i\;l% electronics

Article

Improving Performance of Hardware Accelerators by
Optimizing Data Movement: A Bioinformatics Case Study

Peter Knoben and Nikolaos Alachiotis *

check for
updates

Citation: Knoben, P,; Alachiotis, N.
Improving Performance of Hardware
Accelerators by Optimizing Data
Movement: A Bioinformatics Case
Study. Electronics 2023, 12, 586.
https://doi.org/10.3390/
electronics12030586

Academic Editors: Leonardo Pantoli,
Egidio Ragonese, Paris Kitsos,
Gaetano Palumbo and Costas

Psychalinos

Received: 11 December 2022
Revised: 15 January 2023
Accepted: 19 January 2023
Published: 24 January 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Faculty of EEMCS, University of Twente, 7522 NB Enschede, The Netherlands; p.a.h.knoben@student.utwente.nl
* Correspondence: n.alachiotis@utwente.nl

Abstract: Modern hardware accelerator cards create an accessible platform for developers to reduce
execution times for computationally expensive algorithms. The most widely used systems, however,
have dedicated memory spaces, resulting in the processor having to transfer data to the accelerator-
card memory space before the computation can be executed. Currently, the performance increase
from using an accelerator card for data-intensive algorithms is limited by the data movement. To
this end, this work aims to reduce the effect of data movement and improve overall performance
by systematically caching data on the accelerator card. We designed a software-controlled split
cache where data are cached on the accelerator and assessed its efficacy using a data-intensive
Bioinformatics application that infers the evolutionary history of a set of organisms by constructing
phylogenetic trees. Our results revealed that software-controlled data caching on a datacenter-grade
FPGA accelerator card reduced the overhead of data movement by 90%. This resulted in a reduction
of the total execution time between 32% and 40% for the entire application when phylogenetic trees
of various sizes were constructed.

Keywords: hardware accelerator; FPGA; data movement; memory bottleneck; phylogenetics

1. Introduction

Hardware accelerators are increasingly used to reduce computation times for time-
intensive algorithms. However, they do not always share memory space with the host
processor, e.g., accelerator cards in data centers. When the host processor and the accelerator
do not share the same memory space, as depicted in Figure 1, data has to be transferred
to the accelerator’s dedicated memory prior to initiating computations on the accelerator.
Data transfers in memory-bound applications are time-expensive [1], which is particularly
noticeable in data-intensive algorithms and can lead to a point where the use of a hardware
accelerator has no positive effect on the performance.

Yot Accelerator Card
[S <
Processor

\ 4

Memory
Memory

Figure 1. Block diagram of memory architecture for host processor with accelerator card.

Two possible solutions to optimize data movement include: (a) increasing the transfer
speed, and (b) decreasing the number of data transfers. Assuming that applications already
utilize the full bandwidth, it is very challenging to increase transfer rates without changing
the hardware. Reducing the number of data transfers, on the other hand, is a solution that is
highly dependent on the type of application. Efforts to reduce the number of data transfers
when accelerating applications have been reported in the literature. For Deep Neural
Networks (DNNS), for instance, several works have come across a memory bottleneck
in DNN research [2—4]. To reduce this effect, a hierarchical memory management design
is created. This memory management design is based on the different layers in DNN

Electronics 2023, 12, 586. https:/ /doi.org/10.3390/ electronics12030586

https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12030586
https://doi.org/10.3390/electronics12030586
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8162-3792
https://doi.org/10.3390/electronics12030586
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12030586?type=check_update&version=2

Electronics 2023, 12, 586

20f15

and shows promising results in reducing the number of data transfers [4]. A hierarchical
memory can improve performance in data-intensive algorithms and is worth investigating
in a more systematic and application-agnostic way.

To the best of the authors” knowledge, hierarchical memory management designs,
such as caching, are not yet tested in a generic approach for an FPGA-based hardware
acceleration of data-intensive algorithms. SemCache [5] explores the concept of software
caching to reduce the number of data transfers between a CPU and a GPU. DyManD [6]
implements a memory allocation system and a run-time library that uses a software cache
for GPUs. Asai et al. [7] present an extension to IBMSparkGPU (a framework for big data
processing on GPUs) that avoids redundant data transfers between the CPU and the GPU
without any code modifications. dImCL [8] unifies the host and GPU device memory into
one object through address mapping. OmpMemOpt [9] relies on compiled techniques
to reduce the number of data transfers by applying a data flow analysis during compile
time for partial redundancy elimination. Wei et al. [2] propose a Layer Conscious Memory
Management framework (LCMM) for Deep Neural Networks (DNN) implemented on
an FPGA.

To reduce the negative effect of data movement on overall accelerator performance,
we focus here on reducing the number of data transfers by exploiting standard caching
techniques. Caching is already an established and widely used concept in processor
design. Most modern processor cores have a form of cache memory implemented in the
hardware. In this work, we implement this core concept in software and showcase a
systematic and novel way, to the best of the authors” knowledge, to alleviate the problem of
data movement between a host processor and dedicated accelerator cards. Our approach
extends the existing memory hierarchy of a computing system to include, transparently to
the application, the memory space of an accelerator card. This allows the memory on the
accelerator to not only be used as a buffer for a compute kernel, but also as an additional
memory space where data are temporarily stored, exploiting temporal and spatial locality.

