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Abstract: Ischemic stroke lesion segmentation using different types of images, such as Computed
Tomography Perfusion (CTP), is important for medical and Artificial intelligence fields. These
images are potential resources to enhance machine learning and deep learning models. However,
collecting these types of images is a considerable challenge. Therefore, new augmentation techniques
are required to handle the lack of collected images presenting Ischemic strokes. In this paper, the
proposed model of mutation model using a distance map is integrated into the generative adversarial
network (GAN) to generate a synthetic dataset. The Euclidean distance is used to compute the
average distance of each pixel with its neighbor in the right and bottom directions. Then a threshold
is used to select the adjacent locations with similar intensities for the mutation process. Furthermore,
semi-supervised GAN is enhanced and transformed into supervised GAN, where the segmentation
and discriminator are shared the same convolution neural network to reduce the computation
process. The mutation and GAN models are trained as an end-to-end model. The results show that
the mutation model enhances the dice coefficient of the proposed GAN model by 2.54%. Furthermore,
it slightly enhances the recall of the proposed GAN model compared to other GAN models.

Keywords: ischemic stroke lesion segmentation; generative adversarial network; synthetic dataset;
mutation

1. Introduction

Medical imaging is a domain that uses methods to create images for the human body
that can be used in medical decisions [1]. Deep learning is the most commonly used
in computer vision [2]. Automated segmentation in medical images is considered an
important task and research in both fields: artificial intelligence (AI) and medical [3–7]. AI
models are used to determine the location of the damaged tissues and structures in the
images of the human body, such as tumors and ischemic stroke (IS) in the brain [8]. In
contrast, these types of images are considered potential resources for machine learning and
deep learning model enhancements. On the other hand, these images suffer heterogenous
in the intensity of each voxel. They are low contrast, low frequency, and wide variety
because they belong to different low contrast in medical scans [8–14]. Furthermore, medical
image annotation requires expert doctors and is considered to be a time-consuming task.
Therefore, the number of existing images for specific diseases is a significant challenge for
deep learning models [4,8,11,15–17]. Another challenge in medical-image segmentation,
especially for 3D images, is the sturdy imbalance between damaged and normal tissues.
The size of damaged tissues is minimal compared to normal tissues, and some images did
not contain damaged tissues [18–25].

Ischemic stroke lesion segmentation is one of the essential segmentation tasks where
traditional machine learning and deep learning approaches are used to automatically
determine the location of the damaged tissues in the brain. The computed tomography
perfusion (CTP) is the most popular computed tomography (CT) modality for ischemic
stroke (IS). CTP is used to assess the magnitude of infarct core by hypoperfused in the
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damaged tissues to decide whether there is an ability to treat the patient [3,8]. Table 1
shows brief descriptions for all abbreviations of the modalities that used in the proposed
model, as well as the low non-uniformity contrast of voxel intensities in the brain CTP
images and a limited number of available images, the lesions in the brain have a different
shape, magnitude, and positions in the brain [3,4,10,11,17,26].

Table 1. Shows brief descriptions for all modalities and their abbreviations that are used in the
proposed model [3,27,28].

Abbreviations Description

CT Computed tomography

CTP Computed tomography perfusion

DWI Diffusion-weighted imaging

CBF Cerebral blood flow

CBV Cerebral blood volume

Tmax Time-to-maximum flow

MTT Mean transit time

OT Semantic segmentation label for IS lesions

One of the most popular datasets for segmenting the IS lesions in the brain is ischemic
stroke lesion segmentation (ISLES-2018) [3,27]. It consists of 94 and 62 cases for training
and test sets, respectively. Therefore, many researchers have used different machine
learning models and different augmentation techniques to expand the training set in the
ISLES-2018 dataset. For instance, the rotation, flipping, and re-scaling images are used
in the [16,29–33] models. Furthermore, the [12] model uses mirroring and permuting the
input axis technique for augmentation. While the [31] model shifts forward or backward
and adds Gaussian noise. However, the performance using the test set of the ISLES-2018
dataset is not satisfactory using these techniques.

