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Abstract: An effective procedure to correct known 3D probe positioning errors affecting the near-
field–far-field transformation (NF–FF) with non-conventional plane rectangular scanning, named
planar wide-mesh scanning (PWMS), is developed in this paper. It relies on the non-redundant
sampling representations of electromagnetic fields and related optimal sampling interpolation (OSI)
expansions and has been devised when a quasi-planar antenna under test is considered as suitably
modelled by either a double bowl or an oblate spheroid. Such an algorithm first makes use of the
so-called k-correction to compensate for the errors occurring when the actual sampling points deviate
from the acquisition plane and then adopts an iterative procedure to restore the NF samples at the
points specified by the used non-redundant sampling representation from those obtained at the
previous step and affected by 2D positioning errors. Finally, once the regularly arranged PWMS
samples have been calculated, the NF data required to compute the classic plane-rectangular NF–FF
transformation are accurately evaluated by using an effective 2D OSI algorithm. Several numerical
results are presented in order to assess the effectiveness of the devised approach.

Keywords: antenna characterization; near-field–far-field transformation techniques; non-redundant
sampling representation of electromagnetic fields; probe positioning errors compensation

1. Introduction

Nowadays, the evaluation of the radiation features of an antenna under test (AUT)
represents a crucial task to assure that the strict design specifications are fully satisfied. The
simplest measurement strategy involves the direct far-field (FF) acquisition. To preserve
the measurement accuracy from the influence of the surrounding environment, i.e., reflec-
tions from close objects, electromagnetic (EM) interferences, or weather conditions, it is
convenient to characterize the AUT in a shielded and almost reflection free environment
(anechoic chamber) well simulating the free-space propagation condition. However, direct
measurements of the FF characteristics of AUTs with moderately large or even medium
electrical sizes may be accurately carried out only in an expensive and very large anechoic
chamber in order to fulfill the well-known FF distance requirements. Unfortunately, when
the size of an anechoic chamber is limited, these constrains cannot be complied and, hence,
only near-field (NF) measurements are possible. Obviously, a suitable NF–FF transfor-
mation technique is required to get the FF pattern reconstruction from the acquired NF
data [1–8]. Spherical, cylindrical, and planar NF–FF transformation techniques are related
to spherical, cylindrical, and planar NF scanning surfaces, respectively, and exploit the
corresponding modal expansion of the AUT near field to calculate the FF pattern. In this
framework, the NF–FF transformation with plane-rectangular (PR) scanning [9,10] results
to be the simplest one in analytical and computational terms and may be appropriately used
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to get the characterization of high-gain antennas having pencil beam patterns substantially
inside the solid angle defined by the edges of the AUT and those of the acquisition area.
Moreover, since the alignment procedure in the PR facility is easily performed and the
AUT is kept stationary during the acquisition process, such a scanning is mechanically
simple too. Furthermore, the classic sampling strategy requires a sampling step constant
along the scanner axes and bounded by λ/2, where λ is the wavelength at the working
frequency. As a result, a huge amount of NF samples can be required. Clearly, the greater
the amount of NF samples, the longer the related measurement time, which becomes longer
and longer as the scanning plane sizes and/or the operating frequency increase. In order
to conveniently reduce the needed NF measurements, NF–FF transformations using an
innovative PR scanning strategy, called planar wide-mesh scanning (PWMS), have been
developed and experimentally validated in [11] and [12], respectively, by properly exploit-
ing the non-redundant sampling representations of the EM fields [13,14] to the voltage
measured by the probe, which, according to [15], must be electrically small in order to
have same spatial bandwidth as the field radiated by the AUT. This scanning technique
allows a remarkable saving of measurement time as compared to classic PR scanning, since,
as its name suggests, the sampling lattice meshes enlarge more and more on going away
from the center of the scanning plane (see Figure 1). The collected PWMS samples are then
interpolated via an effective interpolation scheme, based on the use of the optimal sampling
interpolation (OSI) formulas, to reconstruct the PR data which allow the precise evaluation
of the radiated pattern through the classic PR NF–FF transformation [10]. In particular, a
spherical modelling has been used in [16], whilst an oblate spheroid and a double bowl,
a surface built by two circular “bowls” having the same aperture but possibly not equal
lateral bendings, have been adopted in [11,12] to model the antenna. These last modellings
are particularly suitable for dealing with quasi-planar AUTs, since they make possible a
significant reduction in the number of required NF data. Moreover, they make it possible
to place the acquisition plane at a distance from the AUT which is smaller than one half
its largest dimension, thus allowing the reduction in the error due to the truncation of the
measurement plane.
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Figure 1. PWMS for a quasi-planar AUT.

