioned
in Appendix B.

Figure 6. Electrical diagram of SEPIC converter.

The SEPIC chopper operation principle is analyzed in two stages according to the
conduction state of the switch K. Based on the notations of the Figure 6, when the switch
K is closed, the behavior of the SEPIC is described by Equation (10). When it is open,
Equation (11) describe the behavior of the SEPIC.

dil _ 1 .
G =1 Ve
iz _ 1 |y
dat Lz 4]
dve, 1 . (10)
& -G
o 1
dt G VCZ

dill 1 1
G =17 Ve 11 [Vo + Ve

dil2 __ 1

G = Ve

Ve, 4 (11)
a G

dVe,

it =& (h+ib) - & Vg,
The state model of the converter is inferred from Equations (10) and (11). This model
is presented in Equation (12).

&= L% Ve— 1 - (1=d) - [Ve, + Vo]
dil2 _ d (1—d)
42 = ve — UE0 v, )
=Gl g
1 1 2
dVv, —d . .
=0 (i +il) - & -V,

The parameter d refers to the duty cycle of the SEPIC chopper. Such a parameter is
mainly determined via the maximum power point tracking technique.
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2.3.2. JAYA-SMC Hybrid MPPT Control

One of the most important problems that the PV generation faces is the problem of
maximum power tracking ability, which is mandatory for the DC-DC chopper. In fact,
the solution exists to control such a converter to take maximum advantage of the power
produced by the PV panels. In order to overcome the drawbacks of the conventional MPPT
methods, such as perturb and observe (P&O), incremental conductance (IC), etc. ..., a recent
MPPT based on the hybridization of the JAYA optimization algorithm and the sliding mode
control (SMC) is proposed. This MPPT technique is employed to maximize the power
generated under the constraints of equality that includes the relationship between current
and voltage. This problem aims to raise the PV power by setting the optimum value of
I and V, where the equations expressing the optimization problem and the constraint of
equality R (I, V) = 0 are established in Equations (13) and (14):

{ l’rII’?/X[P(I, V)] 3
R(I,V) =0

With

P(LV)=1-V
q(V+IRs) (14)

R(I,V):Iph—lo( W_U_V%LRS—I

The objective is to solve the optimization problem based on equation in (13).

1. Jaya Method

Heuristic algorithms are becoming a good solution to model-free optimization prob-
lems [45—47]. In this article, an advanced swarm-based JAYA algorithm is used to find
the maximum power point for PV arrays. This algorithm does not require any specific
parameters to be configured. Therefore, it is easy to implement without having to modify
the initialization parameters.

In the present work, f (x) is considered as the objective function to be maximized as
the power P(X) =P (V, I). The JAYA algorithm searches Vmax and Imax allowing it to reach
Prax. It is easy to implement, in each iteration of i, as it is assumed that there is a number of
design variables, m, (j = 1, 2, m), and n, the number of candidate solutions that determine
the community size, K, (k =1, 2, n). The best candidate obtains the best value of P(X) in the
candidate solution set and the worst candidate obtains the worst value of P(X) in the set of
candidate solutions. If X(i,j,k) is the value of the variable, jth, of the filter Kth, in iteration ith
this value is adjusted in Equation (15).

Xn(i,j) = X (1 j, k) 4711, (Xpest () = 1XE DD = 12, (Xworst () = [X@)) - (15)

Herein, X(i,j) is jth from the assumption of the solution ith | X(i,j) | is the absolute value
of X(i,j), Xbest(j) is the best solution, Xworst(j) is the worst solution, Xn(i,j) is the update of
the variable X(i,j), andr; » are two random numbers belonging to the interval [0,1].

The main steps of Algorithm 1 are illustrated in the following description.
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Algorithm 1: JAYA Algorithm

Step 1: Set the population and the maximum number of iterations NPop and

Nmax.

Step 2: Determine the Xbest andXworst solutions.