The [33] model uses the generative adversarial network (GAN) to translate the CTP
images into DWI modality. In contrast, other models use the GAN approach to generate
synthetic images to increase the number of the training set [10,16,32]. The [16,32] models
use the Gaussian noise in the generator method, where their performance is evaluated
using the training set.

The [10] model uses synthesized pseudo-DWI as a generator method to generate lesion
regions based on the DWI label. Additionally, the input consists of six channels: low-level
and high-level features of trained CTP image, and the original images of the rest modalities.
However, it depends on the DWI label to generate lesion locations without taking into
account the normal regions. Additionally, it ignores the slice level where a single channel
for each modality is used in the generator.

Thus, more new techniques are required to handle the small number issue of medical
images, particularly brain images in the ISLES-2018 dataset. In this paper, the proposed
mutation model inspired by the genetic algorithm is used to generate a synthetic dataset
to increase the number of training samples. Consequently, the performance of identifying
the IS tissues increases by training various generated samples called mutated images. The
mutation model uses the distance map to determine the adjacent locations related to a
region in the CTP image. These locations are used to mutate the corresponding regions of
all modalities and slices in two inputs to generate synthetic inputs.

Furthermore, a semi-supervised GAN model, called a few-shot 3D multi-model [8],
was enhanced and transformed into a supervised GAN model to exploit its generator while
gaining more meaningful information using labels. Therefore, four main contributions are
used in the proposed model, as illustrated below.
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• The CTP image and the euclidean distance method are used to generate a distance
map by computing distance horizontally and vertically for every two adjacent pixels.

• The distance map and mutation model are used to produce new synthetic samples. A
set of adjacent pixels, locations of a region, are selected from one CTP image to assign
the locations values of the modalities into different corresponding modalities while
preserving the shape of these locations.

• A semi-supervised GAN model was enhanced and modified to supervised GAN
model to exploit the entire knowledge and gain more meaningful information us-
ing labels.

• A shared module between segmentation and discriminator are used to reduce com-
plexity of the GAN model and evaluate the proposed mutation method as an end-to-
end model.

The rest of this paper is organized as follows. Section 2 presents the literature review.
Section 3 illustrates the proposed end-to-end model. Section 4 presents the experiment
setting. Section 5 presents applications and future directions. Finally, Section 6 concludes
the paper.

2. Literature Review

Similarly to the detection tasks, such as ADHD detection [34] and schizophrenia
patients detection [35], the segmentation task also has a significant role in the medical
field, such as IS lesion segmentation. Although the ISLES-2018 dataset was created for
IS lesions segmentation, authors in [9] have used it for the classification task. The lesion
segmentation is utilized as a pre-processing step to classify the brain image into healthy
or unhealthy. The DWI, CBV, and CBF modalities are only used in the model where the
most noisier modalities are ignored. Based on the [10], the Tmax and MTT modalities
are the most noise modalities in the ISLES-2018 dataset and have a lower spatial reso-
lution. In contrast, many researchers have utilized the ISLES-2018 dataset and machine
learning for IS lesions segmentation. Authors in [30,31] have considered the imbalance
issue and use encoder–decoder convolutional neural network to train data. The Clera2
model [30] uses the balanced patches and a category weighting loss function. While the [31]
model uses weighted binary cross-entropy to equalize the previous category probabilities
during training.

State-of-the-art models are used widely in the IS lesions segmentation. Both [28]
and [29] models uses the ResNet [36] as a segmentation task. Researchers in [28] have
transferred the pre-trained ResNet and integrated its output with the output of the ran-
dom forest (RF) model. Researchers in [29] have combined a fully convolutional neural
network and dilated convolutional network to introduce a pyramid pooling. Furthermore,
the dilated convolutional network is integrated with a different state-of-the-art model
called U-shape [37] to encode features of the brain images [12]. While the MS-DCNN
model [38] integrates the U-shape [37] with dense block for more robust extract features
and to mitigate overfitting.

