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Abstract: In this paper, Aaiming at the problem of simultaneous localization mapping (SLAM) for
mobile robots, a limited-augmentation innovation superposition (LAIS) is proposed to solve the
problems occurring in SLAM. By extending the single-time innovation superposition to multi-time
innovation, the error accumulation during the movement of mobile robots is reduced and the accuracy
of the algorithm is improved. At the same time, when the number of feature points observed by
the sensor exceeds the threshold, the sensor range is restricted. Therefore, only the qualified feature
points are added to the system state vector, which reduces the calculation amount of the algorithm
and improves the running speed. Simulation results show that compared with other algorithms,
LAIS has higher accuracy and higher running speed in environmental maps with a different number
of landmark points.

Keywords: mobile robot; innovation superposition; limited augmentation; SLAM

1. Introduction

With the continuous development of mobile robot technology, the research on mobile
robot autonomy has become more and more important, and the research on the operation
of mobile robots in an unknown environment has attracted more and more attention [1,2].
Localization and mapping are two important research directions related to mobile robots
in an unknown environment, and there exists a very close relationship between them.
Positioning means that the robot can know its position in the environment, which requires
map construction and precise positioning of the robot to obtain accurate map information of
the environment [3–5]. Therefore, the idea of simultaneous location mapping, also known
as SLAM technology, has been of wide concern. At present, there are also many methods to
solve the problem of robot SLAM [6].

At present, many algorithms are used to solve SLAM problems, such as the extended
Kalman filter algorithm [7–10], particle filter algorithm [11], RBPF SLAM [12], etc. Extended
Kalman filter (EKF) is a popular SLAM method in the field of robot navigation because
of its high mathematical rigor and algorithm structure [13]. Particle filter, also known
as the sequential Monte Carlo method, bootstrap filter, or clustering algorithm, is an
implementation method of Markov positioning. This method does not need to directly
solve the probability density function, and determines the reliability of attitude through a
series of random sampling points [14]. Layered RBPF SLAM is a robust SLAM framework
recently proposed for indoor environments with sparse and proximity sensors. In order to
overcome the limitation of the sensors, the whole area is divided into several independent
local maps [15].

The SLAM of mobile robots in an unknown environment is studied in this paper. The
earliest study on mobile robot SLAM is estimated to be conducted by Smith et al. [16], using
an extended Kalman filter. EKF SLAM can generate a more accurate estimate of unknown
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variables based on each measured value at different times, taking into account the joint
distribution of each measured value, than algorithms based on a single measured value
alone [17]. However, the linear error of the traditional EKF SLAM algorithm increases with
the increase in iteration times, which will lead to divergence of the SLAM system, and
then lead to incorrect mapping [18]. In order to improve this problem, Sage and Husa [19]
proposed the AEKF SLAM algorithm. By introducing a forgetting factor into the traditional
EKF SLAM algorithm, the process noise and observation noise of the SLAM system during
the movement of the mobile robot can be corrected in real time to ensure the convergence
of the algorithm. However, the introduction of a forgetting factor will reduce the process
noise estimation and the accuracy of the algorithm [20].

In order to improve the accuracy of the algorithm, the AEKF SLAM algorithm will be
introduced after multi-innovation superposition, and the adjacent time information can
be effectively utilized to make the filtering algorithm more accurate [21–23]. During the
movement of the mobile robot, with the increase in the number of observed landmark
points, the dimensions of system state vector keep increasing, which makes the calculation
amount of covariance matrix and Jacobi matrix keep increasing. In addition, the superpo-
sition of single innovation is extended to multi-time innovation, which further increases
the calculation difficulty and reduces the operation speed of the algorithm [24]. In order to
improve the speed of algorithm, this paper limits the augmented vector of the system state.
When the number of feature points observed by the sensor at a certain moment is large, the
observation range of the sensor will be constrained, and the information of the feature point
outside the constraint range will no longer be added to the system state augmented vector,
which reduces the increase in the dimension of the system state vector in each iteration to
decrease the calculation amount and improves the running speed of the algorithm.