Note that no hardware changes are needed in an existing PR facility to realize the
PWMS and, thus, the same x–y scanner can be used to drive the probe to the required
measurement points. Accordingly, the PWMS retains the same mechanical advantages
and disadvantages as the PR scanning. Among these last, the finite resolution of the probe
positioners and/or their imprecise control may make it very difficult to collect the NF
samples at exactly the sampling points imposed by the adopted sampling representation.
Furthermore, defects in the mechanical rails that drive the probe motion may introduce
a deviation from the considered acquisition plane. Therefore, the NF acquisition may be
corrupted by 3D positioning errors, which, in any case, can be accurately detected using
a laser interferometric technique. It is clear that the same type of errors may also occur
when the acquisition is made by robotic systems, whose application in this framework is
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spreading. In both cases, when increasing the operating frequency, it becomes more and
more difficult to meet the required positioning accuracy.

To overcome the above issue, the approach proposed in [17], which is able to correct the
phase error occurring when the actual sampling points deviate from the nominal acquisition
plane and, accordingly, the named k-correction, is here used as a first step to compensate
the 3D positioning errors. After that, a convenient and feasible strategy is to retrieve the
samples correctly located at the points of the adopted sampling representation from those
obtained at the previous step and now affected by 2D positioning errors, by using an
effective iterative procedure [18–25]. The devised procedure converges only when it is
possible to formulate a bijective relationship associating every correct (regular) sampling
point with the nearest improperly positioned (irregular) one. A different approach, not
suffering from the above constraints, is employing the singular value decomposition
procedure to compute the regular PWMS samples from those corrupted by positioning
errors [21–28]. Anyhow, to avoid a huge computational effort, such an approach can be
adopted only if it is possible to split the retrieving of the regular samples in two independent
1D problems. It must be stressed that the positioning correction approaches in [18–28]
can be applied only if the sampling points lie on the nominal measurement surface, since
they are based on 2D non-redundant sampling representations. An exhaustive discussion
on the reconstruction of the regular samples from the irregular ones and a related wide
bibliography can be found in [18,22].

The article is organized as follows. In Section 2, a proper sampling representation
of the voltage acquired by the probe on the scan plane is devised by properly exploiting
the non-redundant representations of EM fields [13,14] and considering either an oblate
spheroid or a double bowl as a modelling surface. A 2D OSI formula, which allows an
accurate retrieving of the probe voltage at any point on the measurement plane from a
reduced set of its samples, is also described in the same section. In Section 3, the devised
multi-steps procedure to compensate the 3D probe positioning errors is explained. Many
numerical results assessing the effectiveness of the proposed compensation approach are
then presented in Section 4. Finally, concluding remarks are reported in Section 5.

2. PWMS Sampling Arrangement

The goal of this section is to describe the non-redundant sampling representation
of the voltage detected by a small, non-directive, probe on the acquisition plane using a
minimum number of PWMS samples, which is particularly suitable when dealing with
quasi-planar AUTs.

To this end, let us assume that the measurement plane is d away from the AUT center,
coincident with the origins O of the rectangular (x, y, z) and spherical (r, ϑ, φ) reference
frames, both used for denoting an observation point P, and introduce another rectangular
reference frame (x′, y′, z′) with its origin O′ at the measurement plane center to identify any
point on the scanning plane.

