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Abstract: Targeting the problems of the insufficient utilization of temporal and spatial information
in videos and a lower accuracy rate, this paper proposes a human action recognition method for
dynamic videos of emergency rescue based on a spatial-temporal fusion network. A time domain
segmentation strategy based on random sampling maintains the overall time domain structure of the
video. Considering the spatial-temporal asynchronous relationship, multiple asynchronous motion
sequences are increased as input of the temporal convolutional network. spatial-temporal features
are fused in convolutional layers to reduce feature loss. Because time series information is crucial
for human action recognition, the acquired mid-layer spatial-temporal fusion features are sent into
Bidirectional Long Short-Term Memory (Bi-LSTM) to obtain the human movement features in the
whole video temporal dimension. Experiment results show the proposed method fully fuses spatial
and temporal dimension information and improves the accuracy of human action recognition in
dynamic scenes. It is also faster than traditional methods.

Keywords: spatial-temporal fusion; human action recognition; two-stream convolutional neural
network; emergency rescue; spatial-temporal asynchronous information

1. Introduction

Human action recognition has always been one of the most challenging problems in
the field of computer vision [1]. Video is a kind of data over time with a strong temporal
correlation. Each pixel in a video has great similarity and strong spatial correlation.

Most of the subjects in videos are people, so the human action recognition technology
has piqued considerable research interest as a novel application. The development of
artificial intelligence provides a broad space for developing human action recognition
technology in the form of virtual reality, intelligent monitoring, motion analysis, human-
computer interaction, etc. [2]

In recent years, various natural and man-made disasters have had a great impact
on people’s lives. In the face of emergencies, identifying specific situations that need
emergency responders is critical [3]. Applying action recognition technology to rescue
scenarios, such as major traffic accidents, major terrorist attacks, and earthquakes can
effectively improve emergency response by medical rescue team members and is conducive
to providing auxiliary decisions for decision-making at the disaster site.

Identifying the actions and current state of both first-responders and victims is crucial
in such situations. It would be helpful to have a more comprehensive grasp of the on-site
rescue work to achieve efficient guidance and accurately and quickly implement the rescue.

In this work, we propose a two-stream asynchronous fusion network based on Tem-
poral Segment Networks (TSN) and Bi-LSTM for human action recognition in emergency
rescue classification of entire video sequences. The main contributions include the following:

(1) This paper further refines the currently available dataset in the literature [4]. The
dataset was constructed with reference to the AVA dataset production method. To improve
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the annotation efficiency, Faster R-CNN was used to detect human positions, including ac-
tions and human annotations using Via software. To prevent the overfitting of the network
and increase the sample diversity of data, action sequence video data are collected as the
emergency first-responder action dataset for annotation, and a data enhancement method
is used for data augmentation so that it can better reflect the emergency rescue scene.

(2) A spatial-temporal asynchronous fusion network is proposed. TSN was used
to randomly sample video fragments. An RGB image corresponding to each segment
and its two-stream field before and after a specified period of time is then input into
the spatial and temporal flow networks, respectively, to extract spatial and temporal
features. The fusion of spatial-temporal asynchronous information is also realized in the
convolutional layer. The fused features were input into Bi-LSTM to extract temporal features
and finally implemented for human behavior recognition using Softmax. By modeling the
asynchronous relationship between the moving image and the motion sequence (optical
flow), the long-term motion can be modeled.

(3) Experiments are conducted on the improved emergency rescue dataset provided
in the literature [4] and the publicly available dataset UCF101. We conduct experimental
analysis to compare our spatial-temporal fusion network model with other methods, which
verifies that the presented method improves the accuracy of action recognition.

The remainder of this paper is structured as follows: Section 2 shows the related work.
The proposed spatial-temporal fusion network model is shown in Section 3. The proposed
method is presented in Section 4. Experiments and results are described in Section 5, while
Section 6 concludes the work of this paper.

2. Related work
2.1. Traditional Human Action Recognition Methods

Human action recognition methods include feature extraction and action recognition.
Traditional feature extraction methods mainly include global and local feature extrac-
tion. Global feature representation is a method of comprehensively describing the overall
structure and shape features of moving objects, such as silhouette-based features and
optical-flow-based features. A. Mahjoub et al. [5] computed a depth motion map for each
sequence to represent the action motion features from the depth data.

The global feature method is greatly affected by occlusion, visual angle change, and
noise, which cannot effectively capture the changes in viewpoint and occlusion. The
method based on local features does not rely on the global features of the image and only
extracts local features, so it is less affected by noise and messy background, has good
robustness, and it is more widely used.

The identification method using local feature representation requires the extraction of
the rich interest points from the video and the use of local descriptors to express the points of
interest, finally gathering them together. This approach obtains local features directly from
the point of interest on the image, thus eliminating the pre-processing step [6]. Methods
based on the point-of-interest description are often suitable for simpler scenarios and can
lead to decreased recognition performance if the video background is more complex.

