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Abstract: In recent years, researchers have focused on improving the efficiency of photovoltaic 

systems, as they have an extremely low efficiency compared to fossil fuels. An obvious issue asso-

ciated with photovoltaic systems (PVS) is the interruption of power generation caused by changes 

in solar radiation and temperature. As a means of improving the energy efficiency performance of 

such a system, it is necessary to predict the meteorological conditions that affect PV modules. As 

part of the proposed research, artificial neural networks (ANNs) will be used for the purpose of 

predicting the PV system's current and voltage by predicting the PV system's operating tempera-

ture and radiation, as well as using JAYA-SMC hybrid control in the search for the MPP and duty 

cycle single-ended primary-inductor converter (SEPIC) that supplies a DC motor. Data sets of size 

60538 were used to predict temperature and solar radiation. The data set had been collected from 

the Department of Systems Engineering and Automation at the Vitoria School of Engineering of 

the University of the Basque Country. Analyses and numerical simulations showed that the tech-

nique was highly effective. In combination with JAYA-SMC hybrid control, the proposed method 

enabled an accurate estimation of maximum power and robustness with reasonable generality 

and accuracy (regression (R) = 0.971, mean squared error (MSE) = 0.003). Consequently, this study 

provides support for energy monitoring and control. 

Keywords: JAYA algorithm; forecasting; artificial neural networks; sliding mode control; PEMFC; 

MPPT; SEPIC chopper 

 

1. Introduction 

Nowadays, the prediction of the developments that will occur in all areas is becom-

ing a critical necessity. Therefore, the techniques that have merged to predict a future 

result or ensure the so-called forecasting are increasingly being demanded. Among such 

techniques, the artificial neural network (ANN) has been used as a forecasting tool in 

many applications. Indeed, it has been used in the tourism sector to forecast the number 

of tourists or hotel stays in a country [1]. It has also been used in the financial trading [2] 

and energy sector, including power usage and especially renewable energy [3–5]. The 

literature has shown many published studies highlighting the performance of neural 

network-based methods compared to other forecasting methods, particularly with high-

frequency data. The present investigation focuses onrenewable energies application 

because it is among the most important fields attracting the researchers worldwide. This 
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is justified by the fact that such energies are sustainable and preserving the ecosystem. 

Solar energy and wind energy are the most important and widely used renewable ener-

gy sources. Solar energy resources are considered an efficient source of sustainable ener-

gy. Photovoltaic solar energy is converted into electricity using photovoltaic cells. To-

day, the energy extracted from photovoltaic (PV) power plants can be off-grid or inte-

grated into the electrical grid [6], especially when they are connected to other energy 

sources to form a hybrid system [7,8]. As an innovative forecasting framework, FE-SVR-

mFFO has been proposed as a hybrid technique for improving strategic decision making 

in smart grid applications [9]. Based on the FE-SVR-mFFO results, it has been demon-

strated that it is effective in terms of stability, accuracy, and convergence rate. 

To achieve the sizing of the photovoltaic generator, its produced energy under con-

tinuous weather changes should be estimated. Consequently, weather changes should 

be predicted in order to facilitate the PV system control and monitoring. There are two 

types of forecasting methods: the qualitative methods based on sensory emotions, 

doubts, experiences, and opinions; and the quantitative methods depending entirely on 

mathematical calculations. In relation to the studied application of PV systems, the sec-

ond method is the most commonly used method to predict the temperature and the so-

lar irradiation.  

Despite the advantages of solar energy, photovoltaic generators have some draw-

backs, such as a lower efficiency compared to fossil energy sources, as well asan instabil-

ity of the produced energy since it is influenced by the changes in the atmospheric con-

ditions. This issue seriously affects the grid stability. The energy produced by a photo-

voltaic generator changes with sunlight and temperature and can also provide a better 

energy conversion at a specified operating point. This point is called the maximum 

power point (MPP). The researchers designed several techniques for tracking the MPP to 

achieve voltage and current regulation [10]. It has been mentioned in [11,12] that the 

maximum power point tracking (MPPT) control techniques based on electric current 

measurement are used; however, they have some drawbacks related to employed ana-

logue controllers. However, digital MPPT controllers are designed by algorithms, as in-

vestigated in [7,11,13,14]. In the literature, many methods to search the MPP point have 

been proposed. The most famous one is the perturb and observe (P&O) algorithm, 

which is the oldest and simplest one. In [15], it has been indicated that the algorithm 

(P&O) is generally dependent on initial conditions and exhibits fluctuations throughout 

the optimum point. Otherwise, this method has a bad performance in the case of sudden 

changes in meteorological conditions [16–20]. Taking that into consideration, another 

MPPT technique called incremental conductance (IC) has been proposed to overcome 

the limits of the P&O algorithm. The IC is considered more complex than the P&O [21]. 

The algorithms based on the measurement of the open circuit voltage (Voc) or the short 

circuit current (Isc) are veritably simple and easy to apply. Nevertheless, their main 

problem is the power loss and the transmission interruption during Voc and Isc meas-

urement [22,23]. 