According to the non-redundant representation of the EM field [13], an effective
sampling representation can be obtained by considering the AUT as contained in a proper
surface Σ, using an opportune parameter µ to describe any curve C on the plane external to
Σ, and introducing the so called “reduced voltage” obtained by extracting a proper phase
function e−jγ(µ) from the expression of the voltages Vy and Vx, measured by the probe and
rotated probe. Such a reduced voltage,

Ṽx,y(µ) = Vx,y(µ)ejγ(µ) (1)

is a function spatially quasi-bandlimited to Wµ, which, for the adopted probe, coincides
practically with that of the AUT radiated field [15]. Such a function can be effectively
approximated by a bandlimited one, provided that the associated bandlimitation error is
minimized as much as possible. To this end, the bandwidth of the approximating function
can be properly augmented to χ′Wµ, where χ′ is an enlargement factor controlling the
aliasing error and slightly greater than unity for electrically large antennas [13].
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It is worth noting that the PWMS sampling points refer to the non-redundant sampling
representation regarding two specific radial lines, namely, the x′- and y′-axes. In fact, as
explained in the following, the sampling points falling out of the axes are obtained by
intersecting the straight lines running parallel to the axes and passing through the sampling
points on the axes (see Figure 1).

According to [13], when C is a radial line, as the x′ or y′ axis, by indicating with τ′1,2
the arclength abscissas of the tangency points Q1,2 on C’ (intersection curve of the meridian
plane passing through P with Σ), with PQ1 and PQ2 the distances from P to Q1,2, and
choosing the bandwidth equal to

Wµ =
`′

λ
(2)

where `′ is the length of the curve C′, the optimal parameter and phase function are [13]:

µ =
(
π/`′

)[
PQ1 − PQ2 + τ′1 + τ′2

]
(3)

γ = (π/λ)
[

PQ1 + PQ2 + τ′1 − τ′2
]

(4)

Note that the surface Σ surrounding the AUT has to be suitably chosen in order
to derive an effective non-redundant representation. This surface must be regular and
able to fit as much as possible the AUT actual geometry for reducing the volumetric
redundancy and, thus, the number of needed sampling points. Indeed, as reported in [13],
the total number NoS of NF samples at Nyquist step on a closed observation surface (also
unbounded) enclosing the AUT is related to Σ through:

NoS ∼=
area (Σ)

(λ/2)2 (5)

The AUT spherical modelling represents the simplest choice. However, its use to
model a quasi-planar AUT gives rise to a volumetric redundancy, which reflects in a
needless growth of the required samples. Accordingly, when quasi-planar AUTs need to
be characterized, a better fitting of the AUT actual geometry can be obtained by using an
oblate spheroid (see Figure 2a) or a double bowl (see Figure 2b). It should be pointed out
that the relations (2)–(4) change depending on which surface Σ has been chosen for shaping
the considered antenna. For reader’s convenience, their expressions for the oblate spheroid
and the double bowl are reported in Appendices A and B, respectively.
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Figure 2. (a) Oblate spheroidal modelling. (b) Double bowl modelling.

It should be pointed out that, in order to factorise the 2D interpolation scheme into
1D OSI expansions along lines, it is necessary to employ [11,12] the same parameter ξ
or ψ given by (3) to describe each of the lines parallel to the x′ or y′ axis, respectively.
Accordingly, the sampling step along each line running parallel to an axis coincides with
that along the corresponding axis. Such a choice is equivalent to using a parameter which
does not make the local bandwidth w(µ) [13] constant. However, since w(µ) ≤ Wµ, the
number of samples is only slightly greater than that resulting from the precise application of



Electronics 2023, 12, 542 5 of 16

the non-redundant sampling representation to each line and, accordingly, no representation
errors are introduced. As regards the evaluation of the phase function γ, relation (4) can be
still applied.