The extraction and description of the movement trajectory based on tracking points are
also the focus of scholars. The Dense Trajectory (DT) method proposed in the literature [7]
densely sampled the points of interest in the framed image and used the dense optical
flow method to track these points of interest and connect them into trajectories. Along the
motion trajectory of the feature points, the features are extracted as motion descriptors.
Bag of features (BOF) is used to encode the feature groups to obtain the features, thereby
describing the video behavior.

Abdelbaky A. et al. [8] used a 2D convolutional network, PCANet, as an unsupervised
feature extractor instead of 3D convolutional networks to learn the spatial-temporal features
of video actions. The learned spatial and temporal features are combined with BOF and
a vector local aggregation descriptor encoding scheme. Chen T. et al. [9] improved the
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contour features and realized action recognition based on the improved features and
multiple features.

Because features are highly susceptible to extrinsic factors, the recognition of feature-
based video behavior is different in different scenarios. Select representative feature
descriptions based on a specific task, and the selected features will have a great influence
on the recognition accuracy [10]. Some current methods require high computational costs
while achieving high recognition accuracy, such as dense trajectory algorithms. Such
algorithms require a large number of trajectory operations, so the recognition process is
relatively complex and has great limitations. As a result, traditional methods are gradually
being replaced by deep-learning-based methods [11].

2.2. Human Action Recognition Methods Based on Deep Learning

According to the different neural network structures used for recognition, action
recognition methods based on deep learning can be divided into action recognition methods
based on two-stream convolutional neural networks (CNN), action recognition methods
based on 3D CNN, and action recognition methods based on long short-term memory
(LSTM). A comparison of the three methods is shown in Table 1.

Table 1. A comparison of the three deep learning action recognition methods.

Deep Learning Methods Advantages Disadvantages

Two-stream CNN methods

Two-stream obtains shape and
motion information,
respectively, and the

recognition effect is better
than single-flow networks.

Use optical flow information
with large computation.

3D CNN methods
Directly capture

spatial-temporal features from
the original video sequences.

Considering partial
continuous frames, features

cannot be learned at the entire
video level.

LSTM methods

Combined with CNN,
combining both strengths, to

better capture temporal
information.

Association information
before and after the action is

not considered.

(1) Action recognition methods based on two-stream CNN:
Inspired by the ventral and dorsal human visual processes, the spatial-temporal two-

stream network was proposed by Simonyan et al. [12]. However, the proposed two-stream
network is difficult to handle for long timing and complex motions. To address this problem,
Wang et al. [13] presented TSN, which introduced a sparse sampling strategy.

Thereafter, researchers proposed many improved models based on the two-stream
network structures. For example, Zhuang et al. [14] proposed a novel three-flow spatial-
temporal attention-enhancing feature fusion network for action recognition. A two-stream
3D ConvNet fusion framework was proposed by Wang et al. [15].

(2) Action recognition methods based on 3D CNN:
Ji et al. [16] first proposed 3D CNN and applied it to action recognition. Based on

this work, Tran et al. [17] presented convolutional 3D (C3D). The network utilizes 3D
convolution and 3D pooling to process the input video frames. However, there are still
some limitations. 3D convolution produces a large number of parameters, which greatly
increases the computation cost. Moreover, 3D convolution models both temporal and
spatial information, and easily leads to overfitting problems.

To address these issues, Carreira et al. [18] proposed I3D networks to obtain greater
spatial-temporal resolution by expanding the 2D convolution operations of InceptionV1
networks into 3D convolution. Diba et al. [19] extended the 3D convolution to DenseNet
and presented the Temporal 3D Convnets (T3D). T3D adds a temporal transition layer (TTL)
to obtain rich temporal information at different scales and capture short, medium, and long
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temporal information. Qiu et al. [20] proposed Pseudo-3D Residual Networks (P3D) for the
problem of a large number of C3D parameters. The 3D convolution is decomposed into 2D
space and 1D time convolution by convolution factors. This method increases the network
depth and diversity by separating and flexibly combining the time and space domains and
improves the recognition accuracy.

Most of the previous networks have extended the 2D CNN from the time dimension.
However, this is not necessarily the best choice. The X3D network was proposed by Feicht-
enhofer [21]. The X3D extended at multiple scales, including dimensions, such as input
frame number, input frame size, sampling frame rate, number of convolutional kernels,
depth feature graph width, network depth, and other dimensions. The computational
amount and parameters required for X3D are exponentially reduced with state-of-the-
art performance.

(3) Action recognition methods based on LSTM:
LSTM-based action recognition methods usually combine CNN and LSTM to build

networks. This method takes full advantage of CNN and LSTM, CNN extracts the features
of spatial dimension, and LSTM extracts information of temporal dimension. LSTM can
solve the gradient disappearance problem, thus handling long video data well. Combining
CNN and LSTM is mainly able to better capture spatial-temporal information for fusion.