To overcome this problem, an experimental cell of the same nature as the PV panel 

cells is used. In addition, locating the optimal operating point is particularlychallenging. 

Therefore, these methods are only approximations that do not give enough precision, 

and therefore, the system does not necessarily operate at the optimal point. In this con-

text, the technique based on fuzzy logic control (FLC) theory is important and effective 

[24]. Indeed, this technique works at the optimal point without oscillations [25]. Howev-

er, the implementation of the FLC technique is more complex than classical algorithms 

and its efficiency depends largely on the rule table.   

In a more developed context, many optimization techniques, some based on the 

heuristic approach and others on the meta-heuristic approach, have been used for the 

implementation of MPPT techniques. Swarm-based algorithms (particle swarm, artificial 

bee colony),...), and trajectory-based algorithms (Tabu search, hill climbing),...), as well 

as evolutionary algorithms (genetic algorithm),...) have been suggested [26,27]. In par-
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ticular, the evolutionary intelligence and swarm based algorithms are probabilistic algo-

rithms that require common control parameters and are very efficient for MPP point 

tracking. Therefore, the choice of a reliable and consistent MPPT technique was targeted 

towards the JAYA algorithm [28]. This algorithm was formulated by RAO in 2016 to 

solve constrained and unconstrained optimization problems, based on the concept that 

the solution obtained for a given problem should move towards the best solution and 

should avoid the worst solution [29]. The JAYA algorithm is a definitive, parameter-free 

algorithm. 

In contrast to other meta-heuristic algorithms, the JAYA algorithm does not require 

any special parameters. Compared to, for instance, GA, PSO, CPSO, and GWO, each al-

gorithm requires careful selection of parameters. It is because they affect the accuracy of 

the search for the optimal value. A further advantage of JAYA is that it has a very simple 

structure and has been shown to be effective at solving optimization problems [30, 31]. 

Since SMC has a simple algorithm and a high degree of robustness, it has been widely 

used for nonlinear control systems [32]. As a result of the simplicity of both methods, as 

well as their effectiveness, JAYA and SMC have been combined in this work. It has been 

shown in [33] that gradient optimization techniques are combined with the PI controller 

to determine the optimal point and control for SEPIC. However, due to the complexity 

of this controller, it is difficult to extract the PI gains. Furthermore, the gradient optimi-

zation method requires special parameters to reduce error, which are difficult to deter-

mine. In this way, hybridization between JAYA and SMC provides a simple and robust 

means for controlling and determining the optimal point. 

In this paper, the JAYA algorithm has been exploited to control the DC-DC con-

verter and ensure MPP point tracking. To control the duty cycle, there are many control 

methods. Among the best-known methods are those that use PID or PI controllers 

[33,34]. These methods are simple and easy to use as their parameters (P proportional, D 

derivative, P integral) are relatively easy to measure. However, these methods are not 

practical in industrial or energy environments as they have many non-constant inputs 

that change continuously with the weather and external factors. As a result, these meth-

ods provide limited performance in the presence of external disturbances and uncertain-

ties. On the other hand, sliding mode control (SMC) is an important technology in many 

dynamic and complex domains, mainly because of its significant ability to reject uncer-

tainties and exclude external disturbances. SMC has been widely used for non-linear 

control systems due to its simple algorithm and high robustness. 

By predicting the operating temperature and radiation of the PVS, the proposed re-

search makes use of artificial neural network (ANN) technology to predict the current 

and voltage. Further, the JAYA-SMC hybrid control system is designed to determine the 

MPP and duty cycle of the single-ended primary-inductor converter (SEPIC) that sup-

plies the DC motor. 

Even with the constant evolution of photovoltaic panel technology in the field of 

electricity generation, the storage of electrical energy for later use or to reduce the fluc-

tuation of solar production remains a great challenge for users of this technology when 

not supplied by the grid. Possible solutions include batteries for storage, which are ex-

pensive and difficult to maintain safely and need to be replaced frequently. To this end, 

other new and more viable technologies for energy storage, such as systems that rely on 

hydrogen storage, have become available due to their significant advantages over bat-

tery systems [35–37]. The underlying technology that makes this possible is hydrogen 

electrolysis, which is the process where the use of low voltages is used to create reac-

tions in various solutions. This is the electrolytic process, which can be used to split a 

molecule of water into hydrogen and oxygen [38]. 

Energy is of the utmost importance, as mentioned above, as such it is imperative to 

develop management methods, the most notable of which are forecasting techniques 

and MPPT detection. Recent years have seen the development of these methods. In this 

respect, choosing the most appropriate MPPT method and making a prediction can be a 
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challenge, since each method has its own advantages and disadvantages. In light of 

these factors, it is imperative to select simple, effective, and straightforward methods, 

particularly when there are unpredictable weather conditions that can prevent some 

methods from performing properly, e.g., GA and PSO. For control and monitoring, criti-

cal evaluation and analysis are key. A specific idea presented in this paper is combining 

robust control and simple optimization techniques for energy prediction and control, 

while maintaining robustness and accuracy. 