The organizational structure of this paper is as follows: in Section 1, the motion model
and the observation model of mobile robots are analyzed; in Section 2, a synchronous
positioning and mapping algorithm for innovative mobile robots based on restriction aug-
mentation is designed. The single-time innovation of robot motion process is superimposed
into multi-time innovation to improve the accuracy of the algorithm. The limitation of
system state vector augmentation is increased to improve the running speed of the algo-
rithm. In Section 3, the performance of each algorithm is compared and analyzed through
simulation experiments. In Section 4, the conclusion will be given.

2. Problem Formulation

The system model of the mobile robot is discussed here. When the mobile robot is in a
position environment, the robot cannot know the environment map and its position in the
map. At this time, the robot needs to observe the surrounding environment when moving,
estimate its position and posture in the environment, and construct the environment map
through the observed environmental information, which is the principle of the SLAM
algorithm. In order to realize the SLAM algorithm, it is necessary to know the control input
uk and record the observation information Zk of sensors in the process of robot motion; the
motion model and observation model of the system are obtained. The motion model is
used to describe the motion process from k− 1 time to k− 1 time under the action of the
mobile robot. The observation model is used to obtain the observation value of the mobile
robot to the environmental road sign. The motion model is used to describe the motion
process of the mobile robot from k− 1 time to k time under the action of the control input,
and the observation model is used to obtain the observation value of the mobile robot to
the environmental road sign.

2.1. System Motion Model

In this paper, the robot motion is controlled by giving a translation speed vk and a
rotation speed ωk. Assuming that the control input of the robot is constant in unit time,
that is, the given translation speed and rotation speed do not change with time, under
the control of this constant input uk = (vk, ωk)

T , the robot will complete a circular arc
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motion from k− 1 time to k time, as shown in Figure 1, where Ak−1 is the pose of k− 1 time,
represented by (xk−1, yk−1, θk−1)

T ; Ak is the robot pose at k times, which is represented by
(xk, yk, θk)

T .
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The kinematics equation of the robot is Equation (1), where wk is the noise of the
mobile robot system. xk

yk
θk

 =

 xk−1
yk−1
θk−1

+

 −
vk
ωk

sin θk−1 +
vk
ωk

sin(θk−1 + ωt∆t)
vk
ωk

cos θk−1 − vk
ωk

cos(θk−1 + ωt∆t)
ωt∆t

+ wk (1)

In the process of constructing a SLAM point map, we need to estimate not only
the robot’s motion, but also the road signs in the map, so we need to add the road sign
information in the map to the state equation of the system, so that we can get the state
equation of the robot in the whole SLAM system (2). Among them, Xm

i,k is the coordinate
of the ith signpost point observed by the robot at time k, which does not change with the
motion of the mobile robot.

xk
yk
θk

Xm
1,k
· · ·
Xm

i,k


=



xk−1 − vk
ωk

sin θk−1 +
vk
ωk

sin(θk−1 + ωk∆k)
yk−1 +

vk
ωk

cos θk−1 − vk
ωk

cos(θk−1 + ωk∆k)
ωk∆k
Xm

1,k−1
· · ·

Xm
i,k−1


(2)

2.2. Systematic Observation Model

As shown in Figure 2, during the movement of the mobile robot, the position of
the second road sign observed by the vision sensor at time i can be expressed as the
star-Mi=(xm

i,k, ym
i,k)

T , i = 1, 2 · · · n. Among them, n is the total number of road signs.
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Figure 2. Observation model of mobile robot.

A mobile robot uses external sensors to perceive the features of the real-world en-
vironment. In this work, the sonars are adopted as the external sensors of the robot to
provide the measurements of the range and the bearing of the distance and orientation of
observation feature (xm

i,k, ym
i,k) [25]. In this paper, assuming that the position of all road signs

does not change, the observation equation of the SLAM system can be obtained as follows:

zm
i,k =


√
(xm

i,k − xk)
2 + (ym

i,k − yk)
2

arctan
ym

i,k−yk
xm

i,k−xk
− θk

 (3)

3. LAIS SLAM
3.1. AEKF SLAM

Based on the standard EKF SLAM algorithm, the AEKF SLAM algorithm introduces
a forgetting factor to correct the process noise and observation noise in real time, which
ensures the convergence of the algorithm. The specific implementation process is as follows:

Suppose that the k time state of system can be expressed by nonlinear state transition
matrix f (•) and the system observation can be expressed by nonlinear observation matrix
h(•), then the system state equation and observation equation can be expressed as:

Xk = f (Xk−1, uk) + wk−1 (4)

Zk = h(Xk) + vk (5)

where Xk is the k-time SLAM system state vector, uk is the system input control variable,
and wk−1 is the process noise from k− 1 to k, with a mean value of qk−1 and a covariance of
Qk−1. Zk is the k-time systematic observation vector, vk is the k-time systematic observation
noise, and its mean value is rk and covariance is Rk.

