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Abstract: Photovoltaic (PV) panel surface-defect detection technology is crucial for the PV industry to
perform smart maintenance. Using computer vision technology to detect PV panel surface defects can
ensure better accuracy while reducing the workload of traditional worker field inspections. However,
multiple tiny defects on the PV panel surface and the high similarity between different defects make
it challenging to accurately identify and detect such defects. This paper proposes an approach named
Ghost convolution with BottleneckCSP and a tiny target prediction head incorporating YOLOv5
(GBH-YOLOv5) for PV panel defect detection. To ensure better accuracy on multiscale targets, the
BottleneckCSP module is introduced to add a prediction head for tiny target detection to alleviate
tiny defect misses, using Ghost convolution to improve the model inference speed and reduce
the number of parameters. First, the original image is compressed and cropped to enlarge the
defect size physically. Then, the processed images are input into GBH-YOLOv5, and the depth
features are extracted through network processing based on Ghost convolution, the application of the
BottleneckCSP module, and the prediction head of tiny targets. Finally, the extracted features are
classified by a Feature Pyramid Network (FPN) and a Path Aggregation Network (PAN) structure.
Meanwhile, we compare our method with state-of-the-art methods to verify the effectiveness of the
proposed method. The proposed PV panel surface-defect detection network improves the mAP
performance by at least 27.8%.

Keywords: YOLOv5; PV defect detection; BottleneckCSP; GhostConv; tiny target prediction head

1. Introduction

The high public demand for attention to environmental issues has become an essential
indicator in the energy sector; to deal with the ecological problems that affect all human
beings, reduce greenhouse gas emissions, and avoid the catastrophic consequences of
climate change, countries around the world and the World Health Organization have
developed relevant policies [1]. The terms “carbon peak” and “carbon neutral” are the
most critical energy and environmental policies to cope with the global warming problem.
To achieve the “double carbon” goal, renewable energy, represented by photovoltaic power
generation, is undoubtedly the main force [2]. As an essential part of the development of
the PV industry, the fault detection of PV panels is of great significance in promoting the
development of PV energy [3]. With the development of artificial intelligence, the intelligent
detection of PV panel faults is becoming a feasible and promising solution. Using machine
vision techniques to identify surface defects in PV panels has become an essential technical
basis for building intelligent PV inspection systems [4,5]. Deep learning techniques can
significantly improve detection efficiency, provide solutions for the competent inspection
of PV power plants, and guide power plants’ operation and maintenance procedures [6,7].

The current processing techniques for PV panel images are mainly divided into two
categories [8]. The first category is the traditional machine learning methods, which mostly
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rely on manually designed extractors and require the manual construction of complex
recognition relationships [9], and their generalization ability and robustness could be
better [10–12]. YOLO and Region-CNN (R-CNN) algorithms, represented by deep learning
techniques, are another class of methods that rely mainly on learning a large number of
samples to obtain a deep dataset feature representation with better generalization ability
and robustness [13,14]. Inspired by the previous research, we use YOLOv5 as the primary
network framework, which is fast while maintaining good accuracy [15,16].

This paper also introduces the BottleneckCSP module and the Ghost convolution
mechanism, which help the model to obtain more information about the characteristics
while maintaining the detection speed. YOLOv5s are used to detect five types of defects
on the surface of PV panels: broken, hot_spot, black_border, scratch, and no_electricity.
At the same time, this paper compares five detection frameworks within the same fam-
ily as YOLOv3: the bipartite target detection methods Faster-RCNN and Mask-RCNN,
the traditional machine learning method SVM, and Single Shot MultiBox Detector. The
contributions of this paper can be summarized as follows:

• To the best of our knowledge, we are the first to apply the YOLOv5 structure to
tackle the task of detecting defects on PV panels. This study utilizes the fast inference
speed and high detection accuracy of YOLOv5 to obtain a combination of detection
speed and accuracy on the PV Multi-Defect dataset, which enables accurate and rapid
detection of various types of defects in PV panels and significantly reduces the missed
detection of minor defects.

• According to the PV panel defect detection task, the structure of YOLOv5 is improved
and innovated in this paper. Firstly, the semantic depth information of PV panel
images is obtained using the BottleneckCSP module, improving detection accuracy.
Secondly, the added detection head for tiny targets alleviates the negative impact
of drastic scale changes and improves the small target misdetection phenomenon.
On this basis, Ghost convolution is introduced instead of conventional convolution,
and we call this structure GBH-YOLOv5, which can perform the PV panel defect
detection task well. The implementation codes of this research are released at https:
//github.com/CCNUZFW/GBH-YOLOv5 (accessed on 18 January 2023).