This paper makes the following major contributions: 

• Implementation of artificial neural networks (ANN) to predict temperature 

and solar radiation as it is one of the most effective and efficient methods in 

all fields. 

• Implementation of JAYA-SMC based approach to control DC-DC convert-

ers according to the maximum power point tracking concept (MPPT). 

 The remainder of the paper is organized as follows: In the second section, the 

methodology is discussed, including PV panel modeling, Artificial Neural Network 

modeling, and the implementation of JAYA-SMC hybrid controllers for MPP extraction 

and SEPIC control. Detailed simulation results and discussions are presented in Section 

III. This paper ends with concluding statements and recommendations for future work. 

2. Methodology 

The topology of the studied system is depicted in Figure 1. 

 

Figure 1. Topology of the studied system. 

2.1. PV Panel Modeling 

The solar cell is a PN junction semiconductor. When exposed to light, it generates a 

direct electric current. The generated current varies slightly linearly with solar radiation 

variation. The commonly used circuit model of a PV cell consists of a current source that 

depends on the values of solar radiation and temperature in parallel with a diode and a 

shunt resistor (Rsh), that are in series with a second resistor (Rs) (Figure 2). 

 

Figure 2. PV panel equivalent circuit. 
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According to Kirchhoff’s current law, the generated currentI is represented by 

Equation (1) 

(

0
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ph
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N V IR
I I I e
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−
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= −−  (1) 

Where V is the voltage at the PV generator terminals, q is the charge of an electron 

(1.602.10-19 C), a is the PV cells ideality factor, Ns is the number of PV cells connected in 

series, K is the Boltzmann’s constant (1.38.10-23e-23J/K), NS is the number of series cells, 

Iph is the photocurrent, described by Equation (2), and I0is the saturation current of the 

diode expressed by (3). 
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Where GSTC and TSTC are, respectively, the irradiation and temperature under standard 

test conditions, G and T are their reel values, ISC is the short-circuit current, andKiis the 

temperature coefficient for short-circuit current. 
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Where Voc is the open-circuit voltage and KV is the temperature coefficient for open cir-

cuit voltage. 

As can be seen in Equation (2), the photocurrent depends mainly on meteorological 

conditions such as irradiation and temperature. The mathematical development con-

ducted in the majority of literature confirms that the irradiance has more effect on the 

photocurrent and consequently on the generated current. 

2.2. Proposed Artificial Neuro Networks Predictive Modeling 

Forecasting allows for predicting the required future steps for different application 

areas, such as commercial and industrial fields. This is mandatory for to make the neces-

sary decisions to improve the future situation and avoid the worst outcomes that could 

affect the desired situation. Forecasting is divided into two types: qualitative and quanti-

tative forecasting. Time series forecasting is the most prominent of these methods. In-

deed, time series are predicted by mathematical forecasting through time-specific histor-

ical data. The historical data are analyzed and strategic decision-making is performed 

for the future. For this type of prediction, the analysis must be thorough and evidence-

based to ensure that the future outcome is achievable. 

Nowadays, most technologies use artificial intelligence (AI) because of its efficien-

cy. Among AI techniques, those based on neural networks (NN) are being employed to 

address many problems, including prediction problems. The working principle of NNs 

is based on an interconnected processing element that depends on biological neurons 

equivalent to pieces that carry information and transmit it to other cells in a series of 

networks [39].  

According to Figure 3, the artificial neurons consist of three levels: the first level is 

the input, which consists of a number of nodes where each node represents one of the 

inputs, and the second level is the hidden level, and its number varies from one network 

to another according to the level of input and output. The last level is the output level, 

which is the result or the goal to be reached. All the previous levels are connected to 

each other through the nodes and contain a group of nodes that receive inputs and out-

puts called the level, and each node carries weights that enhance the strength of the neu-

ral connection. 
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Figure 3. Neural network architecture. 

A neuron consists of an integrator that performs the weighted sum of its inputs 

[40]. The result, P, of this sum is then transformed by a transfer function, Y, which pro-

duces the output, S, of the neuron, according to the Equations (4) to (8). 
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To obtain the output of the neuron, the activation function Y is employed: 

( ) ( )TS Y P Y W X = = −
 

(8) 

where 

X: input layers. 

W:weights. 

n: numbers of entries, for our example, n=2. 

k: number of neurons in the same layer. 

Y: activation equation. 

 : bias. 

Various possible forms of the transfer function can be found. There are four popular 

activation functions: symmetric threshold, threshold, sigmoid, and linear. 

For the present case, the sigmoid function is used to forecast the outputs (T, G), ac-

cording to the following input/output relationship (9): 
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The NN-based prediction technique of the temperature and the irradiation (T and 

G) follows these steps: 
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• Step1: Data assembly, pre-processing, data conversion, and normalization. 