(1) The algorithm prediction step

The prior estimation equation of system state is:

X̂−k = f (X̂k−1) + q̂k (6)

The state prior estimated covariance equation is:

P−k = FkPk−1FT
k + WQ̂kWT (7)

where Fk is the Jacobi matrix obtained by taking the partial derivative of f (•) with respect
to Xk, and q̂k is the estimated value of the system process noise.
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Where W is the Jacobian matrix obtained by taking partial derivatives from f (·) to wk,
Q̂k is the covariance matrix of the estimated value of system process noise at k time.

(2) The algorithm update step

The innovation vector of the system at time k is:

Z̃k = Zk − HkX̂k−1 − r̂k (8)

where Hk is the Jacobian matrix obtained by taking partial derivatives from h(·) to Xk, and
r̂k is the estimated value of system observation noise.

The Kalman gain matrix is:

Kk =
P−k HT

k

HkP−k HT
k + R̂k

(9)

The posterior estimation equation of system state is:

X̂k = X̂−k + KkZ̃k (10)

The posterior estimation covariance equation is:

Pk = (I − Kk Hk)P−k (11)

In AEKF SLAM algorithm, a forgetting factor is introduced into standard EKF SLAM
algorithm to correct system errors in real time. The correction process is as follows:

r̂k = (1− dk)r̂k−1 + dk(Zk − HkXk+1|k) (12)

where r̂k is observation noise of system estimation at k-time.

R̂k = (1− dk)R̂k−1 + dk(Z̃kZ̃k
T − HkPk HT

k ) (13)

where R̂k is covariance matrix of system observation noise estimation at k-time.

q̂k = (1− dk)q̂k−1 + dk(X̂k − FkX̂k) (14)

where q̂k is process noise of system estimation at k-time.

Q̂k = (1− dk)Q̂k−1 + dk(KkZ̃kZ̃T
kKk

T + Pk − FkPk−1FT
k ) (15)

where Q̂k is covariance matrix of system process noise estimation at k-time.

dk =
1− b

1− bk+1 (0 < b < 1) (16)

where b is the forgetting factor, and 0.996 is taken to correct the process noise and observa-
tion noise of the system in real time.

3.2. IS AEKF SLAM

After the forgetting factor is introduced into the standard extended Kalman filter
algorithm, the adaptive extended Kalman filter is designed, which can effectively ensure
the convergence of the algorithm. However, when the forgetting factor is added, the process
noise estimation qk of the system is small, which makes the accuracy of the algorithm lower.

In order to improve the accuracy of the algorithm, this paper combines the multi-
innovation theory with the adaptive extended Kalman filter and designs an adaptive
extended Kalman filter algorithm based on innovation superposition. Multi-innovation
theory is a more accurate identification method based on single-innovation identification
theory. It describes the motion law of the system by establishing a mathematical model.
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The main idea is to modify the current model by using the parameter estimation of the
previous time system output and combining the product of gain vector and innovation.
In order to improve the prediction accuracy of the algorithm, the innovation matrices of
multiple moments during the movement of the mobile robot are superimposed, and the
effective information of each moment is fully utilized. The specific implementation process
is as follows:

Z̃n
k =


Z̃k

Z̃k−1
· · ·

Z̃k−n+1

 =


Zk − HkX̂k − r̂k

Zk−1 − Hk−1X̂k−1 − r̂k−1
· · ·

Zk−n+1 − Hk−n+1X̂k−n+1 − r̂k−n+1

 (17)

According to this, the state update equation of the system can be obtained as follows:

X̂k = X̂−k + KkZ̃k
n (18)

The covariance matrix of the system state vector is:

Pk = (I − Kk Hk)P−k (19)

The system observation noise is estimated as:

r̂k = (1− dk)r̂k−1 + dk(Zk − Hi,kXk+1|k) (20)

The covariance updating equation of the estimated observation noise of the system is
as follows:

R̂k = (1− dk)R̂k−1 + dk(Z̃n
kZ̃n

k
T − HkPk HT

k ) (21)

3.3. LAIS SLAM

During the movement of the mobile robot, the system state vector is a 3+ 2n-dimensional
vector, which represents the position information of three pose quantities and n road land-
mark points of the robot. With the increase in the number of landmarks observed by the
robot, the dimension of the system state vector is also increased, which leads to the increase
in the calculation amount of covariance matrix and the slow speed of the algorithm.