Moreover, the GAN approach is used to expand the training set of the ISLES-2018
dataset [10,16,33]. The [10] model uses the extracted features of CTP images to create
new segments that are similar to lesions located in the determined set of the lesion DWI
label. The mean square error (MSE) and L1 normalization are used as loss functions for
training the generator. While the [33] model uses the generator module to generate DWI
modality from the CTP modality by exploiting the U-net model [37]. The [16] model
uses the generator module to increase the dataset by generating noisy images, and the
discriminator module to provide GAN the ability to distinguish between original and
generated samples. On the other hand, the [17] model inputs the error of the discriminator
into the segmentation module for second back-propagation. However, it excludes the
generator module, which does not provide a synthetic dataset.

In contrast to the previous frameworks that either utilize the DWI modality or add
noise to create a synthetic dataset of the brain images, the proposed model uses a new
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technique to generate a synthetic dataset using mutation operation and distance map.
Moreover, the mutated images were integrated into the supervised GAN model to utilize
its generative model. Table 2 summarized the previous works, which used the benchmark
ISLES-2018 dataset [3,27], and noted their limitations and findings.

Table 2. Summary of the existing GAN and proposed models that use the ISLES-2018 dataset for
evaluation.

References Augmentation Method Finding Limitation

Wang et al., 2020 [10] Synthesized pseudo DWI
module

The Synthesized pseudo DWI
module uses the ISLES-2018 to

generate a synthetic dataset

The DWI label is used to
switch lesion regions with

normal regions without
considering other possible

choices for switching regions

Rezaei et al., 2019 [16] General augmentation
methods

The general augmentation
techniques are used to

increase the training set

The traditional augmentation
processes are used to increase

the training set, such as
flipping and adding

Gaussian noise.

Yang et al., 2018 [17] -

The error of the discriminator
is fed into the segmentation

module for second
back-propagation

The generator module is
excluded, and a synthetic
dataset is not provided.

Rezaei et al., 2018 [32] Gaussian noise method
The Gaussian noise method is
used to increase the training

set

The Gaussian noise is used
only for augmentation.

Liu and Pengbo 2018 [33]
General augmentation

methods and translation
method

General augmentation
methods are used to increase
the dataset, and the generator

is used to translate the CTP
modality into DWI modality

Traditional processes are used
for augmentation, such as

flipping and scaling images.

Proposed model
Mutation model based on

distance map that integrated
into proposed GAN model

Presents a mutation model
based on a distance map that
randomly selects normal or

damaged regions to generate a
synthetic dataset and integrate

it into the GAN model.
Furthermore, a supervised
GAN model is proposed to

exploit the generator and gain
information from labels.
Finally, utilize a shared

network for segmentation and
discriminator to reduce GAN

complexity

The proposed mutation model
is not adaptive, and the

proposed end-to-end model
suffers from overfitting

3. Materials and Methods

The proposed model is an end-to-end model that uses two stages of generating a
synthetic dataset: a mutation model using a distance map and a supervised GAN model.
The first stage is an augmentation technique to generate new images that preserve the
spatial dimension of the original images. In the second stage, a set of patches of each image
are fed to the GAN model. However, the mutation model is used during training, where
the test set is introduced directly to the second stage.

This section is organized as follows. Section 3.1 presents the pre-processing methods
that are used to enhance and normalize data. Section 3.2 illustrates the integrated mutation
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model using a distance map. Section 3.3 presents the baseline semi-supervised GAN model
and proposed supervised GAN model.