According to such results, the following 2D OSI formula [11,12] can be used to accu-
rately reconstruct the voltage V at a given point P(x′, y′) over the acquisition plane:

V
(
ξ(x′), ψ(y′)

)
= e−jγ(x′ ,y′)

m0+q

∑
m=m0−q+1

{
A
(
ψ, ψm, ψ, M, M′′

) n0+p

∑
n=n0−p+1

Ṽ(ξn, ψm)A
(
ξ, ξn, ξ, M, M′′

)}
(6)

where 2q × 2p is the number of considered reduced voltage samples
Ṽ(ξn, ψm) = V(ξn, ψm)ejγ(x′n ,y′m), m0 = Int(ψ/∆ψ), n0 = Int(ξ/∆ξ),

ξn = n∆ξ = 2πn/(2M′′ + 1); ψm = m∆ψ = m∆ξ (7)

M′′ = Int
(
χM′

)
+ 1; M′ = Int

(
χ′Wξ

)
+ 1; Wξ = Wψ = Wµ (8)

M = M′′ −M′; ξ = p∆ξ; ψ = q∆ψ (9)

Int (x) denotes the integer part of x, and χ > 1 is an oversampling factor required to
control the truncation error [13]. Moreover, in (6)

A
(
α, αk, α, N, N′′

)
= ΩN [(α− αk), α]DN′′(α− αk) (10)

represents the interpolation function of the OSI expansion, wherein

DN′′(α) =
sin[(2N′′ + 1)α/2]
(2N′′ + 1) sin(α/2)

(11)

is the Dirichlet function and

ΩN(α, α) =
TN
[
2 cos2(α/2)/cos2(α/2)− 1

]
TN [2/cos2(α/2)− 1]

(12)

the Tschebyscheff sampling function [11–13], where TN(·) is the Tschebyscheff polynomial
of degree N.

Finally, by using the 2D OSI Formula (6) it is possible to accurately recover the voltages
Vx and Vy at a given point on the scanning plane and, in particular, at those needed to
calculate the classic probe-compensated NF–FF transformation with PR scan [10].

3. Three Dimensional Probe Positioning Errors Correction

This section is devoted to deriving the multi-steps compensation procedure to correct
the 3D probe positioning errors corrupting the NF–FF transformation with PWMS.

To this end, it is supposed that, due to defects in the mechanical rails that drive the
probe motion, the collected PWMS samples do not lie on the nominal acquisition plane and
that the finite resolution of the involved positioners does not allow the prescribed sampling
points on the scanning plane to be reached. Accordingly, the collected PWMS samples
suffer from 3D positioning errors, whose amount is assumed to be known, being revealed
through laser interferometric techniques.

The developed approach to retrieve the regularly located samples first makes use of
the so-defined k-correction [17] to correct the positioning errors occurring when the actual
sampling points deviate from the given scanning plane. This procedure is valid in the hy-
pothesis that all the NF energy is propagating in the AUT maim beam direction. Therefore,
by assuming that such a direction coincides with that of the z-axis and supposing that the
deviations of the actual positions of acquired voltage samples from the measurement plane
are δ`z , `z = 1, . . . , Npt, with Npt = Lx × Ly specifying the total number of non-redundant
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NF samples, the voltages at the exact measurement distance z = d can be recovered from
the acquired ones by employing the following relation:

V(x′, y′, 0) = V(x′, y′, δ`z)ej2πδ`z /λ (13)

wherein V(x′, y′, δ`z) denotes the voltage samples impaired by 3D positioning errors.
At this step, the restored voltage samples now belong to the scanning plane but are

altered by 2D positioning errors. If it is possible to establish a bijective correspondence
relating each regular sampling point to the closest irregular one, then the efficient iterative
technique, used in [18–25] and briefly summarized in the following, can be used to accu-
rately correct these positioning errors. Relation (6) makes it possible to relate the reduced
voltage at each irregularly distributed sampling point

(
ηk, σj

)
to the unknown ones at the

closest regular sampling points (ξn, ψm), thus getting the linear system

Ṽ
(
ηk, σj

)
=

m0+q
∑

m=m0−q+1

{
A
(
σj, ψm, ψ, M, M′′

) n0+p
∑

n=n0−p+1
Ṽ(ξn, ψm)A

(
ηk, ξn, ξ, M, M′′

)}
k = 1, . . . , Lx; j = 1, . . . , Ly

(14)

which can be rearranged in matrix form as

CU = K (15)

where K is the column vector of the known irregular samples C = [cih], with
i, h = 1, . . . , Npt, is a sparse matrix, and U is the column vector of the unknown regu-
lar samples. Such a system can be suitably solved by the means of the following iterative
scheme [18]. The matrix C is split in its diagonal CD and the not diagonal ∆ parts, then both
terms of (15) are multiplied by C−1, and, finally, by rearranging the terms, the following
iterative scheme is obtained:

U(υ) = C−1
D K− C−1

D ∆U(υ−1) = U(0) − C−1
D ∆U(υ−1) (16)

where U(υ) is the column vector of the regular samples calculated at the υ-th iteration. Note
that, for the assumption made on the arrangement of the irregular samples, it results that
∀i cii 6= 0 and ∀s 6= i|cii| > |cis| and |cii| > |csi|. Accordingly, the necessary condition [18]
guaranteeing the convergence of the iterative procedure is respected. Finally, by making
explicit relation (16), we get:

Ṽ(υ)(ξn, ψm) =
1

A(σm ,ψm ,ψ,M,M′′)A(ηn ,ξn ,ξ,M,M′′){
Ṽ(ηn, σm) −

i0+q
∑

i=i0−q+1

s0+p
∑

s=s0−p+1
(i 6=m)∧(s 6=n)

A
(
σm, ψi, ψ, M, M′′

)
A
(
ηn, ξs, ξ, M, M′′

)
Ṽ(υ−1)(ξs, ψi)} (17)

wherein

i0 =

{
m if σm ≥ ψm

m− 1 if σm < ψm
; s0 =

{
n if ηn ≥ ξn

n− 1 if ηn < ξn
(18)

denote the indexes of the nearest regular sample estimated at (υ− 1)-th iteration.

4. Numerical Results

In this section, several numerical results are shown to assess the effectiveness of the
approach developed to compensate 3D positioning errors corrupting the characterization
of quasi-planar antennas from NF measurements collected through a PWMS facility.

These results refer to two different AUTs. The former (AUT 1) is a uniform planar
circular array of diameter equal to 30 λ. Its elements are elementary Huygens sources, with
linear polarization along the y axis. They are symmetrically placed with respect to the x
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and y axes and are about 0.6 λ spaced along circumferences with a radial spacing of 0.6 λ.
In order to get a suitable modelling, this AUT has been modelled as enclosed in a double
bowl with a = 15 λ, h = 2 λ and h′ = 3.5 λ. The latter (AUT 2) is a planar circular array of
y-polarized elementary Huygens sources. These elements are symmetrically placed with
respect to the x and y axes, spaced by about 0.5 λ along circumferences having a radial
spacing of 0.5 λ and fed so that such an AUT behaves as a Tschebyscheff-like array with
a level of the first side lobe of −40 dB. Its diameter is again equal to 30 λ but, now, the
AUT has been modelled as contained in an oblate spheroid having a = 15 λ and b = 5 λ.
Such a kind of AUT has been chosen to test the multi-step compensation procedure in
more severe conditions, since it is more sensitive to phase errors. For both the AUTs, the
measurement area is set at d = 10 λ away from the source and is a 100 λ× 100 λ sized square.
Furthermore, in order to take into account the probe effect, the PWMS samples have been
simulated in both cases as collected by an open-ended WR-90 rectangular waveguide [29].
Note that these samples have been simulated as corrupted by known 3D probe positioning
errors. To this end, it has been imposed that the deviation δ`z of each sample from the
considered acquisition plane is a random variable uniformly distributed in [−λ/10, λ/10]
and that the shifts δ`x , δ`x in ξ, ψ (along the x′ and y′ directions) between the position of
each irregular sample and that of the correspondent regular one are again random variables
with a uniform distribution in [−∆ξ/3, ∆ξ/3] and [−∆ψ/3, ∆ψ/3], respectively, being
`x,y = 1, . . . , Lx,y.