The data set used to predict the temperature and solar radiation reflected 

on the PV under study was obtained from the Department of Systems En-

gineering and Automation at the Vitoria School of Engineering of the Uni-

versity of the Basque Country. The data was collected using the irradiance 

and temperature sensor Si-V-010-T [41]. 

• Step2: Statistical analysis. 

• Step3: Neural Network objects design.  

The Figure 4 shows the structure of the adopted neural network. 

 

Figure 4.The neural network architecture. 

• Step4: Network training; the algorithm of Levenberg Marquardt has been 

used for the training of the network. This choice has been justified by the 

fact that this algorithm typically requires more memory but less time. The 

training automatically stops when the generalization stops improving, as 

indicated by an increase in the mean square error of the validation samples. 

The Mean Squared Error is the average squared difference between outputs 

and targets. Lower values are better, as zero means no error. This algorithm 

is also improving the regression, R, and it is the value measuring the corre-

lation between outputs and targets. A unit, R, value indicates a close rela-

tionship, while 0 denotes a random relationship. 

• Step5: Simulation of network response to new entries. 

• Step6: Approval and testing. 

The sample data process is divided into three phases: A reasonable result can be 

achieved by adjusting the ANN weights during the training phase. The second phase 

involves determining the minimum point of error. In the third phase, the accuracy of the 

ANN is evaluated. 

After presenting the proposed forecasting technique, the following section focuses 

on the suggested MPPT-based control of the DC-DC chopper integrated to extract the 

maximum available power independently of the meteorological conditions. 

  3 

 
W  b 

+ 

  

20 

 
W  b 

+ 

  

1 

Output 

Hidden 

 1 

Output 



Electronics 2023, 12, 592 8 of 28 
 

 

The main stages of the temperature and solar radiation prediction algorithm are 

displayed in a flowchart in Figure 5. 

 

 

Figure 5. Flowchart of the temperature and solar irradiation prediction algorithm. 

Hyperparameters have a significant impact on the neural network accuracy. For the 

purpose of determining the optimal set of hyper-parameters, Bayesian surrogate gaussi 

an processes, gradient boost regression trees, and random forest were used [42].The au-

thors in [43] presented a meta-heuristic algorithm for optimizing hyperparameters. A 

cross-validation approach was used in this study to train and validate neural networks 

with multiple architectures. In this method, weight optimization was performed by find-

ing the weights that minimized the mean squared errors (MSE) between the obtained 
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outputs and the desired ones, using a set of training models, and comparing the results 

at each epoch against a different set of training models. In the second set, which was 

generally referred to as the validation set, training was stopped once the MSE in the val-

idation set increases. As part of a batch training process, networks were trained using 

the back-propagation algorithm with different iterations or epochs. The number of 

epochs and the number of neurons in the hidden layer had a significant impact on the 

performance of the neural network. Using the hidden layer neural network of two neu-

rons and training it for 1000 epochs, the smallest MSE validation could be obtained. In 

this study, 60538 temperature and solar radiation values were collected, of which 70% 

were recorded for training and 30% were used for validation and testing. With 20% of 

the hidden layer's size, this was achieved. 

In this network, two layers of feed-forward neurons with sigmoid hidden neurons 

and linear output neurons were used to perform regression tasks. The neural network 

was trained using the Levenberg-Marquardt algorithm, in which training was automati-

cally stopped when there was no further improvement in generalization. An analysis of 

the mean square error (MSE) and regression (R) indicated the completeness of this algo-

rithm. According to the results of this study, MSE = 0.003 and R = 0.998 were found, in-

dicating a strong correlation between outputs and objectives. 

Concerning the choice of input features, various research works have dealt with 

this subject [44]. In the present work, each additional neuron allows for the considera-

tion of specific profiles of the input neurons. A larger number, therefore, allows for it to 

be possible to better adhere to the data presented but reduces the generalization capacity 

of the network. At this time, there is no general rule but rules of thumb. A subsequent 

research path would consist of estimating a network comprising of many neurons and 

then in simplifying it by analyzing multi-collinearities, by learning rule eliminating use-

less neurons, or by defining an architecture considering the structure of the variables 

identified beforehand by a principal component analysis. 

2.3. JAYA-SMC Hybrid MPPT Control of the SEPIC Chopper  

2.3.1. Integrated SEPIC Chopper 

The single-ended primary-inductor converter (SEPIC) is a modification of the Basic 

Boost and Cuck Converter. It is more performant than other DC-DC converters in terms 

of purity and efficiency of the input current since it shows very little bypass or ringing, 

as well as a reduced switching loss. The output noise and power phase that can be oper-

ated at a much higher frequency than that of other inverters will also be reduced. The 

output voltage achieved by the SEPIC converter is non-inverting. Figure 6 shows the 

electrical diagram of a SEPIC converter. The different values of the electronic compo-

nents are mentioned in Appendix B. 

 

Figure 6.Electrical diagram of SEPIC converter. 