Using a real-world application as a case study, we assess standard caching techniques
and various related design choices, e.g., cache size, level of associativity, replacement
policies, etc., which are currently used in processor design. We target the problem of
accelerating phylogenetic-tree reconstruction [10] that constructs large phylogenetic trees
to infer the relationship between organisms based on their genetic sequence data. Several
accelerator architectures have been previously designed to boost the performance of phylo-
genetic tree reconstruction. Pratas et al. [11] accelerate the calculation of the PLF within
MrBayes on a GPU. Zhou et al. [12] propose an improvement over the work by Pratas et
al. [11]. While the work by Pratas et al. mainly focuses on the GPU-side computations,
this work adopts a more hybrid approach where the CPU performs computations in par-
allel with the GPU. Zierke and Bakos [13] present an FPGA-accelerated solution based
on MrBayes [14]. For likelihood calculations, the internal nodes of the tree are processed
via a post-order traversal with minimal intervention from the host to reduce CPU-FPGA
communication overheads. The solution utilizes onboard memory to cache the output
vectors of the computations to minimize host-FPGA communication. Alachiotis et al. [15]
accelerate the Phylogenetic Likelihood Function (PLF) using FPGAs by exploiting data
dependencies between subsequent hardware calls in combination with double buffering.
Malakonakis et al. [16] implement the complete RAXML algorithm on a hybrid system.
The calculation of the PLF is done on an FPGA while the rest of the algorithm runs on the
host CPU.

In this work, we targeted an AWS EC2 F1 hardware instance with an FPGA accelerator
card. We observed that the transfer time of host-to-accelerator data transfers was reduced
by 6x. In our setup, we only cached the accelerator input data, which resulted in up to a
40% improvement in the overall accelerator throughput perceived by the host application.

Electronics 2023, 12, 586

30f15

2. Materials and Methods
2.1. System Overview

In our proposed approach for systematic software caching to improve the performance
of hardware accelerators, the cache controller and cache memory are separated. The host
processor is the master for all communication in this system. It initiates all data transfers
both to and from the accelerator card. For this reason, the software cache controller runs on
the host processor. Unlike hardware caches, however, the data is stored on the accelerator
memory and is separated from the rest of the cache controller. Our separated-cache design
is depicted in Figure 2. The host processor keeps track of the different entries in the cache
memory and has an additional field that stores a pointer to the location of the (cached) data
in the accelerator card’s memory space. Figure 3 shows a block diagram of the system with
the software cache. It is similar to the block diagram previously shown in Figure 1, but the
memory space on the accelerator card holds the cache memory whereas the host processor
performs the cache control.

Host Processor Accelerator card
Index Valid Tag Data pointer | Data
0 - -H-H‘H'“‘:l
1
2

Figure 2. Cache separation between the host and the accelerator. All cache-control logic is
implemented in software on the host processor whereas the actual caching of data happens
on the main memory on the accelerator card.

Computing device
LiE] Accelerator Card | — |
Ms;;g Processor « Process
Ty Cache Cache
controller Memory Memaory

Figure 3. Block diagram of the architecture for host and accelerator with caching.

2.2. Generality of the Design

To ensure that our design supports different algorithms, there must be some level of
control for the user’s application to exploit. There are multiple different configurations and
replacement policies that define the functionality of a cache. For each application, which
combination of cache configuration and replacement policy will perform best will differ. For
this reason, our implementation supports multiple cache configurations and replacement
policies to allow the developer to choose the most suitable one for the application at hand.
Our design also allows the application to define the block size for the data to be stored. For
tree-based algorithms, like the phylogenetics application we used as a case study in this
work, the block size is determined by the data size for each node of the phylogenetic tree.
Since this caching method is aimed at data-intensive algorithms, this most likely will result
in large block sizes, on the order of MB or even GB.

Depending on the target platform, the amount of onboard memory differs. Therefore,
our cache design accommodates different memory sizes by defining the number of cache
lines the cache will have. One more setting that the user can control is the tag size. In
practice, the memory space required for the tag can be several orders of magnitude smaller
than the block size (application-specific cache blocks can be several GB in size, as can
be the case in our Bioinformatics case study when complex organisms like humans are
investigated) and is negligible. Table 1 provides an overview list of all settings that can
be set by the user. The supported replacement policies used to replace a cache line with
a new one when the cache is full are: Random, FIFO (First In First Out), LRU (Least

Electronics 2023, 12, 586

40f 15

Recently Used), MRU (Most Recently Used), LFU (Least Frequently Used), and MFU (Most
Frequently Used). For example, LRU will replace the least recently used cache line whereas
LFU will replace the least frequently used cache line.

Table 1. Overview of software-cache configuration settings.

Setting Value

Cache configuration Direct-mapped, 2-way set/4-way set/fully associative
Replacement policy Random, FIFO, LRU, MRU, LFU, MFU

Block size Number of bytes

Cache size Number of cachelines

Tag size Number of bits

2.3. Implementation and OpenCL Interface

Our software-cache implementation is technology-independent and can thus support
different accelerator cards, e.g., FPGAs and GPUs. There already exist many implementa-
tions of cross-platform applications. With Open Computing Language (OpenCL), develop-
ment times are significantly reduced compared to traditional low-level languages resulting
in the widespread use of OpenCL [17]. OpenCL is a framework for writing code that is
executed on multiple platforms. It is supported by CPUs, GPUs, FPGAs, and other hard-
ware accelerators, making it an ideal tool for the front-end interface of the software cache.
Our implementation of the software-cache control is done in C to allow for performance
optimizations that minimize the overhead of the cache controller. The C implementation
and the interaction with standard OpenCL routines for data movement are hidden behind
an OpenCL-like interface to control cross-platform communication. This way, it can be
instantiated on any OpenCL-supported device while all the complexity of deploying the
software cache in a source code is hidden behind standard OpenCL routines for data
transfers, e.g., clEnqueueReadBuffer. In the following, we present the basic functions of
our software-cache implementation.