Step 3: While gen <= < Nmax

For I =1 to Npop carry out:

Xa(irf) = X (i, k) 4+ 117 (Kt () = 1X (D)) = P (Kworst () = X, ) )

Obtain the update community and evaluate the new value, if the new value is
more suitable than the previous one, it will replace the old one.

End for; End while.

Step 4: Show existing solutions X(i) and f(X(i)).

It is important to recall that the JAYA algorithm is used to optimize the parameters of
the sliding mode control.

2. Sliding Mode Control Technique

To determine the duty cycle of the SEPIC chopper, the sliding mode control (SMC)
has been adopted. The SMC is a kind of variable structure control algorithm. The funda-
mental difference between sliding mode control and conventional control strategy is the
discontinuity of its control [48]; that is, the controller output changes over time and exhibits
switching characteristics. Since the sliding mode is independent of system parameters and
disturbances, the sliding mode system has strong robustness. The basic principle of sliding
mode is shown in Figure 7, where the following steps are processed:

First, design a sliding surface in state space.
Have a selection of a control law to force the state trajectory of the system to move
towards a predetermined surface in finite time.

e  Maintain around this surface with appropriate switching logic.

A X

X(to)

Sliding surface \zeachinig phase
>

/ X(t1)

Sliding surface A

Figure 7. SMC basic principle.
In order to regulate the converter input current, the following sliding surface is chosen:
5= iref —in (16)

where i, is the optimum current of the MPPT control and 11 the input current of the
converter SEPIC. By defining the above surface, the control law should be applied to the
converter to force the system to move on the sliding mode surface in a finite time, according
to the following structure for control input:

U(t) = ueq(t) + un(t) 17)
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where U, defines the system’s behavior on the sliding surface and is known as the equiva-
lent control-input, Uy is the nonlinear switching input that moves the state to the sliding
surface and maintains the state on such surface in the presence of the uncertainty. U, is ob-

tained from the invariance condition and is presented as below: (S = O,S =0)e U= Ueq

S:iref_ileo

: 1 1 (18)
tref =7y Vet pp - (1= Ueq) - [Vey + Vo] =0
Ve, + Ve, = Ve
Uy = —— 2 19
T Vet Vel )
Here, U, is chosen so that the Lyapunov stability criteria (V < 0) is met.
Where ,
_le
V= 25 (20)
V=5-5<0 o
S (—f Vet (1= [Vey +Ve]) <0
1 1
S- —L—1~VE+H~(1—Ueq—Un)-[VC1+VC2] <0 (22)
[Vey +Ve, ]
_1T2'Un's<0 (23)
The nonlinear component is given by:
U, = K. sign(S), (24)

+1siS>0
—1siS <0’

The gain K is chosen to be positive. The choice of this gain is very influential since
if it is small, the controller loses the robustness properties and if it is large, important
oscillations will be derived at the level of the control unit. These oscillations can excite
the neglected dynamics (Chattering phenomenon), or even damage the control unit [49].
Chattering can be reduced by replacing the “sign” function with a hyperbolic tangent
function (tanh) [50]. The Equation (25) represents the new form of the command law:

where K > 0; sign(S) = {

U= %(1 + tanh(s)) (25)

3. Simulation Results and Discussion

The studied system depicted in Figure 1 integrates the PV generator, the DC-DC
chopper, and the DC load. To simulate a more intricate consumer, the selected load was a
DC motor. The Appendix A, Appendix B, and Appendix C summarize, respectively, the
characteristics of the peimar SG340P commercial PV panel, the DC-DC converter, and the
DC motor used to carry out the simulation.

The first simulations have been focused on the SG340P PV panel behavior when faced
with different meteorological conditions of temperature and irradiance. In this context,
Figures 8 and 9 represent the I-V and P-V characteristics of the adopted PV panel, under
different temperatures and irradiations.
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Figure 8. PV panel I-V characteristic.
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Figure 9. PV panel P-V characteristic.

To test the effectiveness of the JAYA algorithm, this method has been applied with
variable temperature and solar radiation. Figure 10 shows the variable test conditions used.
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Figure 10. Solar irradiance and temperature variation: (a) Solar irradiance variation, (b) Temperature
variation .