• In this paper, a new database dedicated to PV defect detection is constructed, which
includes 5 types of defect targets and 1108 images with an image size of 600 × 600
pixels. There are 886 images in the training set and 222 in the validation set. Moreover,
the database is publicly released to promote the field at the following links: https:
//github.com/CCNUZFW/PV-Multi-Defect (accessed on 18 January 2023).

• By comparing this method with five state-of-the-art methods, the proposed PV panel
surface defect approach has improved the mAP by at least 27.8%, and the single image
detection time consumed is in the same order of magnitude, balancing detection
accuracy and detection speed. It provides significant advantages in identifying various
types of defects on the surface of PV panels.

The remainder of the paper is structured as follows: Section 2 describes PV panel
defect detection and the related studies on YOLO. Section 3 describes the defect detection
process and the network framework, and in Section 4, comparison and ablation experiments
are performed. Finally, the conclusions of the article are stated in Section 5.

2. Related Work

This section presents two parts of the related work: (2.1) the current state of research
on PV panel defect detection and (2.2) the development of target detection based on the
YOLO algorithm.

2.1. PV Panel Defect Detection

With the progress in energy structures, photovoltaic power generation, considered the
most promising approach, is developing rapidly and playing a significant role in energy
security, national income, public health, and environmental protection. As an essential
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component of a PV power generation system, PV panels are subject to challenging working
environments and prone to faults, which affect the operation and lifetime of the entire PV
system. Therefore, the fault detection of PV panels is the key to improving PV systems’
efficiency, reliability, and lifecycle. There are three mainstream detection methods: image
processing-based methods, electrical detection-based methods, and machine learning-
based methods.

(1). Image processing-based methods: Among the image processing-based methods,
various imaging solutions exist depending on the different characteristics of the panels.
In thermal imaging, an infrared camera is used to scan the PV array, which is suitable for
inspecting large PV plants. The ultrasonic imaging inspection method is used primarily
for detecting cracks before the production of PV modules; an electroluminescence imaging
(EL image) solution is a unique image presented by the panel at a specific voltage, which
is more expensive to detect. In conclusion, imaging solutions rely on the various types
of image features produced by PV panels under different techniques to determine their
fault type. In [17], by varying the modulation of the injected current, the panel image
was made to exhibit certain features that allowed the detection of different types of shunt
faults. In [18], the authors have verified that high accuracy fault identification is possible
by performing thermal imaging analysis of PV panels and using radiation sensors. V.
Kirubakaran et al. [19] use a thermal imaging system combined with image processing to
record PV panel failure points.

(2). Electrical detection-based methods: Electrical detection-based methods include
basic current–voltage measurement techniques, advanced Climate-Independent Data (CID)
plans, and power loss detection methods that enable fault detection and classification. Elec-
trical detection methods diagnose specific faults based on different electrical characteristics.
In [20], the Time Domain Reflector (TDR) technique is used to locate PV module faults
based on the delay between the injected and reflected signals. In addition, the output volt-
age and current of the PV panel string are measured to identify possible faults in advance.
A.L. et al. [21] constructed a model for local defect and thermal breakdown detection of PV
panels based on thermal images and IV curves.

(3). Machine learning-based methods: Since the performance and efficiency of PV
cells are subject to various conditions, many problems are difficult to define in specific
projects. Machine learning techniques can overcome these difficulties very well due to their
self-learning nature, making them widely used in this type of detection [22]. In [23], the au-
thors used grayscale cogeneration matrices to extract image features generated by infrared
imaging techniques to monitor defects in panel modules. In [13], the authors used support
vector machines (RBF kernel) and random forest algorithms to construct detection models
to obtain the desired detection accuracy in the electroluminescence dataset. Jumaboev et al.
verified the feasibility of deep learning techniques in photovoltaic inspection by using
several deep learning models [24]. F.L. et al. [25] proposed a semi-supervised anomaly
detection model based on adversarial generative networks for PV panel defect detection.
In [26], an automatic detection method for optoelectronic components was proposed based
on texture analysis and supervised learning for the processing of infrared images. Chiwu
Bu et al. [27] used LDA and QDA supervised learning algorithms for the processing and
defect identification of photovoltaic panel thermographic sequences.