3.1. Data Pre-Processing

Two major pre-processing techniques are used to handle the low-frequency and the
variety of the intensities values in the different modalities of the ISLES-2018 dataset: bias
correction [12], and image enhancement [9]. The bias correction method corrects the non-
uniformity low-frequency intensity in the input modalities: CTP, CBF, CBV, MTT, and
Tmax [12]. The image enhancement method enhances CTP images and normalizes their
intensity values to provide better contrast and information [9]. The first step of the image
enhancement is converting each image of dimension height(H)× width(W)× number o f
slices(D) into a single channel as presented in Equation (1), where (i, j) is the location of
the intensity value in spatial dimension H ×W, and D is the number of slices. Then, each
image is normalized into gray-scale as demonstrated in Equation (2), where minimumvalue
and maximumvalue are the minimum and maximum intensity values of the H ×W image.
Consequently, the range of intensity values is between 0 and 255.

imagei,j =
∑D

d=1 imagei,j,d

D
(1)

imagei,j =
(imagei,j −minimumvalue) ∗ 255
maximumvalue −minimumvalue

(2)

Finally, linear transformation, log transformation, smooth, and edge enhancement are
used for image enhancement [9]. Figure 1. shows an example of the image enhancement
technique. However, the image enhancement technique is used as a pre-processing of the
mutation model to determine mutated locations, where the CTP images are prepared to
have a clear brain structure that is observed by visualization, as presented in Figure 1. The
32 slices for each input modality are fed to the GAN model to mitigate losing information.

Figure 1. Example of image enhancement technique output for each step using CTP image. (a) Single
channel, (b) gray-scale, (c) linear transformation, (d) log transformation, (e) smooth, and (f) edge
enhancement.

3.2. Mutation Model Using Distance Map

Two proposed modules use the CTP modality to generate synthetic images: distance
map and mutation. The comprehensive model of this stage is illustrated in Algorithm 1,
and Figure 2 shows an example of generating a new CTP image. Two generated distance
maps are used to compute the average distance map: horizontal and vertical distance maps.
The horizontal map computes the average distance values between each pixel and its right
neighbor, while the vertical map computes the average distance values between each pixel
and its bottom neighbor. Then, a threshold is used to select all adjacent pixels related to a
single region, where these pixels have similar intensity values.



Electronics 2023, 12, 590 6 of 15

Algorithm 1 Generate synthetic data using mutation model

procedure MUTATION_MODEL(data1, label1, data2, label2, center_point)
. Input data1: The first input consists of five modalities with dimension H×W×D1×N
. Input label1: The semantic label of the data1 with dimension H ×W × D1
. Input data2: The second input consists of five modalities with dimension ×H ×W ×
D2× N
. Input label2: The semantic label of the data2 with dimension H ×W × D2
. Input center_point: The determined center point (y, x) of the selected region

ctp_image_1← return the CTP modality from data1
distance_map_1 ← DISTANCE_MAP_METHOD(ctp_image_1) as illustrated in

Algorithm 2
ctp_image_2← return the CTP modality from data2
distance_map_2 ← DISTANCE_MAP_METHOD(ctp_image_2) as illustrated in

Algorithm 2
angle← ROTATION_METHOD(distance_map_1, distance_map_2) as illustrated in

Algorithm 3
rotated_image_2← rotate ctp_image_2 by angle
locations ← SELECT_LOCATIONS_METHOD(rotated_image_2, center_point) as

illustrated in Algorithm 4
newData1, newLabel1← MUTATION_METHOD(data1, data2,

label1, label2, locations, angle, center_point) illustrated in Algorithm 5

RETURN newData1, newLabel1
end procedure

Figure 2. Example of each step output of the mutation model using CTP image. (a) Distance map,
(b) rotation, (c) mutation, and (d) show the adjacent location where the white regions are mutated.