Figure 11 indicates that, in most cases, the power curve is smaller when compared to
the maximum value. The power curve is, in most cases, smaller than the maximum value.
Despite abrupt changes, the MPP detection algorithm performs satisfactorily. Due to the
complexity of calculations, this is the case. Indeed, there is an inherent limitation to other
methods in this regard.

350 T T T T T T T T T

300

250

200

Power(W)

100

0 | | I I | | I I |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time %1073

Figure 11. PV testing of the optimization algorithm.

At this stage, the main objective is to assess the performance and accuracy of the
forecasting system. For the training, the errors were repeated 6 times after 200 epochs and
the test was stopped at epoch 212 with a gradient of 0.09. The error is repeated from the
200th era, which showed the growing importance of data. Therefore, age 200 is chosen
as the base and the weights are chosen as the final weights. In addition, the validation is
6 to 212 epochs, sincethe errors are repeated 6 times before the process stops definitively
(see Figure 12).
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Figure 12. ANN training.

In Figure 13, the regression and its values measure the correlation between outputs and
targets are presented. The R value is almost equal to 1, which means a close relationship.
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Figure 13. ANN regression.

Figure 14 illustrates that the MSE approaches 0 for the training and validation losses
at epoch 10. The graph below illustrates the performance of the proposed method.
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Figure 14. ANN performance.

Figure 15 represents the ANN forecasting model on Simulink.

- [ ]

Gik-1) Gik+1)
Radiation Forecast

Conatan [ ]

Tik-1) Tik+1)

Temperature Forecast

Figure 15. Simulink model of ANN forecasting.

According to the ANN forecasting model of Figure 14, the results found after the test

of neurons are shown in Tables 1 and 2:

Table 1. Temperature forecast testing.

Inputs Real Temperature Forecasted Temperature Error
(54.43;54.50;54.54) 54.59 54.58 0.01
(26.15;26.15;26.06) 25.96 26.00 0.04
(59.86,59.76;59.91) 60.08 60.09 0.01
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Table 2. Irradiation forecast testing.

Input Real Irradiation Forecasted Irradiation Error
(959.28;960.38;961.85) 962.58 962.71 0.13
(548.03;547.66;546.75) 545.65 546.1 0.45
(877.25;877.80,877.80) 876.70 877.38 0.68

-The inputs are the last three previous temperatures of the PV panels (Ty, Tyx_1,
and Ty_»).

-The real temperature is the temperature found in the real-time.

-The forecasted temperature is the forecasted temperature found by the neural network-
based technique (Ty,1).

The proposed neural network-based forecasting technique is tested on the real data and
comparisons between the real and the predicted temperature, as well as the irradiation are
conducted with the aim of reducing the error between the target and the forecasted values.

The used MPPT has a sampling time of 10~2 seconds; depending on its output the
sliding mode controller has been used to find the duty cycle.

According to the same principle of using the last previous three values of tempera-
ture and irradiance to deduce their forecasted values, Figure 16 represents the results of
temperature and irradiation forecasting.

T T 1000 L T T
p—— - = =G
Tr Gr
8 900 - 1
4 N L 4
g 800
2
c
7 0o 700 i
g
©
g
: £ 600t D s B
i 500 b
| 1 | 1 | 400 1 - 1 1 | |
5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time(s) Time(s)

Figure 16. Forecasting results: (a) Temperature forecast, (b) Irradiation forecast.

From Figure 16, it can be observed that there is a good agreement between the expected
values and the real ones. As can be seen, the SEPIC duty cycle is adjusted in accordance
with the changes in the MPPT. Thus, it demonstrates its ability to adapt to changes in the
system as they occur. As shown in Figure 17, the difference between the reference current
(Impp) and the input current of the SEPIC is approximately 10%. It is pertinent to note that
this error is very small, which indicates the accuracy of the SMC. According to the graph,
there are some peaks caused by changes in the reference current. These changes occur
within 25 milliseconds without causing any problems for the system.
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Figure 17. Controller signal.