2.2. Target Detection Based on YOLO

The YOLO algorithm is a one-stage target detection method proposed by Joseph Red-
mon. He converted the object detection problem into a regression problem by discarding
the branching phase of candidate box extraction in the two-stage target detection algorithm
and completing the determination of the entire category and the regression of the position
in a single network [28].

In YOLOv2, the authors introduced anchor boxes and batch normalization to improve
the problem of the low detection accuracy of the v1 model [29]. YOLOv3 built a new
Darknet with 53 residual networks based on YOLOv2 and passed feature pyramid networks



Electronics 2023, 12, 561 4 of 16

for multiscale fusion prediction, which improved the detection accuracy of small and heavy
targets [30]. YOLOv4 constructed a simple target detection model, which reduced the
training threshold of this algorithm [31]. YOLOV5 constructed five models of YOLOv5,
N/S/M/L/X, based on the scaling of different channels and the model size [32].

In the second half of 2022, YOLOv6 and YOLOv7 were released almost simultaneously.
The Meituan technical team introduced the RepVGG structure in YOLOv6, which was
more adaptable to GPU devices and simplified the adaptation work during engineering
deployments [33]. YOLOv7 used module re-referencing and a dynamic label assignment
strategy, which made it faster and more accurate in the range of 5 FPS to 160 FPS and
exceeded known target detectors [34].

In the PV panel surface-defect detection system used in this paper, the C3 module in
the network structure of YOLOv5s is replaced with the BottleneckCSP module, and the
number of detection heads is increased so that the grid acquires more feature information
and improves the detection capability for small targets. In addition, the conventional
convolution is replaced with Ghost convolution to reduce the model’s parameters and the
computational effort in the inference process.

3. Methods

The task of finding defects in PV panels has two characteristics: first, it must precisely
pinpoint the fault; second, it must accurately define the defect attributes. The models in
the YOLOv5 series are quite good at localization, and YOLOv5s is also lighter. Compared
to other deep learning techniques, YOLOv5s is able to strike a balance between detection
accuracy and speed, making it a good choice for this purpose.

The network structure of this research is implemented by improving the network
structure of YOLOv5s, named GBH-YOLOv5, as shown in Figure 1.

The network consisted of four parts: the head, backbone, neck, and prediction. The
head was the input, and the Mosaic data enhancement and adaptive image scaling were
used to expand the data samples, enrich the test data set, and increase the robustness of
the network on the one hand; on the other hand, the problem of the uneven distribution
of the small target dataset was solved. By setting different anchor frames and constantly
updating the difference between the prediction frame and the labeled frame, the adaptive
anchor frame updated the network parameters and independently calculated the optimal
anchor frame value to learn the feature information about the target better. The backbone
network was implemented by Focus, SPP, and BottleneckCSP, based on Ghost convolution,
and the input 960 × 960 pixel image was sliced to obtain a 480 × 480 × 12 feature map; then,
a 480 × 480 × 32 feature map was obtained after convolution. The PV panel surface-defect
detection network used a Focus structure to reduce the number of network layers and pa-
rameters, improve the forward and reverse computation speed, and ensure no information
loss in downsampling. In order to extract more feature information, this network used
a BottleneckCSP module with two deep convolutions. To reduce the redundant feature
information brought by the BottleneckCSP module, Ghost convolution was used instead
of the traditional convolution to reduce the parameters and the computation of the model
inference process. The prediction was the output side, where CloU Loss was used as the
loss function of the bounding box to solve the problem of the non-overlap between the
labeled and predicted boxes; the Non-Maximum Suppression (NMS) mechanism was used
to enhance the recognition ability of multiple targets and fuzzy targets. In order to ensure
that the scratch and defective break were accurately recognized, a detection head was
added to the output of the network to realize the detection of tiny targets.
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Figure 1. The framework of PV panel surface-defect detection network. Using the BottleneckCSP
module in the backbone network and neck network ensures that deeper semantic information of PV
panels can be extracted, and a tiny target detection head is added at the prediction end so that the
PV panel missed detection phenomenon is improved. Replacing the traditional convolution with
Ghost convolution can guarantee the accuracy of PV panel detection without losing speed.