2.3.1. CreateCache

The CreateCache function is a constructor, described in Listing 1.

Listing 1. CreateCache function header.

struct Cache_t = CreateCache(
int numberOfCacheLines,
int dataSize,
int tagSize,
enum CacheConfiguration_t config,
enum ReplacementPolicy_t policy);

This creates the cache controller. This function allocates memory space based on the
arguments given and returns a pointer of type Cache_t. The main Cache_t structure for
the software cache is described in Listing 2.

Listing 2. Cache_t struct declaration.

typedef struct Cache_t {

int tagSize;

int dataSize;

int numberOfLinesPerSet;

int numberOfSets;

enum CacheConfiguration_t config;

CacheLine_t ** cachelLine;

enum ReplacementPolicy_t policy;
} Cache_t;

Electronics 2023, 12, 586

50f15

It contains all the parameters of the cache given by the user. When CreateCache is
called, the allocation of the software cache happens on both the accelerator card, for the ac-
tual data, and on the host memory for all control data. The pointer returned by CreateCache
is used as an input argument for the other functions. The benefit of this approach is that
multiple cache instances can exist and function at the same time within the same application,
each being uniquely identified by a pointer of type Cache_t.

2.3.2. FreeCache

The FreeCache function is a destructor, described in Listing 3.

Listing 3. FreeCache function header.

void FreeCache(
struct Cache_t = cachePtr);

When CreateCache is called, memory space is allocated for the different fields of the
cache. This memory space must be freed up again in order to prevent memory leaks. To
achieve this, the FreeCache function is provided.

2.3.3. c1CreateCacheBuffer

When using OpenCL, the c1CreateBuffer function is used to allocate memory on the
accelerator by creating a c1_mem object in the accelerator memory that is initialized with
the content of an associated memory space in the host memory. To use the software cache,
the custom c1CreateCacheBuffer can be used in a very similar fashion. This function first
checks if the data is already in the cache memory (on the accelerator card), and if so, it
returns the c1_mem object pointing to that location. If the data is not in the cache, it will
internally invoke the c1CreateBuffer function to allocate memory space on the accelerator
and transfer the data to the accelerator before returning the c1_mem object pointing to the
new data location.

This function sets/updates all the relevant attributes in the cache controller, i.e., the tag,
the valid bit, and the access order for the replacement policies. The c1CreateCacheBuffer
function is described in Listing 4.

Listing 4. cICreateCacheBuffer function header.

cl_mem clCreateCacheBuffer (
cl_context context,
cl_mem_flags flags,
size_t size,
void +host_ptr,
cl_int =errcode_ret,
struct Cache_t* cachePtr)

The only addition in the syntax with respect to the regular OpenCL c1CreateBuffer
function is the addition of the pointer to the software cache. Depending on the flags given
as arguments, the function can slightly change. By default, the flags CL_MEM_READ_WRITE
and CL_MEM_COPY_HOST_PTR are assumed as arguments for this function. This tells the
cache that the data is only to be transferred when not in the cache already. There are,
however, instances when an entry is already in the cache but the data is outdated and needs
to be overwritten and thus transferred to the cache. To do this, the CL._MEM_COPY_HOST_PTR
flag must be omitted. This way, data is always written to the cache.

2.3.4. clEnqueueReadCacheBuffer

To transfer data from the accelerator to the host, the c1EnqueueReadBuffer OpenCL
is used. When a software cache is used, the custom c1EnqueueReadCacheBuffer is used
instead. This function is an adaptation of the standard clEnqueueReadBuffer function.
The difference is that no c1_mem object is given as an argument since the cache determines

Electronics 2023, 12, 586

6 of 15

where the data to be read back is stored. When a cache entry is requested that is not in
the cache the function will return 1 and no data is retrieved from the accelerator. The
clEnqueueReadCacheBuffer is described in Listing 5.

Listing 5. clEnqueueReadCacheBuffer function header.

int clEnqueueReadCacheBuffer (
cl_command_queue command_queue,
cl_bool blocking_read,
size_t offset,
size_t size,
void +host_ptr,
cl_uint num_events_in_wait_list,
const cl_event xevent_wait_list,
cl_event xevent,
struct Cache_t* cachePtr)

2.4. Demonstration

To show the ease of use of a software case via the OpenCL-like API, we provide a series
of code snippets based on a simple vector-addition example application in OpenCL [18].
To demonstrate the additional cache-related code, snippets are given with and without
the cache. Most of the code remains the same and is not shown in this section, only the
differences are highlighted. To use a software cache, an instance needs to be created first.
Thereafter, data transfers from the host to the accelerator and backward, as dictated by
the application needs, will use the cache and benefit from avoiding redundant transfers
when possible. Upon completion of the hardware-accelerated part of the application, the
software cache is freed.

2.4.1. Cache Instantiation

At the beginning of the code, the cache needs to be instantiated. This is achieved
by calling the CreateCache function and can be seen in Listing 6. No code needs to be
removed at this stage and no OpenCL function has to be replaced.

Listing 6. Code snippet of cache instantiation.

struct Cache_t* myCache = CreateCache(8, dataSize, 32, direct_mapped
, fifo_RP);

2.4.2. Data from Host to Accelerator

For the data transfer from host to accelerator the example uses the code shown in
Listing 7 to create c1_mem objects and assign the correct data to it before providing it as an
argument to the kernel.

Listing 7. Code snippet of data transfers without cache.