Figures 17 and 18 show the controller signal and current error. This signal represents
the duty cycle of the SEPIC converter which is limited between 0 and 1.

The previous model is applied to predict the temperature and the irradiation, while
the found responses are depicted in the following figures.

In accordance with Figures 19 and 20, showing the temporal evolution of the DC
motor current and voltage, respectively, Figure 20 represents the power of such a motor.
The power is less than the PV generator power, since at the SEPIC output, the current
is oscillating: the load (plus its filtering capacitor) is only supplied for a fraction of the
cycle. This requires the use of large filter elements, which are, moreover, highly stressed.
Figure 21 represents the speed of the DC motor. As the voltage and current change, the
speed changes as well (See Figure 22).

0 2 4 6 8 10 12 14 16 18 20
Time(s)

Figure 18. Current error.
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Figure 19. Temporal evolution of the motor current.
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Figure 20. Temporal evolution of the motor voltage.
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Figure 21. Temporal evolution of the motor power.
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Figure 22. Temporal evolution of the motor speed.

The previous figures show the various changes in the DC motor behavior according
to the predicted temperature and irradiation profiles. These changes are due to the MPP
location changing. When the predictor reaches the predicted value, the algorithm finds the
MPP point, so the curves join the steady state.

In Figures 23-25 at certain moments, the current, voltage, and power exceed the
maximum value, which indicates an increase or decrease. This is due to the change in
radiation and temperature at these moments, which indicates that the power has not yet
reached the maximum value. The response stabilizes at a maximum of 2.5 ms, which is a
reasonable value.

12 T T T T T

Current(A)

Time(s)

Figure 23. Temporal evolution of PV current over time.
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Figure 24. Temporal evolution of PV voltage over time.

The analysis of the dynamic behavior of the current, voltage, and generated power-
highlights the success to follow the MPP point and, therefore, confirm the effectiveness of
the proposed JAYA-SMC to find the maximum available power.

300 T T T T T T T T T

MPP

200 | PV

100 4

Power(W)
o

-100 F 1

-200 b

_300 1 1 1 L 1 1 1 1 1
Time(s)

Figure 25. Temporal evolution of the PV generator power.

Following the presentation and discussion of the main achieved results, Table 3 briefly
shows a comparative analysis that has been developed. This comparative study has
focused on works that have dealt with the subject of prediction using different feasible
approaches. The comparison is based on the studied system and has included the use
of the prediction model, the main objective of the study, the degree of complexity of the
concerned approach, and other performance and accuracy metrics. This comparative study
highlights the competitiveness of the proposed method by benchmarking it against recently
published techniques.
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Table 3. Comparative study.

Ref. Studied System Model Main Objective Degree (.)f MSE R2
Complexity
Short-term energy forecasting
[51] PVS QSVM for building integrated PV High 0.16 0.88
system
PVS Decision Tree High 0.087 0.88
Solar Midterm solar radiation

[52] radiation-based CNN-BiLSTM . High 0.17 0.94

prediction

power plants

53] Meteorologlcal DL Estimation 'of .dally solar High 0.6 0.98

ground stations radiation
[54] Meteorologicalstation ANFIS Predict solar radiation Low 1.16 0.85
[55] SES GMDH Estimation of daily global Medium 0.0 0.98

solar radiation

[56] SES ANFIS-PSO Monthly solar radiation High 0.09 0.99

prediction

The ANN proposed model has been compared to the available literature: QSVM,
Decision Tree [51], CNN-BiLSTM [52], DL [53], ANFIS [54], GMDH [55], and ANFIS-
PSO [56] that have been proposed for many varieties of solar radiation prediction. The MSE
and R? criteria were used for an accurate comparison. According to Table 3, the results
clearly showed that the ANN model performs more accurately than the mentioned models
according to the values of MSE = 0.003, and R? = 0.98. In addition, these studies are difficult
to implement due to the issues related to the identification of hyper-parameters and specific
parameters, which is not the case for the proposed approach.