Algorithm 2 demonstrates the method of the computing distance map. The Euclidean
distance is used to create the horizontal and vertical distance maps. First, a 2-dimensional
(2D) array locates the intensity value of the right neighbor pixel for each CTP image pixel.
The second 2D array is used to modify the spatial dimension of the CTP image to the
same dimension of the first 2D array while preserving the location of each pixel. Then, the
Euclidean distance computes the distance between every two corresponding pixels in these
two 2D arrays. Second, the same scenario is used to compute the vertical distance map,
where the first 2D array is used to locate the intensity values of the bottom neighbor for
each CTP image pixel. Finally, the distance map is the average of these two maps, where it
is normalized to the gray-scale.
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Algorithm 2 Distance map method

procedure DISTANCE_MAP_METHOD(ctp_image)
. Input ctp_image: CTP image of dimension h× w× d

ctp_image← enhance the image as illustrated in Section 3.1

im1← ctp_image[:, 1 :]
im2← ctp_image[:, : −1]
horizontal_distance_map←

√
(im1− im2)2

im1← ctp_image[1 :, :]
im2← ctp_image[: −1, :]
vertical_distance_map←

√
(im1− im2)2

distance_map← horizontal_distance_map+vertical_distance_map
2

distance_map← normalize distance_map to gray-scale as illustrated in Equation (2)

RETURN distance_map of dimension h− 1× w− 1
end procedure

Algorithm 3 explains the image rotation method that ensures two images have approx-
imately the same structure rotation. The distance map has the shape of a brain structure, as
presented in Figure 2. Therefore, the front and back regions of the brain structure are used
to rotate the distance map of the second image to have a similar structure rotation to the
first distance map. The Euclidean distance is used to find the best rotation angle, which
finds the minimum distance between two distance maps using both front and back parts.
Then, the optimal angle is computed by finding the average of these two angles. However,
it is different for every two inputs.

Algorithm 4 illustrates the method of selecting a set of adjacent locations for the
mutation process. A single point (y, x) is selected randomly from determined regions of the
brain structure to prevent generating arbitrary regions: center, top left, and top right. Then,
regions are cropped from the distance map where the point (y, x) is the center. Algorithm 2
is used to compute the distance map of the cropped region, where a threshold is used
to select a set of adjacent locations (pixels). These locations have approximately similar
intensity values.

Finally, Algorithm 5 illustrates the mutation process. The selected adjacent locations
are used to mutate the intensity values in all corresponding modalities of two inputs. It is
performed for each slice separately, where the intensity equal to zero is ignored. Although
the rotation method is used to achieve similar structure rotation for the two images, they
have not achieved exactly the same rotation. Therefore, the Euclidean distance is used
to determine the best new locations where the intensity values of the first input have a
minimum distance from the intensity values of the second one.
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Algorithm 3 Rotation method

procedure ROTATION_METHOD(img1, img2)
. Input img1: Image of dimension h× w
. Input img2: Image of dimension h× w

best_ f ront_angle← 0
best_back_angle← 0
mini_ f ront_distance← 106

mini_back_distance← 106

img1_ f ront← img1[h/2− 16 : h/2 + 16, 0 : w/10]
img1_back← img1[h/2− 16 : h/2 + 16, w/10 :]
For a← 1 to 90

For s ∈ [1, −1]
rotated_img2← rotate img2 by angle equals to a ∗ s
img2_ f ront← rotated_img2[h/2− 16 : h/2 + 16, 0 : w/10]
img2_back← rotated_img2[h/2− 16 : h/2 + 16, w/10 :]

f ront_distance←
√

∑h
i=0 ∑w

j=0(img1_ f ront[i, j]− img2_ f ront[i, j])2

back_distance←
√

∑h
i=0 ∑w

j=0(img1_back[i, j]− img2_back[i, j])2

best_ f ront_angle← a*s, if the f ront_distance is less than mini_ f ront_distance
best_back_angle← a*s, if the back_distance is less than mini_back_distance

angle← best_ f ront_angle+best_back_angle
2

RETURN angle
end procedure

Algorithm 4 Select adjacent locations from the distance map for mutation process

procedure SELECT_LOCATIONS_METHOD(img, center_point)
. Input img: Image of dimension h× w
. Input center_point: The determined center point (y, x) of the selected region
. L: Length used for cropped image
. T: Threshold used to select adjacent locations