The SEPIC chopper operation principle is analyzed in two stages according to the 

conduction state of the switch K. Based on the notations of the Figure 6, when the switch 

K is closed, the behavior of the SEPIC is described by Equation (10). When it is open, 

Equations (11) describe the behavior of the SEPIC. 
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The state model of the converter is inferred from Equations (10) and (11). This mod-

el is presented in Equation (12). 
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The parameter d refers to the duty cycle of the SEPIC chopper. Such a parameter is 

mainly determined via the maximum power point tracking technique. 

2.3.2. JAYA-SMC Hybrid MPPT Control 

One of the most important problems that the PV generation faces is the problem of 

maximum power tracking ability, which is mandatory for the DC-DC chopper. In fact, 

the solution exists to control such a converter to take maximum advantage of the power 

produced by the PV panels. In order to overcome the drawbacks of the conventional 

MPPT methods, such as perturb and observe (P&O), incremental conductance (IC), etc. 

..., a recent MPPT based on the hybridization of the JAYA optimization algorithm and 

the sliding mode control (SMC) is proposed. This MPPT technique is employed to max-

imize the power generated under the constraints of equality that includes the relation-

ship between current and voltage. This problem aims to raise the PV power by setting 

the optimum value of I and V, where the equations expressing the optimization problem 

and the constraint of equality R (I, V) = 0 are established in Equations (13) and (14):  
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The objective is to solve the optimization problem based on equation in (13). 

1. Jaya Method  

Heuristic algorithms are becoming a good solution to model-free optimization 

problems [45–47]. In this article, an advanced swarm-based JAYA algorithm is used to 

find the maximum power point for PV arrays. This algorithm does not require any spe-

cific parameters to be configured. Therefore, it is easy to implement without having to 

modify the initialization parameters. 

In the present work, f (x) is considered as the objective function to be maximized as 

the power P(X) = P (V, I). The JAYA algorithm searches Vmax and Imax allowing it to reach 

Pmax. It is easy to implement, in each iteration of i, as it is assumed that there is a number 

of design variables, m, (j = 1, 2, m), and n, the number of candidate solutions that deter-

mine the community size, K, (k=1, 2, n). The best candidate obtains the best value of P(X) 

in the candidate solution set and the worst candidate obtains the worst value of P(X) in 

the set of candidate solutions. If X(i,j,k) is the value of the variable, jth, of the filter Kth, in 

iteration ith this value is adjusted in Equation (15). 

1, , 2, ,
( , ) ( , , ) ( ( ) - ( , ) ) - ( ( ) - ( , ) )

i j i jn best worstr rX i j X i j k X j X i j X j X i j= +   

Herein, X(i,j)is jth from the assumption of the solution ith, |X(i,j)| is the absolute 

value of X(i,j), Xbest(j) is the best solution, Xworst(j) is the worst solution, Xn(i,j) is the 

update of the variable X(i,j), andr1,2 are two random numbers belonging to the interval 

[0,1]. 

The main steps of JAYA's algorithm are illustrated in the following description. 

JAYA Algorithm 

Step 1: Set the population and the maximum number of iterations NPop and Nmax. 

Step 2: Determine the Xbest andXworst solutions. 

Step 3: While gen<= ≤ Nmax 

For I =1 to Npop carry out: 

1, , 2, ,
( , ) ( , , ) ( ( ) - ( , ) ) - ( ( ) - ( , ) )

i j i jn worstbestr rX i j X i j k X j X i j X j X i j= +
 

Obtain the update community and evaluate the new value, if the new value is more suitable than the pre-

vious one, it will replace the old one. 

End for; End while. 

Step 4: Show existing solutions X(i) and f(X(i)). 

It is important to recall that the JAYA algorithm is used to optimize the parameters 

of the sliding mode control. 

2. Sliding Mode Control Technique  

To determine the duty cycle of the SEPIC chopper, the sliding mode control (SMC) 

has been adopted. The SMC is a kind of variable structure control algorithm. The fun-

damental difference between sliding mode control and conventional control strategy is 

the discontinuity of its control [48]; that is, the controller output changes over time and 



Electronics 2023, 12, 592 12 of 28 
 

 

exhibits switching characteristics. Since the sliding mode is independent of system pa-

rameters and disturbances, the sliding mode system has strong robustness. The basic 

principle of sliding mode is shown in Figure 7, where the following steps are processed: 

• First, design a sliding surface in state space. 

• Have a selection of a control law to force the state trajectory of the system to 

move towards a predetermined surface in finite time. 

• Maintain around this surface with appropriate switching logic. 

 

Figure 7.SMC basic principle. 