Donahue et al. [22] proposed a Long-Term Recurrent Convolutional Network (LRCN)
that combined the traditional CNN and LSTM to extract the spatial-temporal information
of the video. The input of the LRCN network can be either a single-frame image or a video
with temporal information. In the action recognition neural network structure proposed by
Ou et al. [23], CNN is used to separately extract local spatial and local motion information,
and LSTM is adopted to extract feature information in video sequences and obtain the
context relation of the local spatial-temporal information. Ge et al. [24] improved the
Faster R-CNN framework by introducing LSTM, obtaining the spatial features of the action
by Faster R-CNN and the temporal features of the action by LSTM. A more accurate
recognition effect is obtained by combining the clues of the auxiliary regions.

3. A spatial-Temporal Fusion Network Model

Currently, 3D CNN and two-stream CNN are mainly used for spatial and temporal fu-
sion. 3D CNN captures spatial-temporal features directly from the original video sequences
with universal applicability. However, it does not consider the relationship between the
spatial and temporal features, and the densely sampled video frames of the 3D CNN
will also produce a large number of parameters, which greatly increases the computation.
Two-stream CNN, respectively, extracts the spatial and temporal information through two
parallel spatial and temporal networks, which is more conducive to processing and fusing
the two, and its training complexity is small. The two-stream network structure is shown
in Figure 1.

Figure 1. Two-stream network structure.
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As can be seen in Figure 1, the spatial flow network processes the static data through
multiple convolutional layers and fully connected layers to provide information about the
scenes and objects of the network. Using the same convolutional network structure as
the spatial flow network, the temporal flow network takes the stack of adjacent L-frame
image optical flow as input, processes the dynamic information, and represents the motion
and temporal information through multiple frames of optical streams. After Softmax, the
two-stream network undergoes independent training for fusion operations.

Action recognition research has been greatly influenced by the two-stream network,
yet there is still room for improvement. The fusion method is only the direct fusion of
the prediction results for the two-stream network classifier, which is relatively simple
to implement, but it fails to fully integrate the temporal and spatial information. The
spatial stream operates on a single frame. The dense optical flow of the temporal flow can
only learn the running information between adjacent frames, and cannot conduct feature
learning for the whole video. Therefore, it cannot learn complex and long-term videos, and
the network recognition effect is limited.

For this reason, subsequent researchers proposed various methods to improve the
two-stream network. A common solution is to use a more intensive image frame sampling
method to obtain the long-term information of videos, but it contains a lot of redundant
data and increases the cost. TSN offers a time domain segmentation structure with a sparse
sampling frame, and this structure can remove some redundant information and extract
action information from the whole video.

The TSN framework uses sparse sampling methods to extract short segments of the
entire video, randomly samples segments in short sequences, and fuses the category scores
of different segments by the segment consensus function. The two-stream CNN utilized
in the TSN framework merely extracts the motion and spatial information independently,
and finally combines them without taking into account the correlation between the spatial
and temporal information. The framework fused after the fully connected layer destroys
the space-time properties to some extent. In addition, there are synchronous and asyn-
chronous relationships between the motion information of the video behavior and the scene
information in the process of action, but TSN does not consider the relationships.

In view of the defects of the traditional fusion spatial-temporal network and the
spatial-temporal asynchronous relationship of actions, this paper adopts the time domain
segmentation strategy for TSN to sample segments randomly. The sampled RGB video
frames and the two-stream fields before and after a period of time are, respectively, sent
into the spatial and temporal flow networks to learn the spatial-temporal features of
the video. Both of the spatial-temporal asynchronous information in the convolutional
layer will be fused. The fused feature information contains the matching relationship
between the motion sequence information and the single-frame image. It is now possible
to effectively combine the asynchronous spatial-temporal information of the video by
performing long-term motion modeling and extracting temporal features using Bi-LSTM.
The final classification is achieved by the Softmax classifier to complete the behavior
recognition, and the proposed structure of the spatial-temporal fusion network model is
shown in Figure 2.

The leftmost nine images in Figure 2 represent the input images in groups of three,
and each group of images is the same, and the three images of the same group represent
the three channels of the image. The following three boxes show the early-stage spatial-
temporal fusion, the mid-term spatial-temporal fusion, and the late spatial-temporal fusion.
The upper side image of the box indicates the information about the three channels for the
frame image, and the lower side of the gray image shows the information about the two
directions of the overlapping optical flow field for the single frame image corresponding to
the time.
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Figure 2. The proposed structure of the spatial-temporal fusion network.

The same video is input into the early-stage fusion, mid-term fusion, and late fusion
to extract temporal and spatial features separately. The two features of the different fusions
are then fused, respectively, and the feature with the best effect is selected from the fused
features as the input of Bi-LSTM to further mine the asynchronous information.