cropped_img← img[y− L : y + L, x− L : x + L]
cropped_distance_map ← DISTANCE_MAP_METHOD(cropped_img) as illus-

trated in Algorithm 2
locations← list of all locations in cropped_distance_map where their distance values

are less than T

RETURN locations
end procedure
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Algorithm 5 Mutate regions to generate new input

procedure MUTATION_METHOD(modalities_1, modalities_2, locations, angle, cen-
ter_point)
. Input modalities_1: First input consists of five modalities with dimensions H ×W ×
D1× N
. Input modalities_2: Second input consists of five modalities with dimensions H ×W ×
D2× N
. Input label1: The semantic label of the modalities_1 that its dimension H ×W × D2
. Input label2: The semantic label of the modalities_2 that its dimension H ×W × D2
. Input locations: Set of the adjacent locations used for mutation model
. Input angle: The rotated angle that used to rotate images of the modalities_2
. Input center_point: The center points of the selected locations in the modalities_2

min_slices_num←MIN(D1, D2)
For i← 1 to N

M1← modalities_1[:, :, :, i]
M2← modalities_2[:, :, :, i]
M2← rotate M2 by angel

IF i← 1
region← M2[center_point− l : center_point + l, center_point− l : center_point +

l, :, i][locations]
region ← convert the CTP image to single channel and normalized it using

Equitation (1) and Equitation (2), respectively
new_center ← return shifted center based on the new region in CTP image of the

M1 and region

label1[new_center− l : new_center + l, new_center : new_center, :, i][locations]←
label2[center_point− l : center_point + l, center_point− l : center_point + l, :

, i][locations]

END IF

M1[new_center− l : new_center + l, new_center : new_center, :, i][locations]←
M2[center_point − l : center_point + l, center_point − l : center_point + l, :

, i][locations]

newData1← append M1 in axis zero
END FOR,

RETURN newData1, label1
end procedure

3.3. Supervised GAN model

The semi-supervised GAN model called few-shot 3D multi-model [8] was enhanced
and transformed into a supervised GAN model to exploit its generator module to generate
patches with similar distributions to the mutated patches. More details of the few-shot 3D
multi-model [8] and its generator are illustrated in Section 3.3.1. Furthermore, the proposed
supervised GAN model is presented in Section 3.3.2.

3.3.1. Semi-Supervised GAN Model

A set of labeled patches X and unlabeled patches U are generated from the original
images and introduced into the few-shot 3D multi-model [8]. The model consists of two
modules: discriminator D and generator G. The discriminator module differs from the
standard GAN approach by using a single output layer to segment the K + 1 classes. The
first K probabilities are for segmentation, while the last probability K + 1 predicts whether
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each voxel of input is fake. The discriminator has three inputs: labeled patches, unlabeled
patches, and fake patches X̄ generated by the generator module. The discriminator loss
function consists of three loss functions for each input where the cross-entropy of the
segmentation task uses labeled patches, while both unlabeled patches and fake patches are
used to achieve the discriminator purpose using k + 1 output. In the generator module,
vectors of random noises Z are fed to the deconvolution network to generate a set of
fake patches y{X̄|G(Z)} have a similar distribution to the unlabeled patches. The feature
matching (FM) loss is used to optimize the generator module that generates features
matching the features of the unlabeled patches in the intermediate layers of discriminator z.

FM = ||EUz(U)−EZz(G(Z))||22 (3)

3.3.2. Proposed Supervised GAN Model

In contrast to the few-shot 3D multi-model [8], the proposed GAN model uses patches
generated from the mutated images and ignores the unlabeled patches to exploit the entire
knowledge and gain more meaningful information using labels. Furthermore, the few-
shot 3D multi-model [8] was designed for semi-supervised datasets, while the proposed
model uses a supervised ISLES-2018 dataset. The proposed model consists of two modules:
shared neural network SNN and generator G, as illustrated in Figure 3. Inspired by the
multi-channel segmentation (MCS) [39] model, the segmentation S and discriminator D
have a shared neural network architecture SNN to utilize shared feature map and reduce
computation processes. Each of S and G has a separate output and loss function, where
both of these two loss functions optimize the weights of the SNN module. However, the
SNN architecture is similar to the autoencoder module that is used in the few-shot 3D
multi-model [8].