In order to regulate the converter input current, the following sliding surface is cho-

sen:  

1ref LS i i= −  (16) 

Where iref is the optimum current of the MPPT control and iL1 the input current of the 

converter SEPIC. By defining the above surface, the control law should be applied to the 

converter to force the system to move on the sliding mode surface in a finite time, ac-

cording to the following structure for control input:  

( ) ( ) ( )eq nU t U t U t= +
 

(17) 

Where Ueq defines the system’s behavior on the sliding surface and is known as the 

equivalent control-input, Un is the nonlinear switching input that moves the state to the 

sliding surface and maintains the state on such surface in the presence of the uncertain-

ty. Ueq is obtained from the invariance condition and is presented as below: 

( 0, 0) eqS S U U= =  =  

0
1

1 1
(1 ) 0

1 1 21

S i i
ref L

i V U V V
ref e eq c cL L

= − =

 
−  +  −  + = 

  

 

(18) 

1 2

1 2

c c e

eq

c c

V V V
U

V V

+ −
=

+  

 (19) 

Here, Un is chosen so that the Lyapunov stability criteria ( 0)V  is met.  

Where 

21

2
V S=  (20) 

 X2 

X1 

X(t0) 

  Reachinig phase Sliding surface 

Sliding surface 
X(t1) 

  S=0 
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1 2

1

0

1 1
(1 ) 0

1
e c c

V S S

S V U V V
L L

=  

 −  +  −  + 
 

   
 

 (21) 

1 2

1

1 1
(1 ) 0

1
e eq n c cS V U U V V

L L

 
  −  +  − −  +   

 
 (22) 

1 2

[ ]
0

1

0

c c

n

n

V V
U S

L

S U

+
−   

  

 (23) 

The nonlinear component is given by:  

nU =K. sign(S),   

where K>0; sign(S) ={
+1 𝑠𝑖 𝑆 > 0
−1 𝑠𝑖 𝑆 < 0

 
(24) 

The gain K is chosen to be positive. The choice of this gain is very influential since if 

it is small, the controller loses the robustness properties and if it is large, important oscil-

lations will be derived at the level of the control unit. These oscillations can excite the 

neglected dynamics (Chattering phenomenon), or even damage the control unit [49]. 

Chattering can be reduced by replacing the “sign” function with a hyperbolic tangent 

function (tanh) [50]. The Equation (25) represents the new form of the command law: 

( )
1

1 tanh( )
2

U s= +
 

(25) 

3. Simulation Results and Discussion 

The studied system depicted in Figure 1 integrates the PV generator, the DC-DC 

chopper, and the DC load. To simulate a more intricate consumer, the selected load was 

a DC motor. The appendices 1, 2, and 3 summarize, respectively, the characteristics of 

the peimar SG340P commercial PV panel, the DC-DC converter, and the DC motor used 

to carry out the simulation.  

The first simulations have been focused on the SG340P PV panel behavior when 

faced with different meteorological conditions of temperature and irradiance. In this 

context, Figures 8 and 9 represent the I-V and P-V characteristics of the adopted PV pan-

el, under different temperatures and irradiations. 
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Figure 8. PV panel I-V characteristic. 

 

Figure 9. PV panel P-V characteristic. 

To test the effectiveness of the JAYA algorithm, this method has been applied with 

variable temperature and solar radiation. Figure 10 shows the variable test conditions 

used. 
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(a) (b) 

Figure 10. Solar irradiance and temperature variation :(a) Solar irradiance variation…(b) Temperature variation…. 

Figure 11 indicates that, in most cases, the power curve is smaller when compared 

to the maximum value. The power curve is, in most cases, smaller than the maximum 

value. Despite abrupt changes, the MPP detection algorithm performs satisfactorily. Due 

to the complexity of calculations, this is the case. Indeed, there is an inherent limitation 

to other methods in this regard. 

 

Figure 11. PV testing of the optimization algorithm.. 

At this stage, the main objective is to assess the performance and accuracy of the 

forecasting system. For the training, the errors were repeated 6 times after 200 epochs 

and the test was stopped at epoch 212 with a gradient of 0.09. The error is repeated from 

the 200th era, which showed the growing importance of data. Therefore, age 200 is cho-

sen as the base and the weights are chosen as the final weights. In addition, the valida-

tion is 6 to 212 epochs, sincethe errors are repeated 6 times before the process stops de-

finitively (see Figure 12). 
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Figure 12. ANN training. 

In Figure 13, the regression and its values measure the correlation between outputs 

and targets are presented. The R value is almost equal to 1, which means a close rela-

tionship. 

Figure 14 illustrates that the MSE approaches 0 for the training and validation loss-

es at epoch 10. The graph below illustrates the performance of the proposed method. 

 

Figure 13. ANN regression. 
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Figure 14. ANN performance. 

Figure 15 represents the ANN forecasting model on Simulink. 

 

Figure 15. Simulink model of ANN forecasting. 

According to the ANN forecasting model of Figure 14, the results found after the 

test of neurons are shown in Tables 1 and 2: 

-The inputs are the last three previous temperatures of the PV panels (Tk, Tk-1, and 

Tk-2). 

-The real temperature is the temperature found in the real-time. 

-The forecasted temperature is the forecasted temperature found by the neural net-

work-based technique (Tk+1). 

Table 1. Temperature forecast testing. 