In order to solve the above problems, we can restrict the observation range of the
sensor and set the maximum observation range of the sensor to βmax. Mk = (xm

k , ym
k )

T

is a feature point observed by the sensor at three times, and the distance between it and
the robot is β. If β < βmax, the Mk coordinate information is added into the system state
augmented matrix and updated according to IS-AEKF-SLAM algorithm; if β > βmax, it
is ignored. This method can reduce the dimension of the state vector of the system at a
certain time, reduce the amount of computation, and make the algorithm faster. However,
when there are more distant points among the observed feature points at a certain time, the
system will only add the points whose distance from the robot is less than βmax to the state
vector, and other points will be ignored. This will lead to the inefficiency of map building,
and there may be unobserved road signs, which will lead to incorrect map building. In
this paper, a variable s is given to limit the augmentation of the system state vector, and its
expression is:

s = n− ñ (22)

In Equation (22), n is the dimension of observation vector at k times, and n = 3 + 2i.i
are the number of feature points observed by sensors at k time. ñ is the dimension of the
system state vector at time k− 1.

At time k, the sensor observation information can be as follows:

(1) s ≤ ñ/2. In this case, the dimension of the system state vector at time k− 1 is not
much different from that of the sensor observation vector at time k, and the dimension



Electronics 2023, 12, 587 7 of 14

of the system state vector will not increase too much after expansion, so there is no
constraint on the sensor observation range.

(2) s > ñ/2. In this case, the dimension of system state vector at time k − 1 is quite
different from that of sensor observation vector at time k. If all the observed feature
points are added to the system state vector, the dimension of system state vector will
be greatly increased and the algorithm accuracy will be reduced. At this time, the
sensor observation range can be constrained, and the feature points whose distance
from the robot is greater than βmax are ignored and not included in the system state
vector, thus improving the running speed of the algorithm.

Let the sensor observe i characteristic points at k time, and the observation vector can
be expressed as:

Zk = (xk, yk, θk, xm
1,k, ym

1,k, · · · xm
i,k, ym

i,k) (23)

Assuming that ĩ feature points out of i feature points observed by the sensor are
outside the constrained observation range of the sensor, the feature points outside the
observation range are deleted to obtain a new observation vector:

Znew,k = (xk, yk, θk, xm
1,k, ym

1,k, · · · xm
i−ĩ,k

, ym
i−ĩ,k

) (24)

(1) The prediction part of the algorithm

According to the system motion model, the robot moves from k− 1 to k under the
action of control input uk, and the sensor constantly observes the location information
of the surrounding landmark points during the movement process. Thus, the prior state
estimation equation of the mobile robot system can be written as:

X̂−k =



xk−1 − vk
ωk

sin θk−1 +
vk
ωk

sin(θk−1 + ωk∆k)
yk−1 +

vk
ωk

cos θk−1 − vk
ωk

cos(θk−1 + ωk∆k)
ωk∆k
Xm

1,k−1
· · ·

Xm
i,k−1


+ q̂k (25)

The prior estimation covariance equation of system state at time k is:

P−k = FkPk−1FT
k + WQWT (26)

Since the position of each landmark point does not change with time during the
movement of the mobile robot, only the robot’s own state updates with time, so the Jacobi
matrix is:

Fk =

0 0 − vk
ωk

cos θk−1 +
vk
ωk

cos(θk−1 + ωt∆t)
0 0 − vk

ωk
sin θk−1 +

vk
ωk

sin(θk−1 + ωt∆t)
0 0 0

Fj (27)

Fj =

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0

 (28)