Pre-Process Mutation
model

Generate
patches

Z

SNNDSSNE

G

SNN

X yIS

yx

yG(Z)

Figure 3. Presents the proposed end-to-end model.

The SNN module consists of two inputs and three output layers. The inputs are
labeled patches X and generated patches y{X̄|G(Z)}. The outputs are the IS segmen-
tation y{yIS|SNND(X)}, and two binary classification outputs: y{yX |SNNE(X)} and
y{yX̄ |SNNE(G(Z))}. The SNNE and SNND indicate to encoder and decoder, respec-
tively, where the fully connected layer with soft-max activation function is performed
on latent vector y{Z̄|SNNE(·)} to predict the yX and yX̄ into fake or real patches. The
cross-entropy loss function is used for each output, where the discriminator loss function is
the summation of the binary classification loss functions. The discriminator loss function
optimizes the SNNE module. The proposed generator is similar to the generator in the
few-shot 3D multi-model [8]. However, it uses the labeled patches X to compute the FM
loss function.

FM = ||EXz(X)−EZz(G(Z))||22 (4)
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4. Experiment Result

The proposed supervised GAN model and the ISLES-2018 dataset are used to evaluate
our main contribution, which is the mutation model. This section is organized as follows.
Section 4.1 presents the model setting used for the experiment. Section 4.2 shows the
performance results of the proposed model.

4.1. Experimental Settings

The experiments were conducted using Google Colab and Tensorflow with Keras for
implementation. The initial values of the selected parameters are similar to the [8] study.
The Adam optimizer is used with an initial learning rate of 0.0001, 128 batch size. However,
the number of epochs used to train the proposed model is 20, where the model is converged.
The training images of the ISLES-2018 dataset are split into training and valid by a ratio of
80:10. The dimensions of stride to generate patches is (8, 8, 8), and the dimension of the
random noise Z is 200. In the mutation model, the threshold is 44, and the max length used
to crop images in all directions is 64. Therefore, the spatial dimension of the cropped region
is 128× 128, where locations that have intensity values less than the threshold are used for
the mutation process.

In the training phase, each input image is mutated randomly for each batch, where
each image has the probability of 10% not being augmented. Therefore, the mutation
model generates new synthetic training images at each epoch. In contrast, the original
valid images are fed to the proposed GAN model without augmentation to evaluate the
end-to-end model.

4.2. Results

Since the mutation and supervised GAN models are trained as an end-to-end model
to generate and train a variety of images, the performance increases by 2.54% using a
valid set, as presented in Table 3. Since the valid set is not mutated, the mutation model
succeeds in increasing and diversifying the training images by generating new images with
no different distribution than the original one. Consequently, it enhances the proposed
model performance using the original valid set.

Table 3. Shows the performance enhancement by integrating the proposed mutation model into the
proposed supervised GAN model. The valid set of the ISLES-2018 dataset is used for evaluation.

Model Dice

Supervised GAN without integrated mutated
model 40.68%

Supervised GAN with integrated mutated
model 43.22%

Table 4 presents the average loss value of training the SNN module over 20 epochs. It
is reduced slightly during the training of the mutated images. The proposed model has
an extremely high loss value in the first epoch, then it reduces significantly in the second
epoch, as illustrated in Figure 4. However, it suffers overfitting in the early epochs, and the
loss cost is relatively high due to the SNN loss function combining both segmentation and
discriminator loss functions. Nevertheless, the segmentation performance is satisfactory
despite many obstacles in the ISLES-2018 dataset. Table 5 presents that the proposed model
outperforms the recall of other GAN models that use general augmentation techniques,
such as the Gaussian noise technique, by utilizing the Euclidean distance to select the
adjacent locations that have similar intensities for the mutation process. Where the recall
has significant importance over the precision as it represents a ratio of the true positive
samples to all test data [39].