The spatial-temporal fusion network adopts the sparse sampling strategy of the TSN
framework, models the long-range time structure based on the segmented sampling, and
obtains the video-level prediction results, to effectively learn the action model using the
entire action video. Considering the spatial-temporal asynchronous relationship between
motion and space, the asynchronous spatial-temporal relationship is also obtained based on
the extraction of the spatial-temporal synchronous relationship by inputting asynchronous
motion sequence graphs to achieve effective action recognition. Extract the spatial-temporal
information by integrating it into the convolutional layer of the spatial-temporal two-stream
network, avoid going through the fully connected layer, and effectively reduce the feature
loss. Inputting the fusion feature map into Bi-LSTM can model the temporal relationship of
video segments, and give the correlation relationship before and after video frames. The
network can extract and fuse spatial-temporal relations well to realize action recognition.

4. A Human Action Recognition Method Based on Spatial-Temporal Fusion Network

A sparse sampling method is used to sample the videos. For an input video V, divide
it into k segments {S1, S2, . . . , Sk} of equal time, and then randomly sample a segment
{T1, T2, . . . , Tk} from the corresponding segments. The data are preprocessed to extract
the RGB image of each segment Tk and its corresponding x and y directional optical flow
graphs before and after a period of time, and the optical flow covers the front and back of
the image. In this way, not only the motion information on the current action but also its
asynchronous motion information is considered.

To obtain each fragment, the paper adopts a sparse sampling method. Utilize the
RGB image, and the x direction and y direction optical flow graphs containing time series
information, i.e., including not only a small segment of optical flow graph corresponding to
the image, but also the optical flow graphs before, during, and after its motion. Assuming
that the duration of the motion information is L frames, the input optical flow information
involves 2 × L, and fully contains the asynchronous information of time and space.
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For the tth video frame, its spatial features are extracted by the corresponding one RGB
image, the extraction of motion information starts from the tth frame optical flow graph,
and then superimposes the horizontal and vertical optical flow fields of N subsequent video
frames, that is, input the optical flow fields of [t, t + N] into the temporal convolutional
neural network for analysis. The traditional two-stream methods merely extract an RGB
image and a set of such optical flow features as input for each sampling segment, but this is
only effective for actions with synchronous spatial and temporal information. Some actions
are not always synchronous between the spatial and motion information, there are early or
late cases, namely asynchrony.

For example, in the carrying behaviors of emergency rescue, when the motion extracted
by the optical flow information block is exactly the carrying process of the paramedics, a
simple two-stream network such as image and optical flow cannot accurately distinguish
the carrying of emergency rescue from ordinary carrying behaviors. However, in the
process of emergency rescue, there are frequent behaviors such as simple treatment and
moving the injured who need to be carried on stretchers before the carrying action, as well
as professional rescue after the carrying action. These actions either advance or lag behind
the carrying actions on the image. Thus, in the process of emergency rescue, there is very
often strong advance and lagging asynchronous information between the movement of the
behavior and image.

Traditional two-stream networks do not consider the asynchronous characteristics be-
tween spatial and motion information, so the proposed method considers the asynchronous
motion features with spatial information, to obtain more spatial-temporal relationships
for effective action recognition. In addition to extracting the N frame optical flow field
synchronized with the tth frame image of the traditional methods, the presented method
also extracts more optical flow features asynchronously associated with the tth frame image.
Take ∆ as the time interval, extract a total of [t − 2∆, t + 2∆ + N] frame light-flow fields,
and the obtained time domain features are used as the input of the temporal flow network.

Spatial-temporal fusion network enables action classification by extracting and in-
corporating spatial and temporal features of videos. The traditional two-stream network
integrates the spatial-temporal information after passing through the fully connected
layer but destroys feature information. To make good use of the extracted space and
motion features in the pixel-level correlation to achieve full fusion, this paper compares
the different fusion methods, fuses the spatial-temporal features in advance right in the
convolutional layer, and the fusion feature sequences contain the synchronous and asyn-
chronous correlations between the motion sequence information and single frame image.
The asynchronous relationship between the motion sequences and the space is different
for different actions. Therefore, modeling the temporal features is also required for the
mid-level spatial-temporal fusion feature graphs following the fusion of motion and spatial
information. This paper introduces Bi-LSTM to extract temporal features from the fused
feature sequences. It can solve the problem that TSN does not consider the correlation of
spatial-temporal information without destroying its spatial-temporal characteristics. At the
same time, it can further extract the synchronous and asynchronous relationships between
motion and scene information. The flowchart of the proposed spatial-temporal fusion
network method is shown in Figure 3.