4. Conclusions and Future Works

In this paper, we propose the application of artificial neurons and JAYA-SMC to
predict, control, and research the maximum power of photovoltaic panels. For predicting
the temperature and solar radiation on the PVS, artificial neural networks have been used.
It is worth noting that this method is considered to be the most performant in this field due
to its effectiveness. This is because it has hidden layers that provide it with a competitive
advantage when it comes to predictive analysis. As a consequence, it is more accurate. As
opposed to deep learning, it does not require external instructions when an error occurs
or when an incorrect prediction is made. A mean square error of 0.03% and a regression
coefficient of 0.98 were achieved with the proposed method. Based on these results, we can
see that the target and the real output have a high degree of convergence and correlation.
After that, JAYA-SMC was used to search and control the maximum power of the PVS
by searching the MPP based on JAYA'’s algorithm. Additionally, the proposed method
eliminates the inconveniences associated with OCV and SCC techniques, as well as the
necessity of additional fixed keys and additional measurements. Since photovoltaic systems
are dependent on converters so they can be connected to loads, the SEPIC duty cycle was
controlled by the SMC by controlling the input current and using the Imp provided by JAYA
as a reference. Simulation results demonstrate the effectiveness of the SMC. The current
and voltage curves of the MPPT controller and PV are shown to be matched, indicating the
controller’s effectiveness.

In spite of the highly developed advanced forecasting method used in this work, the
results still need to be improved. This is since this method has not been experimentally
tested and has only been evaluated through simulation tests. There are several limitations
associated with this method, such as storage and diagnosis, especially when the system is
connected to other sources of energy. Due to advances in artificial intelligence, it can be
used to diagnose and predict energy consumption, as well as to solve the storage problem
faced by renewable energy sources.
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Future work should include the integration of energy storage into the studied system
to address the issue of PV solar source fluctuations. It is one of the most promising
energy storage technologies to incorporate AEMFCs, since they combine the advantages of
PEMEFCs and the economics of alkaline batteries. Such an application would be a significant
achievement that would enable the economic adoption of hydrogen energy storage systems
throughout the world.
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Abbreviation List

ANN Artificial Neural Network

Al Artificial intelligence

NN Neural networks

R Regression

MSE Mean squared error

MPP Maximum power point

MPPT Maximum power point tracking

P&O Perturb and observe

Tanh Hyperbolictangent

ocv Open-circuit voltage

SCC Short-circuit current

PVS Photovoltaic system

SEPIC Single ended primary inductor converter
SMC Sliding mode control

mFFO Modified fire-fly optimizer

FE-SVR Feature engineering-support vector regression
FLC Fuzzy logic control

GA Genetic algorithm

PSO Particle swarm optimization

CPSO Chaotic particle swarm optimization
GWO Grey wolf optimization

PI Proportional integral

DC Direct current

PID Proportional integral derivative

PN Positive negative

IC Incremental conductance

SES Solar energy system

QSVM Quadratic support vector machine
CNN-BiLSTM  Convolution neural network-bi-direction long short term memory
ANFIS Adaptive neuron fuzzy inference system
GMDH Group method of data handling
ANFIS-PSO Adaptive neuron fuzzy inference system-particle swarm optimization



Electronics 2023, 12, 592 24 of 26

Appendix A

Table Al. PV panel parameters.

Peak Power (Pmax) 340 W
Voltage at Pmax (Vmp) 36.7V
Current at Pmax (Imp) 9.28 A

Open circuit voltage (Voc) 452V
Short circuit current (Isc) 99 A

Appendix B

Table A2. Converter parameters.

F
r‘l’,%i‘;“y 55 (KHz) L 1.8 (mH) L, 1.4 (mH)
C1 120 (uF) Cy 470 (uF)
Appendix C

Table A3. DC motor parameters.

Armature Resistance Ra 220
Armature inductance La 5x 103 H
Back-emf constant 0.015 V/rmp
Total inertia J 0.03 kg.m2
Viscous friction coefficient 0.12 N.m.s
Coulomb friction torque Tf 0.11 N.m
Initial speed 3rad/s
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