Electronics 2023, 12, 590 12 of 15

Table 4. The training set of the ISLES-2018 dataset is used to present the average loss value of training
the SNN module for 20 epochs with and without an integrated mutation model.

Model loss

Supervised GAN without mutated images 42.99%

Supervised GAN with mutated images 42.86%

0 2 4 6 8 10 12 14 16 18 20
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ss

Supervised GAN with mutation model
Supervised GAN without mutation model

Figure 4. Presents the loss values of training the SNN module at each epoch using the mutation
model and without it. The training set of the ISLES-2018 dataset is trained for 20 epochs.

Table 5. The performance of the proposed model using the training set of the ISLES-2018 dataset.

Model Recall

Proposed model 79.46%

3DJoinGANs [16] 79.00%

Voxel-GAN [32] 78.00%

5. Applications and Future Direction

The CT scans have a significant issue that is vital to be obtained and the number
of existing images for specific diseases is significant challenge for deep learning models.
The conventional methods use CT images due to is considered a challenges datasets
and a potential resources for machine learning and deep learning models enhancements.
Therefore, this section provides a future direction by suggesting exploiting the proposed
augmentation technique in various applications.

5.1. Augmentation Technique

In addition to increasing the images related to ischemic stroke lesion segmentation,
the proposed mutation process could be used for different wide image process applications
and different types of images, such as breast lesion segmentation using dynamic contrast
enhanced magnetic resonance imaging (DCE-MRI) [40].
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5.2. Feature Extraction

The proposed distance map model that finds the adjusting regions has the ability to
be used and enhanced to extract further features aiding in classification and segmentation
tasks. For instance, extract further features using the proposed distance map for detecting
coronary artery lesions [41], diagnosing neurodegenerative diseases, such as Alzheimer’s
disease [42] and retinal vessels segmentation [43]. Furthermore, it has the ability to enhance
for extracting features related to the volume of tissues, such as hepatic tumors [44] and
clinical evaluation of muscle volume [45]. These features aiding to study the brain anatomy
in neuroscience and neuroanatomy [46].

In addition, it has the ability to integrated to different machine learning models for dif-
ferent objects that not related to medical images such as Q-learning RL-based optimization
algorithm (ROA) that proposed for natural scene image classification [47].

6. Conclusions

A new synthetic dataset to handle the limited number of images in the ISLES-2018
dataset for semantic segmentation using a model-based mutation and distance map has
been generated, presented, and evaluated in this paper. The distance map preserves the
structure shape of the human brain in the images. It prevents duplication of intensity values
in the selected locations used for the mutation process. Furthermore, a semi-supervised
GAN model is modified to a supervised GAN and enhanced using a shared module for
both segmentation and discriminator to reduce the complexity of the end-to-end model.
The proposed mutation model improves the dice coefficient of the proposed supervised
GAN model by 2.54% using the original valid set of the ISLES-2018 dataset. Moreover, it
enhances its recall compared to the existing GAN models, where the recall has significant
importance over the precision as it represents a ratio of the true positive samples to all
test data. However, it suffers overfitting, and the mutation model lacks adaptation. The
self-organizing map (SOM) approach will be integrated into the proposed mutation model
to achieve adaptation in future work.
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The following abbreviations are for all modalities mentioned in the proposed paper:

CT Computed tomography
CTP Computed tomography perfusion
DWI Diffusion-weighted imaging
CBF Cerebral blood flow
CBV Cerebral blood volume
Tmax Time-to-maximum flow
MTT Mean transit time
OT Semantic segmentation label for IS lesions
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