4.1. Spatial Flow Convolutional Neural Networks

Through the sparse sampling of the videos, a set of single-frame RGB images are
obtained as the input of the spatial flow CNN, and the actions are discriminated by the
static spatial appearance information. Static RGB images use three channels to store pixel
information and represent the shape. For the actions with the obvious correlation between
objects and scene information, the actions can be classified through the scenes and the
objects in the video frame, such as bandaging.

The actions and certain objects are inseparable in the videos, for example, bandaging
the wound requires gauze. The spatial flow CNN extracts the spatial features of actions
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by identifying the background and shape information in the RGB frames. Therefore, the
spatial flow networks can effectively recognize video behaviors by directly using image
classification networks.

Figure 3. The flowchart of the proposed spatial-temporal fusion network method.

Both the spatial and temporal streams are detected by CNN in the two-stream network
architecture. The spatial flow CNN focuses on extracting the features of the RGB image
sequences, while the temporal CNN processes the optical flow information between the
adjacent frames [25]. Spatial and temporal convolutional neural networks adopt the same
network structure. The CNN used in this paper is the VGG16 network [23], and the network
structure is shown in Figure 4.
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Figure 4. The VGG16 Network Structure.

4.2. Temporal Flow Convolutional Neural Networks

The optical flow is utilized to measure the motion information about the video behav-
iors in the temporal network of the two-stream network [26]. A video is a combination of
video frame images composed of continuous pixels. The optical flow method can detect
the speed and direction of the target movement, which is judged by viewing the intensity
changes of the pixels between continuous images. It expresses the changes in the images
and contains the movement information about the targets, so the temporal features of the
moving targets can be obtained [27].

In a temporal network, the input is 2L image frames consisting of stacked x directional
horizontal optical graphs dx of L continuous video frames and y directional vertical optical
graphs dy. Assuming that the video frame size is w × h, for any input video frame τ, the
input optical flow field block Iτ ∈ Rw×h×2L of the temporal stream can be calculated by
Equation (1).

Iτ(u, v, 2k− 1) = dx
τ(u, v),

Iτ(u, v, 2k) = dy
τ+k−1(u, v),

u = [1; w], v = [1; h], k = [1; L]

(1)

where Iτ represents the superposition of optical flow field blocks, namely the input of the
temporal network. dx

τ and dy
τ , respectively, indicate the horizontal and vertical optical flow

fields at time τ. L is the number of video frames, and (u, v) is the offset.
In addition to inputting the superimposed optical flow of the 2 × L (L = 10) contin-

uous frames at the time of the motion, the proposed model also extracts the optical flow
information of 2k before and after as the input of the temporal network. This is because the
optical flow from the motion start frame (t0) to the motion end frame (t0 + L) is the motion
information synchronized with the spatial information. In addition to the information,
there is also motion information that is asynchronous with spatial information, which is
critical to action recognition. Therefore, the model also inputs k frames before the start
of motion (t0− k) and k frames after the end of motion (t0 + L + k) as the input of the
temporal network.

Spatial-temporal information is asynchronous. For the two actions of infusion and
injection, the motion of touching the human body with a needle tube is very similar. If
only the optical flow information at this moment determines the action category, similar
motion sequences will easily lead to misjudgment. Therefore, in addition to the frame of
the motion moment, it is necessary to input the optical flow information before and after to
assist the judgment. For the action at time t, in addition to inputting the RGB image and
optical flow at time t, the optical flow information at time t, t − k, t + L/2, t + L, and t + L +
k should be input. The presented two-stream network structure is shown in Figure 5.
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Figure 5. The presented two-stream network structure.

4.3. Spatial-Temporal Feature Learning and Fusion

The spatial and temporal flow networks in two-stream neural networks obtain the
corresponding classification results before the fusion to realize the final identification.
The fusion of spatial-temporal networks mainly makes full use of the spatial and motion
features of the videos and combines the correlation between the spatial and motion features,
to judge the different behavior types. For example, in the bandaging behavior, the spatial
flow network can identify the shape information of the hands and triangle towel, and
the temporal flow network extracts the periodic action of the hands in a specific spatial
position, so combining both of them can identify the bandaging action. However, the
fusion of category scores after the fully connected layer cannot achieve the true sense of
correlation fusion. To fully exploit the connection between spatial and temporal properties,
the fusion of spatial and temporal streams needs to be thoroughly studied. To integrate the
spatial and temporal network streams, this paper investigates three potential spatial and
temporal fusion techniques.

(1) Early-stage fusion:
Early-stage fusion is performed before the input network by fusing the sparsely

sampled single-frame RGB image and Lframe superposition optical flow fields, i.e., three-
channel information of the frame images and two directions of light flow field information
are fused to form 3 + 2L channels, then input to the network to extract spatial-temporal
features and achieve action classification. The early-stage fusion process is shown in
Figure 6.

Figure 6. Early-stage fusion process.