Inputs Real temperature Forecasted Temperature Error 

(54.4354.50;54.54) 54.59 54.58 0.01 

(26.15;26.15;26.06) 25.96 26.00 0.04 
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(59.86;59.76;59.91) 60.08 60.09 0.01 

Table 2. Irradiation forecast testing. 

Input Real Irradiation Forecasted Irradiation Error 

(959.28;960.38;961.85) 962.58 962.71 0.13 

(548.03;547.66;546.75) 545.65 546.1 0.45 

(877.25;877.80;877.80) 876.70 877.38 0.68 

The proposed neural network-based forecasting technique is tested on the real data 

and comparisons between the real and the predicted temperature, as well as the irradia-

tion are conducted with the aim of reducing the error between the target and the fore-

casted values.  

The used MPPT has a sampling time of 10−2 seconds; depending on its output the 

sliding mode controller has been used to find the duty cycle.  

According to the same principle of using the last previous three values of tempera-

ture and irradiance to deduce their forecasted values, Figure 16 represents the results of 

temperature and irradiation forecasting. 

  
(a) (b) 

Figure 16. Forecasting results :(a) Temperature forecast…(b) Irradiation forecast…. 

From Figure 16, it can be observed that there is a good agreement between the ex-

pected values and the real ones. As can be seen, the SEPIC duty cycle is adjusted in ac-

cordance with the changes in the MPPT. Thus, it demonstrates its ability to adapt to 

changes in the system as they occur. As shown in Figure 17, the difference between the 

reference current (Impp) and the input current of the SEPIC is approximately 10%. It is 

pertinent to note that this error is very small, which indicates the accuracy of the SMC. 

According to the graph, there are some peaks caused by changes in the reference cur-

rent. These changes occur within 25 milliseconds without causing any problems for the 

system. 

Figures 17 and 18 show the controller signal and current error. This signal repre-

sents the duty cycle of the SEPIC converter which is limited between 0 and 1.  
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Figure 17. Controller signal. 
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Figure 18. Current error. 

The previous model is applied to predict the temperature and the irradiation, while 

the found responses are depicted in the following figures. 

In accordance with Figures 19 and 20, showing the temporal evolution of the DC 

motor current and voltage, respectively, Figure20 represents the power of such a motor. 

The power is less than the PV generator power, since at the SEPIC output, the current is 

oscillating: the load (plus its filtering capacitor) is only supplied for a fraction of the cy-

cle. This requires the use of large filter elements, which are, moreover, highly stressed. 

Figure 21 represents the speed of the DC motor. As the voltage and current change, the 

speed changes as well (See Figure 22). 
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Figure 19. Temporal evolution of the motor current. 

 

Figure 20. Temporal evolution of the motor voltage. 

 

Figure 21.Temporal evolution of the motor power. 
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Figure 22.Temporal evolution of the motor speed. 

The previous figures show the various changes in the DC motor behavior according 

to the predicted temperature and irradiation profiles. These changes are due to the MPP 

location changing. When the predictor reaches the predicted value, the algorithm finds 

the MPP point, so the curves join the steady state.  

In Figures 23–25 at certain moments, the current, voltage, and power exceed the 

maximum value, which indicates an increase or decrease. This is due to the change in 

radiation and temperature at these moments, which indicates that the power has not yet 

reached the maximum value. The response stabilizes at a maximum of 2.5 ms, which is a 

reasonable value. 

 

Figure 23.Temporal evolution of PV current over time. 
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Figure 24.Temporal evolution of PV voltage over time. 

 

Figure 25. Temporal evolution of the PV generator power. 

The analysis of the dynamic behavior of the current, voltage, and generated pow-

erhighlights the success to follow the MPP point and, therefore, confirm the effectiveness 

of the proposed JAYA-SMC to find the maximum available power. 

Following the presentation and discussion of the main achieved results, Table 3 

briefly shows a comparative analysis that has been developed. This comparative study 

has focused on works that have dealt with the subject of prediction using different feasi-

ble approaches. The comparison is based on the studied system and has included the use 

of the prediction model, the main objective of the study, the degree of complexity of the 

concerned approach, and other performance and accuracy metrics. This comparative 

study highlights the competitiveness of the proposed method by benchmarking it 

against recently published techniques. 

Table 3. Comparative study. 

Ref. Studied  Model Main Objective Degree of MSE R2 
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System Complexity 

[51] PVS QSVM 

Short-term energy forecasting 

for building integrated PV sys-

tem 

High 0.16 0.88 

 PVS 
Decision 

Tree 
 High 0.087 0.88 

[52] 

Solar radiation-

based power 

plants 

CNN-

BiLSTM 

Midterm solar radiation predic-

tion 
High 0.17 0.94 

[53] 
Meteorological 

ground stations 
DL 

Estimation of daily solar radia-

tion 
High 0.6 0.98 

[54] 
Meteorologi-

calstation 
ANFIS Predict solar radiation Low 1.16 0.85 

[55] SES GMDH 
Estimation of daily global solar 

radiation 
Medium 0.05 0.98 

[56] SES ANFIS-PSO 
Monthly solar radiation predic-

tion 
High 0.09 0.99 

The ANN proposed model has been compared to the available literature: QSVM, 

Decision Tree [51], CNN-BiLSTM [52], DL [53], ANFIS [54], GMDH [55], and ANFIS-

PSO [56] that have been proposed for many varieties of solar radiation prediction. The 

MSE and R2 criteria were used for an accurate comparison. According to Table 3, the re-

sults clearly showed that the ANN model performs more accurately than the mentioned 

models according to the values of MSE=0.003, and R2=0.98. In addition, these studies are 

difficult to implement due to the issues related to the identification of hyper-parameters 

and specific parameters, which is not the case for the proposed approach. 