The effectiveness of the devised procedure is first assessed by the NF reconstructions.
To this end, the exact amplitudes and phases of the voltages Vy along the horizontal line
of the scanning plane at y′ = 3λ are compared in Figure 3a,b for AUT 1 and in Figure 4a,b
for AUT 2 with those recovered through the 2D OSI Formula (6) from the acquired PWMS
data, after the positioning errors affecting them have been compensated by first employing
the k-correction formalized in (13) and subsequently the iterative strategy. For sake of
comparison, the reconstructions obtained by directly interpolating the PWSM samples
corrupted by the considered 3D probe positioning errors through (6) are also shown in the
same figures. Moreover, the analogous comparisons relevant to the AUT 1 on the scanning
line at y′ = 15 λ are presented in Figure 5a,b, whilst those relevant to the AUT 2 on the
scanning line at y′ = 13 λ are shown in Figure 6a,b. In all the reconstructions from the
data affected by 3D positioning errors, the solution of the linear system involved in the
iterative procedure has been obtained by choosing 10 iterations which are enough to ensure
the convergence of the algorithm with very small errors [20]. It should be noted that, for
both the AUTs, despite the simulated data affected by severe 3D positioning errors, the
recoveries achieved by using the devised approach are shown to be very accurate, apart
from some little disagreements occurring in the outer zone characterized by a very low
voltage amplitude.
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Black dots: obtained from the positioning errors corrupted PWMS samples without using the devised
procedure. (a) Amplitude. (b) Phase.
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procedure. (a) Amplitude. (b) Phase.
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To show the need for using the proposed iterative procedure after applying the
k-correction to compensate the deviation from the considered measurement plane, the
reconstruction of the amplitude of the voltage Vy along the line at y′= 3 λ is again reported
in Figure 7 for the AUT 1 and Figure 8 for the AUT 2. These reconstructions have been
obtained, in such a case, by adopting only the k-correction as performed in [17], without
applying the iterative procedure. Accordingly, it results:

V(x′, y′, 0) = V(x′ + δ`x, y′ + δ`y, δ`z)e
j2πδ`z /λ (19)

where V(x′ + δ`x, y′ + δ`y, δ`z) is the voltage corrupted by 3D positioning errors and
V(x′, y′, 0) is the corrected one. Clearly, such an approach does not allow for a precise recon-
struction, thus further assessing the effectiveness of the devised multi-steps compensation
procedure.
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attained from the positioning errors affected PWMS samples by using only the k-correction.
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The overall effectiveness of the multi-steps compensation approach is assessed in
the following by the reported FF reconstructions. Since the proposed AUTs show almost
the same FF patterns in the principal planes, only the results relevant to the E-plane are
here shown. Accordingly, the FF patterns obtained from the PWMS data after that the
3D probe-positioning errors have been corrected are compared in Figure 9 for the AUT
1 and Figure 10 for the AUT 2 with those (references) computed by using the exact PR
samples. Furthermore, for comparative purpose, the E-plane FF patterns obtained when
the proposed compensation approach is not applied are also shown in Figure 11 (AUT 1)
and in Figure 12 (AUT 2). As can be clearly seen, in this case the reconstruction is shown to
be extremely deteriorated, thus further validating the effectiveness of the devised errors
compensation strategy. Such an effectiveness is even clearer from the very low errors
presented in Figures 9 and 10 as compared to the considerably greater ones reported in
Figures 11 and 12. Such errors have been evaluated by taking the differences between the
references and recovered magnitudes, normalized to the maximum of the reference FF
patterns and expressed in dB.
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the positioning errors affected PWMS samples by using the proposed procedure. Dashed line:
corresponding normalized error.
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Figure 11. FF patterns in the E-plane—AUT 1. Blue line: reference. Red dots: attained from the
positioning errors affected PWMS samples without using the proposed procedure. Dashed line:
corresponding normalized error.
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Figure 12. FF patterns in the E-plane—AUT 2. Blue line: reference. Red dots: attained from the
positioning errors affected PWMS samples without using the proposed procedure. Dashed line:
corresponding normalized error.
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To conclude, it is interesting to compare the number of NF samples necessary to per-
form the PWMS and classic PR NF–FF transformations. The PWMS NF–FF transformation
requires 8649 samples for both the double bowl and the oblate spheroidal modellings,
whilst the classic PR NF–FF transformation requires 40,401 samples. It is possible to achieve
the same accuracy of the classic technique, but saving about 80% of required samples.