//Create the input arrays in device memory and copy the host
pointers

inputl = clCreateBuffer (context, CL_MEM_READ ONLY |
CL_MEM_COPY_HOST PIR, dataSize, h_inputl, &err);

checkError (err, “‘Creating buffer inputl’’);

input2 = clCreateBuffer (context, CL_MEM READ ONLY |
CL_MEM_COPY_HOST_PIR, dataSize, h_input2, &err);

checkError(err, ‘‘Creating buffer input2’’);

output = clCreateBuffer (context, CL_MEM _READ WRITE, dataSize, NULL,
&err) ;

checkError(err, ‘‘Creating buffer output’’);

Electronics 2023, 12, 586

7 of 15

// Set the arguments to the compute kernel

err = clSetKernelArg(ko_vadd, 0, sizeof(cl_.mem), &inputl);
err |= clSetKernelArg(ko_vadd, 1, sizeof(cl_mem), &input2);
err |= clSetKernelArg(ko_vadd, 2, sizeof(cl_mem), &output);
checkError(err, ‘‘Setting kernel arguments’’);

To implement the cache, the code has to be changed to the code shown in Listing 8.
The code is very similar but there are two key differences: (a) it is important for defining
the output that the CL_MEM_COPY_HOST_PTR argument is not passed to the function. This
will make sure that the output will always be written to the cache even if an outdated
version of that entry is already present, and (b) for the output, instead of a NULL pointer
now the pointer that points to the data in the host memory space is given. This way the
cache controller can determine the location of the output in the cache memory and can
keep track of the entries in the cache. The only other difference from the original OpenCL
function arguments is the additional argument that provides the pointer to the cache struct.

Listing 8. Code snippet of data transfers with cache.

//Write to the cache on the device memory

inputl = clCreateCacheBuffer (context, CL MEM _READ WRITE |
CL_MEM_COPY_HOST PIR, dataSize, h_inputl, &err, myCache);

checkError(err, ‘‘Creating buffer inputl’’);

input2 = clCreateCacheBuffer(context, CL_MEM READ WRITE |
CL_MEM_COPY_HOST_PIR, dataSize, h_input2, &err, myCache);

checkError(err, ‘‘Creating buffer input2’’);

output = clCreateCacheBuffer(context, CL_MEM_READ WRITE, dataSize,
h_output, &err, myCache);

checkError(err, “‘Creating buffer output’’);

// Set the arguments to the compute kernel

err = clSetKernelArg(ko_vadd, 0, sizeof(cl_mem), &inputl);
err |= clSetKernelArg(ko_vadd, 1, sizeof(cl_mem), &input2);
err |= clSetKernelArg(ko_vadd, 2, sizeof(cl_mem), &output);
checkError(err, “’Setting kernel arguments’’);

Note that the error-checking functionality built-in OpenCL is still functional with the
added cache functionality. In both examples, the OpenCL-defined error type is provided as
an argument and can be used to check correctness.

2.4.3. Data from Accelerator to Host

After the kernel is executed, the output data from the accelerator can be transferred
back to the host. The original code uses a c1EnqueueReadBuffer function to achieve this,
which can be seen in Listing 9.

Listing 9. Code snippet of retrieving data from accelerator.

// Read back the result from the compute device

err = clEnqueueReadBuffer (commands, output, CL_TRUE, 0, dataSize,
h_c, 0, NULL, NULL);

checkError(err, “‘Reading back h_c’’);

With the cache implementation, this method can still be used. This, however, does
not update the access order in the cache for replacement tracking, so performance might
drop due to improper tracking of usage for replacement, but correctness is still ensured.
The caching software does, however, also offer some extra functionality in the form of the
clEnqueueReadCacheBuffer function. The use of this function can be seen in Listing 10.

Electronics 2023, 12, 586

8 of 15

Listing 10. Code snippet of retrieving data from cache.

// Read back the result from the compute device

err = clEnqueueReadCacheBuffer (commands, NULL, CL_TRUE, 0, dataSize,
h_c, 0, NULL, NULL, myCache) ;

checkError(err, ‘‘Reading back h_c¢’”);

This function allows for any data to be retrieved from the cache memory. For this
function, no location on the device memory has to be given as an argument, since the cache
controller contains that information. Only the location in the host memory where the data
is to be stored is required. The controller will find the location in the cache, and if the
requested data is not in the cache the function will return 1, which can be used with the
error functionality to identify such an occurrence. Therefore, it is possible to retrieve cached
data computed with previous accelerator calls, if, of course, the cache size is big enough
and the data is not yet overwritten with new data.

2.4.4. Cache Destruction

The last piece of code that is added to the example is the cache destructor function
FreeCache, shown in Listing 11.

Listing 11. Code snippet of cache destruction.

FreeCache (myCache) ;

3. Results and Discussion
3.1. Use Case

To evaluate the performance of the software cache, a real-world algorithm, the Phylo-
genetic Likelihood Function (PLF) [19], from the field of Bioinformatics is used. The PLF
uses matrix multiplications to determine the likelihood of a part of a tree structure. In a
phylogenetic tree, each leaf node, henceforth referred to as a tip node, represents a different
DNA sequence (different organism). The inner nodes of the tree, however, correspond to
extinct common ancestors for which no DNA sequences are available. Therefore, each inner
node is described by a series of probability vectors. This differentiation between the tip
and inner nodes is actually important since there is a different amount of data stored for
each type of node. All cache lines within a cache have a fixed-size data field. It is possible
to store smaller amounts of data in a larger cache line but that is not efficient. In the case of
the PLE, every inner node is 128 x larger in terms of memory size than a tip node, making it
inefficient to store the data of both nodes in the same-sized data field. In this case, we create
two different cache instances with different sizes, one for the tip nodes and one for the inner
nodes. DNA sequences used in phylogenetics can easily contain over 100,000 characters,
and with 16 double-precision values per character in every inner node, it becomes a highly
data-intensive application.