When performing detection, the network divides the input image into S× S grids (grid
detection method) [28]. If the target’s center point is inside a grid, that grid is responsible
for the object detection grid. The detection idea is shown in Figure 2. When the grid
detects the object, it outputs a bounding box, and each bounding box consists of five
parameters, i.e., four coordinate parameters and one confidence parameter. tx and ty
denote the coordinates of the center point of the bounding box, and tw and th represent the
width and height of the bounding box, respectively. The confidence level indicates whether
the current bounding box includes the object to be detected and its accuracy [35,36].

3.1. PV Panel Defect Detection Process

The detection method proposed in this paper was composed of three processing
modules, mainly used for surface-defect detection on the PV panels, as shown in Figure 3.

(1) Input module: This module input the captured images into the PV panel defect
detector, which has no requirement for the input size of the images.

(2) PV panel defect detector module: First, the size of the input image was checked,
and for images whose size was not 600 × 600 pixels, a cropping and compression process
was performed, which physically enlarged the panel defect and reduced the negative
sample information. Then, pretrained weights based on the COCO dataset were used to
train in the modified YOLO network.

(3) Output module: Defect detection was performed on the resulting images using
the YOLOv5 network.
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Figure 3. PV panel defect detection process.

3.2. BottleneckCSP Module

The BottleneckCSP was mainly used to extract deep semantic information from images
and fuse the feature maps of different scales to enrich the semantic information. The role
of its primary structure, bottleneck, combined shallow-level feature maps with deep-level
feature maps downward by summation to ensure that the detector maintained good
accuracy on multiscale targets. After mixing the CSP, the feature maps were integrated at
the network’s beginning and end to reflect the gradients’ variability. It can be expressed as
Equation (1).

y = F(x0) = xk
= Hk(xk−1, Hk−1(xk−2), Hk−2(xk−3), . . . , H1(x0), x0).

(1)

Hk is the operator function of the kth layer, which usually consists of a convolution
layer and an activation function. A y function was introduced to optimize each H function.

y = M(x0′ , T(F(x0′′), (2)
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where x0 can be divided into two parts along the channel, the T function truncates the
gradient flow, and the M function is used to mix the two parts. We obtained an information-
rich feature map to retain and accumulate more features from different sensory fields [37].

3.3. Prediction Head for Tiny Targets

We analyzed the PV Multi-Defect dataset and found a considerable proportion of tiny
targets (scratches), so we added another prediction head to detect tiny targets. Combined
with the other three prediction heads, the four-head structure sufficiently alleviated the
negative impact of the drastic scale transformation and thus mitigated the missed detection
phenomenon. We added an anchor frame for small targets, enhanced the features from
the second layer of the backbone network, and finally added a prediction head for the
second layer.

3.4. GhostConv Module

In Ghost convolution, only part of the feature map generated by conventional con-
volution was used to avoid the redundancy of the feature map. Then, a simple linear
transformation was performed on this part of the feature map to achieve the effect of
simulating conventional convolution [38]; the convolution process is shown in Figure 4.

Input Output

Conv

Identity

φ1

φ2

φn

Figure 4. The Ghost convolution process.

In this work, we used X ∈ Rc×h×w to represent the input feature map, c to represent the
number of channels of the input feature map, and h and w to express the height and width
of the feature map, respectively. The conventional convolution is defined as Equation (3).

Y = X ∗ f + b. (3)

In the above equation, X ∈ Rc×h′×w′ denotes a feature map with n channels output,
and h′ and w′ denote the height and width of the output feature map, respectively. ∗ denotes
the convolution operation, the convolution kernel size is k ∗ k, b denotes the bias term,
and the regular convolution computation after ignoring the bias term is approximately
equal to h × w × c × n × w′ × h′. In the shallow layer of the network, h′ and w′ are
more extensive, and in the deeper layer, n and c are larger. Based on this feature, Ghost
convolution was proposed, which consisted of two parts: the regular convolution kernel
that outputs a small number of feature maps and the generation of redundant feature maps
in a lightweight linear transform layer, which can be expressed as

Y′ = X ∗ f ′ + b. (4)

The above equation represents a conventional convolutional layer that outputs a
small number of feature maps, where Y′ ∈ Rh′×w′×m represents the output feature and
f ′∈Rc×k×k×m

represents the size of this convolutional kernel. The number of channels of the
output feature map is smaller than that of the conventional convolutional layer, i.e., m < n.

yij = φi,j(y′i). (5)
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Equation (5) denotes the linear transformation layer that represents the generation of
redundant feature maps, where yi denotes the m feature maps of Y′. Each feature map in
Y′ is subjected to a lightweight linear transformation operation φi,j(j = 1, 2, . . . , s) to obtain
s feature maps. The last linear transform is forcibly specified as a constant transform if the
d× d convolution is used as the linear transform; so, m feature maps are obtained after
linear transformations of m× (s− 1) feature maps. The total computation using Ghost
convolution is (s− 1)×m× h′ × w′ × k× k.