Other representative results relevant to the application of the devised procedure for
correcting 3D positioning errors in the NF–FF transformation with PWMS based on the
oblate spheroidal AUT modelling have been preliminarily presented in [30].

5. Conclusions

In this paper, effective NF–FF transformations for quasi-planar AUTs from 3D probe
positioning errors corrupted PWMS data have been developed and numerically validated.
To this end, a multi-steps compensation procedure has been properly devised. Such a
procedure exploits, as a first step, the k-correction to compensate for the positioning errors
occurring when the actual sampling points deviate from the considered scanning plane.
After that, an iterative algorithm is used to restore the regularly distributed samples from
those previously obtained and affected only by 2D positioning errors. Once the correct
PWMS samples have been reconstructed, the huge NF data required to compute the
standard PR NF–FF transformation are evaluated by using the 2D OSI formula.

Notwithstanding the severe 3D positioning errors corrupting the PWMS samples, the
NF and FF reconstructions, obtained by employing the devised compensation approach, are
very accurate, especially when compared to the severely deteriorated ones calculated with-
out using this procedure. Thus, the effectiveness of the developed approach is thoroughly
assessed.
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F.D., F.F. and M.M.; Visualization, C.G.; Writing—original draft, F.B.; Writing—review and editing,
C.G., R.G. and G.R. All authors have read and agreed to the published version of the manuscript.
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Appendix A. Relevant to the Oblate Spheroidal AUT Modelling

When the AUT is modelled as contained in an oblate spheroid with major and mi-
nor semi-axes equal to a and b (see Figure A1), expressions (2)–(4) can reformulated as
follows [11,12]

Wµ =
4a
λ

EI
(

π/2
∣∣∣ε2
)

(A1)

µ =
π

2

[
EI
(

sin−1 u
∣∣∣ε2
)

/EI
(π

2

∣∣∣ε2
)]

(A2)

γ =
2π

λ
a

v

√
v2 − 1
v2 − ε2 − EI

cos−1

√
1− ε2

v2 − ε2

∣∣∣ε2

 (A3)

where EI (·|·) denotes the elliptic integral of second kind, ε = F1F2/2a is the spheroid
eccentricity, F1F2 its focal distance, and u = (r1 − r2)/F1F2, v = (r1 + r2)/2a indicate the
elliptic coordinates, r1,2 being the distances from P to the foci.
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Figure A1. Relevant to the oblate spheroidal modelling.

Appendix B. Relevant to the Double Bowl AUT Modelling

When the AUT is modelled as contained in a double bowl (see Figure A2), the relations
(2)–(4) can be still employed to derive the expressions for the bandwidth Wµ, the optimal
parameter, and the related phase function. In such a case, it results [11,12]

`′ = 2
[
(a− h) + (a− h′) + (h + h′)π/2

]
(A4)

and the expressions of the distances PQ1, PQ2 and of the arclength abscissae τ′1,2 of the
tangency points Q1,2 change as function of the position of these last (see Figure A2). In
particular, if they are both situated on the upper bowl (ρ′ < a), it results [11,12]:

PQ1 =

√
(ρ′ + c)2 + d2 − h2; c = a− h (A5)

τ′1 = −(hβ1 + c); β1 = tan−1(PQ1/h
)
− tan−1[(ρ′ + c)/d

]
(A6)

PQ2 =

√
(ρ′ − c)2 + d2 − h2; τ′2 = hβ2 + c (A7)

β2 = tan−1(PQ2/h′
)
− tan−1[(c− ρ′)/d

]
(A8)
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Figure A2. Relevant to the double bowl modelling.

When Q2 is placed on the lower bowl (ρ′ ≥ a), the relations (A4) and (A5) allow again
to calculate PQ1, τ′1 and β1, whereas it results:

PQ2 =

√
(ρ′ − c′)2 + d2 − h′2; c′ = a− h′ (A9)

τ
′
2 = h′β2 + hπ/2 + c (A10)

β2 = tan−1(PQ2/h′
)
− π/2 + tan−1[(ρ′ − c′)/d

]
(A11)
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