3.2. Experimental Setup

Two tools were used to create simulated sequence data, ms and seq-gen. ms is a
tool that can generate a sample of a neutral evolutionary model [20]. Next, the seq-gen
tool can create multiple DNA sequences based on that generated sample and some given
parameters [21]. For our tests, the sample data is generated with the command in Listing 12.

Listing 12. ms command for generating simulated data.

ms X 1 -T | tail +4 | grep -v // >treefile_name

where X is the number of different sequences (number of tip nodes in the tree), -T specifies
the output type, tail +4 and grep -v remove comments and other information from
the output file, and, finally, >treefile_name represents the output file. X in this case is a

Electronics 2023, 12, 586

9of 15

variable and will change for different tests. Next, the DNA sequences are created with the
seq-gen tool using the command in Listing 13.

Listing 13. seq-gen command for converting ms data to DNA sequences.

seq-gen -mHKY -1 1000 -s .2 <treefile_name >seqfile_name.phy

Here, -mHKY specifies the used model, -1 1000 is the number of alignment sites for
the sequences, -s .2 sets the variation 6 to .2 per base pair and then the names of the in-
and output files are set.

For phylogenetic tree reconstruction, we used RAxML [22], an open-source tool that
determines the likelihood of different phylogenetic trees for a given set of DNA sequences.
This tool would be used as a base for testing and evaluating our software-cache imple-
mentation. RAXML tool was called with the following parameters, providing as input the
output file generated by seq-gen as shown in Listing 14.

Listing 14. RAXML command.
raxmlHPC -m GTRGAMMA -s seqfile_name.phy -n testl

Here -m GTRGAMMA sets the DNA substitution model, -s seqfile_name.phy defines the
input file and -n test1 defines a name for the run.

As expected, RAXML is highly computationally intensive. For this reason, memory-
access traces were extracted from various runs, which were subsequently used in cache-
performance evaluation tests. The access pattern is stored in a trace file. An example of the
first few rows of a trace is provided in Listing 15.

Listing 15. The beginning of a memory trace.

width 156

0x2039d94 0x2039e30 0x21£4940 tt
0x203a0a0 0x203a13c 0x21£9750 tt
0x203a004 0x21£f9750 0x21fe560 ti
0x2039f68 0x21fe560 0x2203370 ii

The width given at the top represents the length of the genomic sequences to be
processed. Each row in the trace file corresponds to one accelerator call. In every row, the
first two addresses point to the data of the child nodes while the third address points to the
data of the parent node. This is where the result of a single accelerator invocation will be
stored. As can be seen, each line also contains a pair of letters, which can be tt, ti, or ii.
Each letter indicates whether the respective child node is a tip node or an inner node in the
tree. This information will be used later for accessing the correct software-cache instance.

The number of sequences directly translates to the number of tip nodes in the tree
and thus the size of the tree. For T tips, there are T — 1 inner nodes. By increasing the
number of sequences, the number of different data blocks that need to be transferred to the
accelerator increases. We evaluated application performance by constructing phylogenetic
trees with 100, 250, 500, and 1000 DNA sequences. In all runs, the DNA sequence length
was 1000 characters.

3.3. Hardware Accelerator and Platform

To assess performance improvements with the software cache and without it, we re-
produced the PLF hardware accelerator for FPGAs that was recently presented by Malakon-
akis et al. [16]. The authors described a pipelined hardware accelerator for the AWS cloud
and evaluated its performance on an AWS EC2 F1 instance. To yield comparable results
with this study, we also target the Xilinx Alveo family of accelerator cards [23]. The Alveo
cards offer Gen3x16 PCle interfacing and onboard memory. We used Xilinx Vitis 2020.1 [24]

Electronics 2023, 12, 586

10 of 15

for the accelerated application and Vivado HLS 2020.1 for the design and development of
the accelerator hardware.

3.4. Performance Evaluation
3.4.1. Access Pattern

This section provides a detailed performance evaluation of our software-controlled
caching mechanism. As with every cache implementation, performance depends on the
access pattern; thus, it can vary from application to application as well as across different
runs of the same application when execution is not deterministic. The Bioinformatics appli-
cation we used in this work as a case study (phylogenetic tree reconstruction) implemented
heuristics to search the phylogenetic tree space, and as such, the effect of caching was
expected to vary from execution to execution, even when the same phylogenetic dataset
was processed. An analysis of the access pattern of RAXML revealed that accelerator
calls were not completely random over the nodes of a phylogenetic tree. Phylogenetic
tree rearrangements proceeded in iterative stages, with each stage first altering the tree
structure and then refining this change by invoking the hardware accelerator on a small
subtree several times. We analyzed the access pattern of all four datasets (100, 250, 500,
and 1000 DNA sequences) and observed that over 90% of the tree rearrangement steps
(over all runs) resulted in between 5 and 9 localized hardware accelerator calls on the same
subtree. Therefore, the effect of caching was not expected to change considerably across
different runs for RAXxML since misses would occur 5 to 9 times less frequently than hits.