4. Experimental Results and Discussion

This section presents the dataset and describes the analysis and preprocessing; then,
the target detection field’s baseline is discussed, and comparison and ablation experiments
are described.

4.1. Dataset for Experiments

We constructed a publicly available dataset to verify the model’s validity and named it
the PV Multi-Defect dataset (https://github.com/CCNUZFW/PV-Multi-Defect (accessed
on 18 January 2023)). The original images for this dataset were taken by the camera from
photovoltaic modules with a physical size of 1.65 m × 0.991 m and a specification of 60 pieces.
After grayscale processing, the images were uniformly cropped to 0.491 m × 0.297 m in
accordance with the distribution of defects, and the images that did not demonstrate defects
were manually removed. In total, 307 images, each measuring 5800 × 3504 pixels, were
collected, as shown in Figure 5. In this dataset, there were five common defect types,
including broken cells, cells with prominent bright spots, cells with regularly shaped
black or gray edges, cells with scratches, and cells that were not charged and appeared
black. Table 1 shows examples of each defect type. Figure 6 shows the training and
validation losses.

The raw image data pixel size was 5800 × 3504 pixels, while the average size of
the scratches was about 4 × 32 pixels. The average length of the black edges was about
4 × 37 pixels, the average length of the broken edges was about 104 × 210 pixels, the average
size of the hot spots was about 152 × 210 pixels, and the average size of the defective
unpowered cell was 356 × 478 pixels. The size of each type of defect was not uniform,
and the size of the defect was less than 0.08% of the whole image. If the original size image
were used as the data for training, smaller targets would be detected with lower accuracy
or even difficult to detect. Therefore, the original image is preprocessed in this paper,
and the image size is changed to 600 × 600 pixels by compression and cropping operations.
Figure 7 compares the performance of each defect before and after data preprocessing
(mAP). It can be found that preprocessing improves the training efficiency on the one
hand and makes the influence of some tiny target (scratch) noise reduced on the other
hand, which effectively improves the accuracy of tiny target detection and increases the
generalization ability of the training network.

After preprocessing, we finally obtained 1108 defect images of the PV panel surface.
We increased the size of the labeled boxes for each defect type, effectively improving the
detection of small and fuzzy targets. The final dataset was sequentially labeled using the
LabelImg labeling software concerning the VOC2007 dataset format and converted to the
XML format required for training. LabelImg is a labeling tool written in Python for deep
learning image dataset production, which was used to label the information of the category
name and the location of targets in the images. There were 886 images in the training set
and 222 in the validation set.

There were 4235 defective targets in 1108 images of the PV panel surface. Figure 5
shows that hot spots accounted for the highest percentage among the five types of defects,
at 49.09%. The tiny target scratches accounted for 36.62%, and the blurred targets black
border and broken cells accounted for 6.02% and 3.99%, respectively.

https://github.com/CCNUZFW/PV-Multi-Defect
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Table 1. Defect sample diagram.

Name of
Defect Description Image Style

broken Photovoltaic panels with
broken areas

hot_spot Photovoltaic panels have obvious
bright spot areas

black_border Photovoltaic panels with black or
gray border areas

scratch Photovoltaic panels with
scratched areas

no_electricity Photovoltaic panels have
non-electricity and show black areas

hot_spot, 49.09%

scratch, 36.62%

black_border, 

6.02%

broken, 3.99%

no_electricity, 

4.28%

hot_spot scratch black_border broken no_electricity

Figure 5. PV Multi-Defect dataset annotation distribution.

4.2. Baseline Introduction

This work used the confusion matrix for supervised learning as an evaluation metric.
The resulting evaluation criteria were the Precision, Recall, and mAP values [31].

The Recall is for the original sample and indicates how many positive sample cases
were correctly predicted in the model, which is calculated in Equation (6):

R =
TP

TP + FN
× 100%. (6)
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where R denotes the Recall rate. Precision is for the final prediction result, which indicates
how many of the samples with positive predictions were really positive samples, calculated
as Equation (7).