(2) Mid-term fusion:
Mid-term fusion is the fusion in the network. The single-frame image and the overlap-

ping optical flow field of its corresponding time are sent as input to the spatial flow and
the temporal flow networks, respectively, and the spatial features and motion features of
the video are extracted from the multi-layer convolutional layers. The extracted spatial-
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temporal features are fused in the convolutional layers to generate the feature graphs and
spatial-temporal feature vectors, and then the classifier is used to classify the actions.

Figure 7 shows the mid-term fusion process. Mid-term fusion mainly includes sum-
mation fusion, maximum fusion, and mean fusion.

Figure 7. Mid-term fusion process.

(3) Late fusion:
Most of the fusion methods adopted by the traditional two-stream networks are late

fusion. After the video information is input to the spatial and temporal flow networks, the
corresponding category scores are obtained through feature extraction, and the two scores
are directly fused to obtain the final recognition results, as shown in Figure 8.

Figure 8. Late fusion process.

Assuming that fst and ftp are eigenvectors, respectively, extracted from the spatial
and temporal flow CNN. Calculating the score by the Softmax classifier is shown in
Equations (2) and (3).

p(j|fst) = Sj
st =

exp(θj
st · fst)

∑n
j′=1 exp(θj

st · fst)
(2)

p(j|ftp) = Sj
tp =

exp(θj
tp · ftp)

∑n
j′=1 exp(θj

tp · ftp)
(3)

where θ
j
st and θ

j
tp represent the Softmax classifier parameters in the spatial and temporal

flow CNN, respectively. p(j|fst) and p(j|ftp) denote the posterior probabilities that fst and
ftp belong to the jth category [28].

The obtained spatial-temporal high-level features are fused in the convolutional layer
to form a spatial-temporal fusion feature graph. In this way, the pixel-level fusion can
be directly realized without passing through the fully connected layer, and the spatial-
temporal correlation information can be extracted to achieve full fusion without affecting
any features.

The proposed model in this paper changes the traditional fusion approaches by
fusion in the convolutional layer and considers the synchronization and asynchronism of
spatial-temporal information to fully fuse spatial-temporal features without destroying
the spatial-temporal features. The input of the original two-stream network is a moving
image and a motion sequence, and the spatial-temporal synchronization relationship is
considered. The presented method adds another motion sequence to the input of the
temporal flow to extract the asynchronous motion information with the moving image to
model the long-term motion.
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4.4. Bi-LSTM Time-Series Feature Learning Network

The Bi-LSTM network in Figure 3 extracts the fused temporal features and contains
the matching relationship between motion information and multi-frame images. In the
matching process, the asynchronous relationships between motions and images are different
for different categories of behaviors, and thus further deep learning of the fused temporal
features is required after the fusion of motion and image features. To further mine the
synchronous and asynchronous information of the spatial-temporal networks, this paper
introduces the Bi-LSTM network to construct the long-term motion model of the fused
sequences. Bi-LSTM is a good method to model temporal data. In Bi-LSTM, the input at a
certain moment will depend on the video frame information before and after it, which can
well satisfy the asynchronous relationship of video actions and fully consider the temporal
information. Compared with LSTM, Bi-LSTM can obtain stronger temporal information
and realize the effective integration of video asynchrony information in the case of learning
the front and rear video information (Algorithm 1). The pseudo-code of the Bi-LSTM
temporal feature learning network algorithm is as follows. The meaning of each symbol in
the pseudo-code is shown in Table 2.

Algorithm 1: Bi-LSTM temporal feature learning network algorithm.

1: function yt = f(xt)

2: Current input xt is the same as the past output hj
t-1

3: f(t)j = σ(Wj
f · h

j
t-1 + Uj

f · xt + bj
f)

4: i(t)j = σ(Wj
i · h

j
t-1 + Uj

i · xt + bj
i)

5: a(t)j = tanh(Wj
a · h

j
t-1 + Uj

a · xt + bj
a)

6: o(t)j = tanh(Wj
o · h

j
t-1 + Uj

o · xt + bj
o)

7: c(t)j = c(t-1)j � f(t)j + i(t)j � a(t)j

8: h(t)j = o(t)j � tanh(c(t)j)
9: yt = softmax((h1

t + h2
t )/2)

10: end function

Table 2. The meaning of each symbol in the pseudocode.

Symbol Meaning

yt
The temporal feature sequence obtained from the Bi-LSTM temporal feature

learning network

xt
The fusion feature sequence passing through the two-stream fusion network

at time t

j The directions of the input sequence, where j = 1 represents xt to be the
forward input and j = 2 represents xt to be the reverse input

hj
t-1 The input value of the LSTM network at time t− 1 with the jth type of input

f Forget gate

i Input gate

a Feature extraction operations

o Output gate

W The weight of the output value at time t− 1

U The weight of the input value at time t

b The bias
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5. Experiment Results
5.1. Datasets

This paper studies the action recognition for the whole emergency rescue video
sequences, which is the classification of emergency rescue actions for the whole video
data, so the annotation file is in the form of {video, action_id} and the action (action_id) is
specified action for each video (video). Experiments mainly adopt an improved self-built
emergency rescue dataset and the publicly available dataset UCF101.