3.4.2. Replacement Policies

In Figure 4, the performance of the different replacement policies for the caches can
be seen in terms of the hit ratio. For the inner cache, it can be observed that the Random,
FIFO, and LRU replacement policies outperform the other three. This effect increases with
higher associativity. The LFU and MFU replacement policies do not perform well for small
cache sizes (8 cache lines in our tests) because the options for determining the best cache
line to replace are limited. The low hit ratios for the MRU can be explained by the type of
memory access pattern that RAXML uses. MRU performs best in a cyclical access pattern,
which RAXML does not perform when accessing the individual nodes of a phylogenetic
tree. For the tip cache, once again Random, FIFO, and LRU perform well, but this time
MFU also performs well. For a larger number of sequences (tree size) or a higher degree
of cache associativity, however, the performance drops. The performance of the MFU is
greatly improved by a smaller number of nodes per cache line. In Figure 5, the performance
for a cache with 32 cache lines is shown, where the MFU appears to perform best for the
smaller tree sizes. In realistic scenarios, however, the number of nodes will most likely be
larger than 1000, and the number of cache lines will be very small. Hence, despite the fact
that the MFU scores well in some instances, it most likely will not perform that well in a
real application.

Electronics 2023, 12, 586 11 of 15

A. B
80 100
< =
S 60 o 75
[J) <
g 8
@©
O 40 o 50
=3 c
=} [
2 o
© 20 ';E 25
= z
0 0
100 250 500 1000 100 250 500 1000
Number of sequences Number of sequences
80 C. 100 D.
= S
= 60 o 75
<
g 3
o [$)
S 40 5 50
o c
B £
kel Ke)
E 20 s 25
£ T
0 - 0
100 250 500 1000 100 250 500 1000
Number of sequences Number of sequences
80 E. 100 F.
3 S
= 60 ° 75
(] <
< [S]
[] @®
S 40 % 50
= 2
g £
2 o
© 20 = 25
TR N1
0 0
100 250 500 1000 100 250 500 1000
Number of sequences Number of sequences
B Random [FIFO LRU @ MRU @ LFU [MFU

Figure 4. Hit/miss ratio comparison of replacement policies for caches configured with 8
cachelines. (A): 2-Way set-associative tip cache, (B): 2-Way set-associative inner cache, (C):
4-way set-associative tip cache, (D): 4-Way set-associative inner cache, (E): Fully associative
tip cache, (F): Fully associative inner cache.

80 B Random
B FIFO

—~ 60 LRU
E‘
) B MRU
S
S 40 W LFU
2
) W MFU
®
= 20
T

0

100 250 500 1000

Number of sequences

Figure 5. Hit ratio for a fully associative tip cache with 32 cache lines.
3.4.3. Level of Associativity

Figure 6 provides a comparison of the different levels of associativity. All results refer
to the LRU replacement policy. Tests for all replacement policies have been performed
(results not shown) and exhibit similar behavior with the presented LRU replacement

Electronics 2023, 12, 586

12 0f 15

policy. The tip cache shows that the level of associativity has very little influence on the hit
ratio. Only the direct-mapped cache slightly underperforms in comparison with the others.
For the inner cache, the performance also increases with the level of associativity but the
differences among the associative caches are small.

A. B.
100 100 M Direct Mapped
B 2-way
- 75 2 75 4-Way
g)
Py 2 W Fully
£ S
S 8
8 50 5 50
-4 c
° <
: 2
= 25 = 25
T
0 0
100 250 500 1000 100 250 500 1000

Number of sequences Number of sequences

Figure 6. Comparison of tip (A) and inner (B) cache configurations with varying associativ-
ity based on the hit ratio. All caches are of the same size (8 cache lines) and implement the
LRU replacement policy.

Furthermore, we performed a worst-case timing evaluation for the different levels of
associativity. While comparisons based on the hit ratio are more realistic, the frequency
of hits affects performance. For the worst-case timing comparison, no data is written to
the cache. Therefore, every memory access is a miss and requires the worst-case timing
overhead for determining it. Figure 7 illustrates the results for the tip and inner caches.
For the tip cache, these differences are small and the direct-mapped cache shows the
highest time overhead overall. For the inner case, there is quite a significant difference in
overhead timing over the associativity levels, with higher levels of associativity having
considerably higher time overhead. All measured time overheads, however, are negligible
when compared with the total transfer time required per tree node.

A. B. .

10 40 M Direct Mapped
.g. . E- W 2-way
o o 30 4-Way
s £ W Fully
° 6 °
3 3
£ € 20
& 4 &
° °
@ @
8 8 10
g 2 B
S S
= =

0 0

100 250 500 1000 100 250 500 1000

Number of sequences Number of sequences

Figure 7. Worst-case time comparison for tip (A) and inner (B) caches when all memory
accesses are misses. All caches are of the same size (8 cache lines) and implement the LRU
replacement policy.

3.4.4. Cache Size

The cache size most likely will be dictated by the available memory on the accelerator
card. Since the previous tests show that the overhead timing adds negligible costs compared
to the hit ratio, it is expected that a larger number of cache lines will result in improving
performance further. To verify this, we performed a test by increasing the number of cache
lines. In Figure 8, the hit ratio for the tip and inner caches are shown. Both caches are
fully-associative and implement the LRU replacement policy. As expected, larger cache
sizes achieve higher hit ratios and perform better.

Electronics 2023, 12, 586

13 of 15

80 100 : W

ms
60
|32

40

Hit ratio tip cache [%]

20

Hitratio inner cache [%]

100 250 500 1000 100 250 500 1000

Number of sequences Number of sequences

Figure 8. Comparison of hit-ratio performance of a fully-associative tip cache (A) and a
fully-associative inner cache (B) as the cache size increases from 4 cache lines to 32 cache
lines. The LRU replacement policy is implemented.

3.4.5. Application Time Breakdown and Overall Performance

To evaluate the overall performance of the phylogenetic application, we employed the
best-performing cache configurations, all with the LRU replacement policy. An overview
of the different configurations is provided in Table 2.