P =
TP

TP + FP
× 100%. (7)

where P denotes the Precision. In the actual experiments, since both the Recall and Precision
were maintained at a high level, a parameter was needed to combine Recall and Precision,
i.e., the performance of the algorithmic network is measured in terms of Mean Average
Precision (mAP), which applies to multitarget detection and is denoted as Equation (8).

mAP =
∑N

k=1 P(k)∆R(k)
C

. (8)

In the above equation, N denotes the number of samples in the validation set, P(k) de-
notes the magnitude of precision P when k targets are detected simultaneously, and4R(k)
denotes the change in recall when the number of detected samples changes from k− 1 to k.
C denotes the number of classes of the model.

4.3. Experiment Settings

The experiments were conducted with 48 GB RAM and an RTX3090 graphics card with
Pytorch and CUDA versions 1.8 and 11.1, respectively. This study employs Adam as the
optimizer according to the pre-training weight of the COOC data set to address the issue of
inadequate data and increase learning speed and accuracy. The batch size is 16, and the
learning rate is set at 0.001. As demonstrated in Figure 6, where the training and verification
losses of the photovoltaic panel defect detector converge after 500 epochs, we monitor the
loss of the bounding box by monitoring the loss of the photovoltaic panel defect detector in
order to avoid overfitting. The monitoring line demonstrates unequivocally that neither
overfitting nor underfitting are present in the learned model. In addition, the validation set
was held-out until the last test.

0 100 200 300 400 500
Epochs

0.02

0.04

0.06

0.08

0.10

Lo
ss

train-loss
validation-loss

Figure 6. Training and validation losses for PV panel defect detector.

To make the model’s performance optimal, the Recall and Precision values during
the training process are monitored in this paper. Table 2 shows their changes during the
training of the model, and according to the results, the result of 500 training rounds is
chosen as the model for subsequent test experiments in this paper.

4.4. Comparison with Other Methods on the Multi-Defect Dataset

We conducted a set of comparative experiments with the same database and experi-
mental setup, and all methods were retrained. In addition, the validation set was held-out
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until the last test. Comparing the methods proposed in this paper with the five techniques
discussed in the literature, which are the YOLOv3-based method from Tommaso et al. [15],
the Faster-RCNN-based method from Girshick et al. [39], the SVM-based method from Man-
tel et al. [13], the Mask-RCNN-based method from Almazroue et al. [40], and the SSD-based
method from Ren et al. [41], the results showed that our performance on the Multi-Defect
dataset was much better than the other models. The specific mAP performance is listed in
Table 3.

Table 2. The Performance of GBH-YOLOv5, based on 95% confidence interval.

epoch Recall (%) Precision (%)

0 0 0
50 80.8 ± 0.05 62.9 ± 0.06

100 79.6 ± 0.05 73.1 ± 0.06
150 87.0 ± 0.04 77.9 ± 0.06
200 84.6 ± 0.05 88.1 ± 0.04
250 86.3 ± 0.05 93.0 ± 0.03
300 91.7 ± 0.04 90.1 ± 0.04
350 91.9 ± 0.04 90.7 ± 0.04
400 93.3 ± 0.03 93.5 ± 0.03
450 93.8 ± 0.03 94.5 ± 0.03
500 96.4 ± 0.02 93.3 ±0.03

Table 3. The mAP performance of different methods on the Multi-Defect dataset, based on 95%
confidence interval.

Methods mAP (%)

Tommaso et al. [15] 57.9 ± 0.07
Girshick et al. [39] 69.3 ± 0.06
Mantel et al. [13] 45.3 ± 0.07

Almazroue et al. [40] 51.2 ±0.06
Ren et al. [41] 30.8 ± 0.06

Proposed GBH-YOLOv5 97.8 ± 0.02

4.5. Ablation Studies

We analyzed the performance of each component on the PV Multi-Defect dataset,
and the impact of each component is presented in Table 4.

Table 4. Ablation Study of PV Multi-Defect datasets, based on 95% confidence interval.