5.1.1. An Improved Emergency Rescue Dataset

Based on referring to the abundant information, there are few action datasets in emer-
gency rescue scenes. The existing datasets for spatial-temporal action recognition usually
provide sparse annotations for composite actions in brief video clips. The emergency rescue
dataset used in experiments is an improved research result of the authors [4].

The video dataset of spatiotemporally localized Atomic Visual Actions (AVA) densely
annotates 80 atomic visual actions in 430 15-min video clips, where actions are localized in
space and time, resulting in 1.58M action labels with multiple labels per person occurring
frequently. The AVA dataset defines atomic visual actions using movies to gather a varied
set of action representations. This departs from existing datasets for spatial-temporal
action recognition, which typically provides sparse annotations for composite actions in
short video clips. AVA, with its realistic scene and action complexity, exposes the intrinsic
difficulty of action recognition. Since there are many people and multiple actions in the
identification scenes of dynamic emergency rescue, the self-built dataset of literature [4] is
built with reference to AVA.

The data divided the actions in the dynamic scenes of emergency rescue into daily
actions and medical rescue actions including carrying, cardio-pulmonary resuscitation
(CPR), bandage, infusion, injection, oxygen supply, standing, walking, running, lying,
sitting, and crouching/kneeling.

We collected various videos about emergency rescue scenes from a variety of video
websites such as YouTube, Tencent Video, and Bilibili, and intercepted the videos to obtain
the segments related to emergency rescue operations using the video editing software
FFmpeg, and include a total of 700 video segments. In addition to the videos collected in
the literature [4], the daily actions also use some segments of the KTH public dataset [29].
To increase the recognition accuracy of small targets for large ranges, some small target
data are also added to the dataset. Some examples of the dataset are shown in Figure 9.

Figure 9. Some examples of the dataset.
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A bounding box is used to locate a person and his or her actions. For each piece of
video data, keyframes are extracted, and human-centered annotations are performed. In
each keyframe, each person is marked with the preset action vocabularies of the paper that
may have multiple actions.

To improve the annotation efficiency, Faster R-CNN is used to detect the position of the
person, and Via software is utilized to annotate actions and people. In the stage of action
annotation, this paper deletes all incorrect bounding boxes and adds missing bounding
boxes to ensure high accuracy. During the labeling stage, each video clip is annotated by
three independent annotators to ensure the accuracy of the dataset as much as possible.

Marking all actions of all people in all keyframes, most person-bounding boxes have
multiple labels, which naturally leads to a type imbalance between action categories.
Compared to daily actions, there are fewer medical actions. This paper refers to the features
of the AVA dataset and runs the identification model on actions without adopting the
manually constructed and balanced datasets. For the actions annotated by the self-built
dataset, the frequency distribution of the various action categories is counted in Figure 10.

Figure 10. Action category frequency distribution in the self-built dataset.

The number of manual annotation samples is smaller. To prevent the overfitting
phenomenon in the network and increase sample diversity, this paper collects action
sequence video data as the emergency rescue human action data for annotation and then
expands the data through data augmentation methods.

Data augmentation can address the issue of sample class imbalance and prevent over-
fitting in neural networks. The preprocessing includes short-edge resizing as well as normal
operations. During the model training process, image augmentation methods of cropping
sampling, translation transformation, and random flipping are used for the images.

The dataset has a great influence on the experiment results. To ensure the accuracy
of the dataset, the paper trains the model on both the self-built and UCF101 datasets, and
chooses the model with the best result to further test and adjust the dataset.

5.1.2. UCF101 Dataset

The mainstream action recognition dataset UCF101 has 13,320 videos from 101 ac-
tion categories. The action categories include human–object interaction, human–human
interaction, playing musical instruments, body-motion only, and sports. Since most of
the available action recognition datasets are unrealistic and performed by participants in
stages, UCF101 aims to encourage further research on action recognition by learning and
exploring new realistic action categories. The database consists of realistic user-uploaded
videos containing camera motion and cluttered backgrounds. UCF101 is currently the most
challenging dataset of actions.

5.2. Metrics

This paper uses accuracy to evaluate the recognition results and visualizes the recog-
nition results by adopting a confusion matrix. A confusion matrix is a performance mea-
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surement for machine learning classification and is mainly used to count the number of
predicted values in the wrong and right categories, respectively [30].

In the confusion matrix, rows represent actual values, columns represent predicted
values, and the number of columns is equal to the total number of rows. True Positive (TP)
shows the predicted positive and it is true. True Negative (TN) represents the predicted
negative and it is true. False Positive (FP) denotes the predicted positive and it is false. False
Negative (FN) indicates the predicted negative and it is false. The four types of samples
have no intersection, and the sum of TP, FP, TN, and FN is the total number of samples.