Table 2. Different software-cache configurations used for the evaluation of the phylogenet-
ics application.

Inner Cache Inner Cache Tip Cache Tip Cache
. . Replacement . . Replacement
Configuration . Configuration .
Policy Policy

Conf.1 Direct mapped n/a Direct mapped n/a
Conf. 2 2-Way associative ~ LRU 2-Way associative ~ LRU
Conf. 3 4-Way associative ~ LRU 4-Way associative ~ LRU
Conf.4 Fully associative LRU Fully associative LRU

Figure 9A provides a time-breakdown of the application (based on the trace file
from the 1000-sequence phylogenetic analysis) for each of the different software-cache
configurations of Table 2 and the reference case where no software cache is used. Accelerator
processing time and output time (data transfer from the accelerator to the host) are the
same overall configurations. A significant performance improvement is observed for the
input-data transfer times, where the transfer times are reduced from 12 s to 2 s in the best
scenario, thereby achieving a 6 x reduction. Note also the negligible impact that the tip
input has on the total execution time.

Figure 9B provides the total execution time for each memory trace. Note that all
previous results focused on caching of application data (tip- and inner-node data) that
exhibited the locality of reference. We now evaluate overall application performance by
including all data transfers required per accelerator call, i.e., accounting for application
data with no locality of reference. RAXML requires a total of 144 double-precision values
per PLF invocation, i.e., per accelerator call. As can be observed in the figure, all evaluated
software-cache configurations improve overall application performance and the difference
between the configurations are not significant, but the larger phylogenetic analyses are
expected to benefit more from software-caching.

Electronics 2023, 12, 586 14 of 15

A.
12 M Tipinput 30 B. B Config. 1
B Innerinput
10 B Config. 2
Processing Config. 3
B Output)
8 = 20 B Config. 4
z o
z 6 2 M No cache
g]
-]
4 e 10
2
0 0
Config. 1 Config.2 Config.3 Config.4 No Cache 100 250 500 1000

Number of sequences

Figure 9. (A). Time-breakdown per cache configuration (Table 2) for 1000 accelerator calls.
(“tip input” is the tip data-transfer time, “inner input” is the inner vectors data-transfer time,
“processing” is the hardware-accelerator execution time, and “output” is the accelerator-
to-host data transfer time) (B). Overall application time comparison for analyses with 100,
250, 500, and 1000 organisms.

4. Conclusions

In this work, we described and evaluated a generic implementation of a software cache
that could be used to improve the performance of hardware accelerators in data centers
by optimizing data transfers. By systematically caching data on the accelerator’s external
memory, overall accelerator performance (as perceived by the host processor) was improved
without any changes to the actual hardware. Our software-cache implementation included
an OpenCL-like interface and required only minimal changes to an application to exploit
caching. We evaluated performance using a real-world Bioinformatics application that
reconstructs the evolutionary relationship of organisms. Performing tests on an AWS EC2
F1 instance on the cloud, we observed that software caching reduced the data transfer time
from the host to the accelerator by up to 6, which resulted in an up to 40% performance
improvement of the whole application (with the same hardware accelerator and no caching
exploited for the data transfers from the accelerator back to the host).

Author Contributions: Conceptualization and methodology, PK. and N.A.; software, validation,
investigation, resources, data curation, PX.; writing—original draft preparation, PK.; writing—review
and editing, N.A.; visualization, P.K.; supervision and project administration, N.A. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All code is openly available at: https://github.com/pephco/SCILA
(accessed on 7 September 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

Kim, M.A,; Edwards, S.A. Computation vs. memory systems: Pinning down accelerator bottlenecks. In Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg,
Germany, 2012; Volume 6161, pp. 86-98. [CrossRef]

Wei, X.; Liang, Y.; Cong, J. Overcoming data transfer bottlenecks in FPGA-based DNN accelerators via layer conscious memory
management. In Proceedings of the 56th Annual Design Automation Conference, Las Vegas, NV, USA, 2-6 June 2019; pp. 1-6.
[CrossRef]

Zhang, X.; Wang,].; Zhu, C.; Lin, Y,; Xiong, J.; Hwu, W.M.; Chen, D. DNNBuilder: An automated tool for building high-
performance DNN hardware accelerators for FPGAs. In Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, Digest of Technical Papers, ICCAD, San Diego, CA, USA, 5-8 November 2018; pp. 2-9. [CrossRef]

Xiao, Q.; Liang, Y.; Lu, L.; Yan, S.; Tai, Y.W. Exploring Heterogeneous Algorithms for Accelerating Deep Convolutional Neural
Networks on FPGAs. In Proceedings of the Design Automation Conference, Austin, TX, USA, 18-22 June 2017; pp. 1-6, Part
12828. [CrossRef]

AlSaber, N.; Kulkarni, M. Semcache: Semantics-aware caching for efficient gpu offloading. In Proceedings of the 27th International
ACM Conference on International Conference on Supercomputing, Eugene, OR, USA, 10-14 June 2013; pp. 421-432.

https://github.com/pephco/SCILA
http://doi.org/10.1007/978-3-642-24322-6_9
http://dx.doi.org/10.1145/3316781.3317875
http://dx.doi.org/10.1145/3240765.3240801
http://dx.doi.org/10.1145/3061639.3062244

Electronics 2023, 12, 586 15 of 15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Jablin, T.B.; Jablin, J.A.; Prabhu, P; Liu, F.; August, D.I. Dynamically managed data for CPU-GPU architectures. In Proceedings
of the Tenth International Symposium on Code Generation and Optimization, San Jose, CA, USA, 31 March—4 April 2012; pp.
165-174.