Methods Description mAP (%) Precision (%) Recall (%)

YOLOv5s YOLOv5s 78.1 ± 0.06 83.2 ± 0.05 73.4 ± 0.06

YOLOv5-1 YOLOv5s + BottleneckCSP 94.2 ± 0.03 88.2 ± 0.04 90.5 ± 0.04

YOLOv5-2 YOLOv5s + BottleneckCSP + extra prediction 97.1± 0.02 93.4 ± 0.03 94.6 ± 0.03

GBH-YOLOv5 YOLOv5s + BottleneckCSP + extra
prediction + GhostConv 97.8 ± 0.02 96.4 ± 0.02 93.3 ± 0.02
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Figure 7. The comparison of each defect’s performance in the PV panel before and after data pre-
processing.

(1). The effect of BottleneckCSP. After replacing the C3 residual module with the Bot-
tleneckCSP module, the mAP values of the model were significantly improved. As shown
in Table 5, the performance on all defects was considerably enhanced. The problems of tiny
target missed detection and detection accuracy were solved to a large extent. Therefore,
the improvement of the BottleneckCSP module was excellent.

Table 5. Performance comparison of the YOLOv5 model for each category on the test set.

Methods Broken (%) Hot_Spot (%) Black_Border (%) Scratch (%) No_Electricity (%)

YOLOV5s 78.5 ± 0.05 87.8 ± 0.04 85.4 ± 0.02 69.3 ± 0.06 88.0 ± 0.04
YOLOv5-1 99.5 ± 0.01 97.2 ± 0.02 96.4 ± 0.02 95.6 ± 0.02 97.7 ± 0.02
YOLOv5-2 99.5 ± 0.01 98.4 ± 0.02 96.7 ± 0.02 96.4 ± 0.02 98.9 ± 0.01

GBH-YOLOv5 99.5 ± 0.01 97.5 ± 0.02 97.2 ± 0.02 97.4 ± 0.02 98.0 ± 0.02

(2). The effect of the extra prediction head. As shown in Table 6, the addition of the
tiny target prediction head increased the number of network layers in YOLOv5-2 from
224 in YOLOv5s to 290. Even though the computation and the number of parameters
were increased, the improvement in the mAP was significant. As shown in Figure 8,
GBH-YOLOv5 performed well in detecting tiny targets, so it was worth sacrificing some of
the computation.

Table 6. The summary of the different models and the average elapsed time on the test set.

Methods Model Layers Number of
Parameters (104)

Average Time
Consuming (s)

YOLOv5s 224 7.06 0.484
YOLOv5-1 228 7.15 0.658
YOLOv5-2 290 7.72 0.695

GBH-YOLOv5 270 7.24 0.587
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Figure 8. Surface defect identification results of PV panel.

(3). The effect of GhostCov. The use of Ghost convolution instead of regular convolu-
tion resulted in a reduction in the number of layers in the network of GBH-YOLOv5 from
290 to 270, and the elapsed time on the test set was reduced by 0.108 s per image on average
while still maintaining an excellent mAP.

(4). The effect of the model ensemble. This paper lists the mAP values of the four
models for different categories on the same test set. They are compared with the final
integrated model (GBH-YOLOv5) in Table 5, where the GBH-YOLOv5 achieved a relatively
balanced result in maintaining accuracy and the time duration.

5. Conclusions

In this paper, we proposed an approach named Ghost convolution with BottleneckCSP
and tiny target prediction head incorporating YOLOv5 (GBH-YOLOv5) for PV panel defect
detection. To ensure better accuracy on multiscale targets, the BottleneckCSP module was
introduced to add a prediction head for tiny target detection to improve the phenomenon
of missed detection of tiny defects, and it used Ghost convolution to improve the model
inference speed and reduce the number of parameters. First, the original image was com-
pressed and cropped to enlarge the defect size physically. Then, the processed images were
input into GBH-YOLOv5, and the depth features were extracted through network process-
ing based on Ghost convolution, the application of the BottleneckCSP module, and the
prediction head of tiny targets. Finally, the extracted features were classified by a Feature
Pyramid Network (FPN) and a Path Aggregation Network (PAN) structure. Meanwhile,
we compared our method with state-of-the-art methods to verify its effectiveness. The
proposed PV panel surface-defect detection network improved the mAP performance by
at least 27.8%. As the addition of modules makes the number of parameters of the model
increase and the volume of the model become larger, the selected dataset is grayscale
processed and may generate some errors when detecting PV panel defects in a natural
production environment. Possible future research directions include the use of lightweight
networks with better real-time performance or the direct use of RGB images for PV panel
defect detection.
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