4. Conclusion and Future Works  

In this paper, we propose the application of artificial neurons and JAYA-SMC to 

predict, control, and research the maximum power of photovoltaic panels. For predict-

ing the temperature and solar radiation on the PVS, artificial neural networks have been 

used. It is worth noting that this method is considered to be the most performant in this 

field due to its effectiveness. This is because it has hidden layers that provide it with a 

competitive advantage when it comes to predictive analysis. As a consequence, it is 

more accurate. As opposed to deep learning, it does not require external instructions 

when an error occurs or when an incorrect prediction is made. A mean square error of 

0.03% and a regression coefficient of 0.98 were achieved with the proposed method. 

Based on these results, we can see that the target and the real output have a high degree 

of convergence and correlation. After that, JAYA-SMC was used to search and control 

the maximum power of the PVS by searching the MPP based on JAYA’s algorithm. Ad-

ditionally, the proposed method eliminates the inconveniences associated with OCV and 

SCC techniques, as well as the necessity of additional fixed keys and additional meas-

urements. Since photovoltaic systems are dependent on converters so they can be con-

nected to loads, the SEPIC duty cycle was controlled by the SMC by controlling the in-

put current and using the Imp provided by JAYA as a reference. Simulation results 

demonstrate the effectiveness of the SMC. The current and voltage curves of the MPPT 

controller and PV are shown to be matched, indicating the controller's effectiveness. 

In spite of the highly developed advanced forecasting method used in this work, 

the results still need to be improved. This is since this method has not been experimen-

tally tested and has only been evaluated through simulation tests. There are several limi-

tations associated with this method, such as storage and diagnosis, especially when the 

system is connected to other sources of energy. Due to advances in artificial intelligence, 

it can be used to diagnose and predict energy consumption, as well as to solve the stor-

age problem faced by renewable energy sources. 
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Future work should include the integration of energy storage into the studied sys-

tem to address the issue of PV solar source fluctuations. It is one of the most promising 

energy storage technologies to incorporate AEMFCs, since they combine the advantages 

of PEMFCs and the economics of alkaline batteries. Such an application would be a sig-

nificant achievement that would enable the economic adoption of hydrogen energy 

stor-age systems throughout the world. 
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Abbreviation list. 

ANN Artificial Neural Network 

AI Artificial intelligence 

NN Neural networks 

R Regression 

MSE Mean squared error 

MPP Maximum power point 

MPPT Maximum power point tracking 

P&O Perturb and observe 

Tanh Hyperbolictangent 

OCV Open‐circuit voltage 

SCC Short‐circuit current 

PVS Photovoltaic system 

SEPIC Single ended primary inductor converter 

SMC Sliding mode control 

mFFO Modified fire-fly optimizer 

FE-SVR Feature engineering-support vector regression 

FLC Fuzzy logic control 

GA Genetic algorithm 

PSO Particle swarm optimization 

CPSO Chaotic particle swarm optimization 

GWO Grey wolf optimization 

PI Proportional integral 

DC Direct current 

PID Proportional integral derivative 

PN Positive negative 

IC Incremental conductance 

SES Solar energy system 

QSVM Quadratic support vector machine 

CNN-BiLSTM Convolution neural network-bi-direction long short term memory 

ANFIS Adaptive neuron fuzzy inference system 

GMDH Group method of data handling 
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ANFIS-PSO Adaptive neuron fuzzy inference system-particle swarm optimization  

Appendix A. PV panel parameters 

Peak Power (Pmax) 340 W  

Voltage at Pmax (Vmp) 36.7 V  

Current at Pmax (Imp) 9.28 A  

Open circuit voltage (Voc) 45.2 V  

Short circuit current (Isc) 9.9 A  

Appendix B. Converter parameters 

Frequency PWM  55 (KHz) 1L
 

1.8 (mH) 2L
 

1.4 (mH) 

1C
 

120 (μF) 2C
 

470 (μF)   

Appendix C. DC motor parameters 

Armature Resistance Ra 2.2Ω 

Armature inductance La 5.10-3H 

Back-emf constant 0.015 V/rmp 

Total inertia J 0.03 kg.m2 

Viscous friction coefficient 0.12 N.m.s 

Coulomb friction torque Tf 0.11 N.m 

Initial speed 3 rad/s 
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