(2) The algorithm update part

After limiting and augmenting the system state vector, the feature point information
outside the sensor constraint range is deleted from the observation vector, and a new
observation vector Znew,k is obtained. From Znew,k, the innovation vector after limiting and
augmenting and the extended multi-innovation matrix can be written as:

Z̃new,k = Znew,k − HkX̂−k−1 − r̂new,k (29)
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Z̃n
new,k =


Z̃new,k

Z̃new,k−1
· · ·

Z̃new,k−n+1

 =


Znew,k − HkX̂−k − r̂k

Znew,k−1 − Hk−1X̂−k−1 − r̂k−1
· · ·

Znew,k−n+1 − Hk−n+1X̂−k−n+1 − r̂k−n+1

 (30)

According to the systematic observation model, the Jacobi matrix of partial derivative
of h(•) with respect to Xk can be written:

Hk =

 xa
k−xm

i,k√
m

ya
k−ym

i,k√
m 0

xm
i,k−xa

k√
m

ym
i,k−ya

k√
m 0

ym
i,k−ya

k
m

xa
k−xm

i,k
m −1

ya
k−ym

i,k
m

xm
i,k−xa

k
m 0

Hj (31)

Hj =



1 0 0 0 · · · 0 0 0 0 · · · 0
0 1 0 0 · · · 0 0 0 0 · · · 0
0 0 1 0 · · · 0 0 0 0 · · · 0
0 0 0 0 · · · 0 0 0 0 · · · 0
0 0 0 0 · · · 0 1 0 0 · · · 0
0 0 0 0 · · · 0 0 1 0 · · · 0

 (32)

Kalman gain after limiting augmentation is:

Knew,k =
P−k HT

k

HkP−k HT
k + R̂new,k

(33)

The posterior estimation equation of system state is:

X̂new,k = X̂−k + K,new,kZ̃n
new,k (34)

The posterior estimation covariance equation is:

Pnew,k = (I − Knew,k Hk)P−k (35)

where r̂new,k, q̂new,k, R̂new,k, and Q̂new,k are the estimated values of process noise and obser-
vation noise of the restricted augmented system and their respective covariance matrices.

r̂new,k = (1− dk)r̂k−1 + dk(Zn
new,k − HkXk+1|k) (36)

R̂k = (1− dk)R̂k−1 + dk(Z̃n
new,kZ̃n

new,k
T − HkPnew,k HT

k ) (37)

q̂new,k = (1− dk)q̂k−1 + dk(X̂new,k − FkX̂new,k) (38)

Q̂new,k = (1− dk)Q̂k−1 + dk(KkZ̃n
new,kZ̃n

new,k
TKnew,k

T + Pk − FkPk−1FT
k ) (39)

4. LAIS SLAM Simulation Experiment and Result Analysis
4.1. Establishment and Simulation of Environmental Map

In this paper, MATLAB is used to build an environmental map. The map covers an
area of 120 m × 100 m, 80 Eighty blue star landmarks were set, and eight key points are
selected as the actual trajectory of the robot. Assuming that the position of the sensor is the
center of mass of the robot, the robot can be regarded as a particle in the process of motion.
The mobile robot starts from the first key point, linear velocity v = 4 m/s, and angular
velocity ω = 1.5 rad/s. The observation range of the sensor is 35 m and 180 degrees. The
sensor constrains the observation range βmax = 20 m. In this environment, the mobile robot
uses the IS-AEKF-SLAM algorithm and restricted augmented IS-AEKF-SLAM algorithm to
locate and build maps, and the simulation results are shown in Figure 3.
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Figure 3. Trajectory diagram of each algorithm.

Figure 3 shows the real trajectory of the mobile robot and moving trajectory of the
mobile robot under various algorithms. It can be seen that in the initial stage of robot
positioning mapping, the trajectory of the mobile robot under each algorithm is not much
different from the real trajectory, but with the increase in time, under the action of mobile
robot system noise, each algorithm begins to accumulate errors, which leads to the trajectory
deviation. As can be seen from Figure 3, the difference between the running trajectory of
the mobile robot and the actual running trajectory of the mobile robot is the smallest under
the LAIS SLAM algorithm.