Asai, R.; Okita, M.; Ino, F; Hagihara, K. Transparent avoidance of redundant data transfer on GPU-enabled apache spark. In
Proceedings of the 11th Workshop on General Purpose GPUs, New York, NY, USA, 25 February 2018; pp. 22-30.

Begunkov, P. dImCl: Optimization of CPU-GPU memory transfers for OpenCL devices with HSA. In Proceedings of the 5th
International Workshop on OpenCL, Toronto, ON, Canada, 16-18 May 2017; pp. 1-2.

Barua, P; Zhao, J.; Sarkar, V. OmpMemOpt: Optimized Memory Movement for Heterogeneous Computing. In Proceedings of
the European Conference on Parallel Processing, Warsaw, Poland, 24-28 August 2020; Springer: Berlin/Heidelberg, Germany,
2020; pp. 200-216.

Berger, S.A.; Alachiotis, N.; Stamatakis, A. An optimized reconfigurable system for computing the phylogenetic likelihood
function on dna data. In Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum, Shanghai, China, 21-25 May 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 352-359.

Pratas, F.; Trancoso, P.; Stamatakis, A.; Sousa, L. Fine-grain parallelism using multi-core, cell/BE, and GPU systems: Accelerating
the phylogenetic likelihood function. In Proceedings of the 2009 International Conference on Parallel Processing, Vienna, Austria,
22-25 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 9-17.

Zhou, J.; Liu, X.; Stones, D.S.; Xie, Q.; Wang, G. MrBayes on a graphics processing unit. Bioinformatics 2011, 27, 1255-1261.
[CrossRef] [PubMed]

Zierke, S.; Bakos,].D. FPGA acceleration of the phylogenetic likelihood function for Bayesian MCMC inference methods. BMC
Bioinform. 2010, 11, 184. [CrossRef] [PubMed]

Ronquist, F.; Huelsenbeck,].P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572—
1574. [CrossRef] [PubMed]

Alachiotis, N.; Brokalakis, A.; Amourgianos, V.; Ioannidis, S.; Malakonakis, P.; Bokalidis, T. Accelerating Phylogenetics Using
FPGAs in the Cloud. IEEE Micro. 2021, 41, 24-30. [CrossRef]

Malakonakis, P.; Brokalakis, A.; Alachiotis, N.; Sotiriades, E.; Dollas, A. Exploring Modern FPGA Platforms for Faster Phylogeny
Reconstruction with RAXML. In Proceedings of the IEEE 20th International Conference on Bioinformatics and Bioengineering,
BIBE, Cincinnati, OH, USA, 26-28 October 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020;
pp. 97-104. [CrossRef]

Shata, K.; Elteir, M.K.; EL-Zoghabi, A.A. Optimized implementation of OpenCL kernels on FPGAs.]. Syst. Archit. 2019,
97, 491-505. [CrossRef]

McIntosh-Smith, S.; Deakin, T. HandsOnOpenCL. Github Repository. 2019. Available online: https://github.com/
HandsOnOpenCL (accessed on 7 September 2022).

Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 1981, 17, 368-376.
[CrossRef]

Hudson, R.R. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 2002, 18, 337-338.
[CrossRef] [PubMed]

Rambaut, A.; Grassly, N.C. Seq-gen: An application for the monte carlo simulation of dna sequence evolution along phylogenetic
trees. Bioinformatics 1997, 13, 235-238. [CrossRef]

Stamatakis, A. RAXML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014,
30, 1312-1313. [CrossRef]

Xilinx. Adaptable Accelerator Cards for Data Centre Workloads. 2020. Available online: https://www.xilinx.com/products/
boards-and-kits/alveo.html (accessed on 7 September 2022).

Xilinx. Vitis Software. 2020. Available online: https://www.xilinx.com/products/design-tools/vitis / vitis-platform.html
(accessed on 7 September 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1093/bioinformatics/btr140
http://www.ncbi.nlm.nih.gov/pubmed/21414986
http://dx.doi.org/10.1186/1471-2105-11-184
http://www.ncbi.nlm.nih.gov/pubmed/20385005
http://dx.doi.org/10.1093/bioinformatics/btg180
http://www.ncbi.nlm.nih.gov/pubmed/12912839
http://dx.doi.org/10.1109/MM.2021.3075848
http://dx.doi.org/10.1109/BIBE50027.2020.00024
http://dx.doi.org/10.1016/j.sysarc.2019.02.013
https://github.com/HandsOnOpenCL
https://github.com/HandsOnOpenCL
http://dx.doi.org/10.1007/BF01734359
http://dx.doi.org/10.1093/bioinformatics/18.2.337
http://www.ncbi.nlm.nih.gov/pubmed/11847089
http://dx.doi.org/10.1093/bioinformatics/13.3.235
http://dx.doi.org/10.1093/bioinformatics/btu033
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html

	Introduction
	Materials and Methods
	System Overview
	Generality of the Design
	Implementation and OpenCL Interface
	electronics-2122930-1.cpt
	electronics-2122930-2.cpt
	electronics-2122930-3.cpt
	electronics-2122930-4.cpt

	Demonstration
	Cache Instantiation
	Data from Host to Accelerator
	Data from Accelerator to Host
	Cache Destruction

	Results and Discussion
	Use Case
	Experimental Setup
	Hardware Accelerator and Platform
	Performance Evaluation
	Access Pattern
	Replacement Policies
	Level of Associativity
	Cache Size
	Application Time Breakdown and Overall Performance

	Conclusions
	References