4.2. Analysis of Simulation Results of LAIS SLAM Algorithm

Figure 4 shows the errors between each algorithm and the real value in the x axial
direction, the errors between each algorithm and the real value in the y axial direction, and
the errors between each algorithm and the real value in the rotation angle when there are
80 road landmark points on the map. It can be seen from the result diagram that in the first
200 iterations of the algorithm, the errors of the four algorithms are not much different, but
with the increase in the number of iteration times, each algorithm begins to present errors.
Compared with the other three algorithms, the error curve of the LAIS SLAM algorithm is
more stable and the error value is the smallest; that is, the accuracy is the highest.

Because the process noise and observation noise of the mobile robot are random and
the simulation results are different every time, it is impossible to judge the performance
of the algorithm only by the results of one simulation experiment. In order to avoid
contingency of the experiment and ensure rigor, the number of road signs in the map was
changed to 60 for the subsequent simulation experiment. The experimental results are
shown in Figure 5. As can be seen from the following result, the LAIS SLAM algorithm still
has the highest accuracy compared with the other three algorithms after changing the road
signs of the environmental map.
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In the above experiment, the system noise was all achromatic noise. In order to
increase the reliability of the experiment, the noise was changed to colored noise, and the
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simulation experiment was carried out again. The results are shown in Figure 6. It can be
seen from the experimental results that the LAIM SLAM algorithm still has higher accuracy
after the noise is changed to colored noise.
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In the case of achromatic noise and the number of road points on the map is 60. The
root-mean-square error (RMSE), the mean absolute error (MRE) and the maximum absolute
error (MAE) of each algorithm in three directions are shown in Table 1, Table 2, and Table 3,
respectively. From Tables 1–3 it can be seen that compared with other algorithms, the LAIS
SLAM algorithm has achieved higher accuracy.

Table 1. The RMSE of each algorithm in three directions.

Direction
RMSE

SLAM
EKF-SLAM AEKF-

SLAM
ISAEKF-
SLAM LAIS-SLAM

X(m) 0.4413 0.4187 0.4059 0.3984

Y(m) 0.4282 0.4191 0.4299 0.3872

θ(rad) 0.0451 0.0442 0.0403 0.0301
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Table 2. The MRE of each algorithm in three directions.

Direction
MRE

SLAM
EKF-SLAM AEKF-

SLAM
ISAEKF-
SLAM LAIS-SLAM

X(m) 5.27 3.15 2.26 0.55

Y(m) 4.86 4.01 2.72 0.57

θ(rad) 0.18 0.082 0.15 0.027

Table 3. The MAE of each algorithm in three directions.

Direction
MAE

SLAM
EKF-SLAM AEKF-

SLAM
ISAEKF-
SLAM LAIS-SLAM

X(m) 9.002 6.146 4.792 1.056

Y(m) 10.93 7.457 4.584 1.168

θ(rad) 0.24 0.19 0.22 0.08

In order to verify the running speed of the algorithm, this paper compares the complete
positioning and mapping time of four algorithms when the number of road signs in the
environmental map is 60 and 80, respectively. The results are shown in Table 4. It can
be seen from Table 4 that the times required by the first three algorithms are not much
different, while the time required by LAIS SLAM is reduced by 11% compared with the first
three algorithms. It shows that the running speed of the algorithm is obviously improved
after adding the state vector of the restricted system.

Table 4. Time for complete map construction of each algorithm.

Number of
Road Signs Time(s)

SLAM
EKF-

SLAM
AEKF-
SLAM

ISAEKF-
SLAM LAIS-SLAM

60 90.8 89.6 90.4 80.7

80 122.4 120.5 122.7 118.6

5. Conclusions

In this paper, a restricted augmented SLAM algorithm for innovative stacked mobile
robots is proposed. In this algorithm, the single-time innovation superposition is extended
to multi-time innovation in the process of mobile robot motion, which reduces the error
accumulation in the iterative process. Simulation results show that this algorithm has
higher accuracy than EKF SLAM, AEKF SLAM and IS AEKF SLAM in the same map
environment. The simulation results show that the LAIS SLAM algorithm takes 11% less
time and has a higher running speed than the other three algorithms.

However, this method has not been applied to complex maps in practice, and whether
it can run stably in a complex environment remains to be studied. In our future work,
we will focus on practical experiments to ensure that the algorithm can run stably and
accurately in the real environment.
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