The larger the diagonal values of the confusion matrix (TP, TN), the higher the correct
classification probability of the model and the better the model performance. For an
ordinary binary task, the confusion matrix is shown in Table 3. It is a table with four
different combinations of predicted and actual values.

Table 3. Binary confusion matrix.

Confusion Matrix True Value

Positive Classes Negative Classes

Predicted value Positive classes TP FP
Negative classes FN TN

5.3. Analysis of the Experiment Results

To reflect the effectiveness of the spatial-temporal asynchronous fusion network alone,
the VGG_16 network structure is adopted in the fusion network.

(1) Analysis of experiment results of spatial-temporal asynchronous information
The model inputs a total of 2(L+ 2k)(L = 10) superimposed optical flows of successive

frames, including synchronous and asynchronous information on spatial and motion
sequences. The effect on the model is studied by taking different values of k, and the results
are shown in Table 4.

Table 4. Effects of taking different values of k on the recognition results

k Accuracy Rate

5 85.6%
10 86.5%
15 86.1%
20 85.9%

The result is best when k is taken as 10, that is, a superimposed optical flow field from
(t0 − 20) to (t0 + 20) for consecutive 40 frames. When k is, respectively, taken as 15 and 20,
there is too much confusing information, which can easily decrease the recognition accuracy.

When training the spatial-temporal fusion network, the input of the image recognition
network is a static image frame at time t0. The input of the optical flow network is
superimposed optical flow fields from (t0 − 20) to (t0 + 20) centered on the time t0, forming
a 2 × 40 = 80 channel optical flow block, which is cut into 20 channel superimposed optical
flow blocks by a sliding window with a step size of 5. Due to the limitation of hardware
memory, the batch size used for network training is 8, which is equivalent to randomly
sampling 8 frames of static images during each training and the optical flow fields of
20 frames before and after each frame.

Due to the strong spatial-temporal asynchrony of actions, this paper fully utilizes
spatial and temporal asynchronous actions to improve accuracy by integrating the asyn-
chronous information of spatial and temporal features. The effects of the spatial-temporal
information on the recognition accuracy are shown in Table 5.
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Table 5. Effects of spatial-temporal information on accuracy.

Input Information Accuracy Rate

Spatial-temporal synchronous information 85.7%
Spatial-temporal asynchronous information 86.5%

(2) Analysis of the experiment results of the fusion methods
In this paper, spatial-temporal features are fused in the convolutional layer inside the

two-stream fusion VGG16 model. During the experiment, the spatial-temporal feature
fusion is performed on the convolutional layer Conv3 of the two-stream structure. The
paper compares the separate spatial flow, temporal flow networks, and the two-stream
networks, respectively. The action recognition accuracy of the different fusion methods is
shown in Table 6.

Table 6. Comparison of action recognition accuracy for different fusion methods.

Actions Separate Spatial
Flow

Separate
Temporal Flow

Two-Stream
Network Conv3

Carrying 82 77.6 84.3 85.4
CPR 81.5 76.8 85.2 88.2

Bandage 85.6 80.2 87.2 89.6
Infusion 80.2 76.5 84.9 86.5
Injection 80.8 76.3 84.7 87.3

Oxygen supply 83.4 77.2 83.6 85.4
Standing 81.2 76.8 87.4 88.3
Walking 82.1 79.3 87.3 89.1
Running 80.5 78.2 87.2 89.7

Lying 85.2 75.2 86.1 87.5
Sitting 83.7 77.4 86.5 88.3

Crouching/kneeling 82.3 78.1 85.6 86.9
Average

accuracy rate 82.4 77.5 85.83 87.68

As can be seen from Table 6, the fusion of spatial-temporal asynchronous information
in the convolutional layer Conv3 has the best effect. Different from the loss of information
in the fully connected layer fusion, the fusion in the convolutional layer can not only retain
better middle-level information of time and space but also obtain higher accuracy.

(3) Experiment comparison analysis of the action recognition for the spatial-temporal
fusion CNN

To verify the effectiveness of the spatial-temporal fusion CNN in action recognition,
the proposed method is compared with TSN, two-stream network, and two-stream network
+ Bi-LSTM methods, as shown in Table 7. It can be seen that the proposed method improves
recognition accuracy.

Table 7. Comparison of recognition accuracy for different methods.

Methods Accuracy Rate

The proposed method 90.1%
TSN 87.8%

Two-stream network 86.2%
Two-stream network + Bi-LSTM 86.8%

To give the model performance more intuitively, a confusion matrix is used to present
the degree of confusion between the predicted and actual categories of the model, as shown
in Figure 11.
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Figure 11. Confusion matrix.

In Figure 11, C/K represents crouching/kneeling, and O-S indicates oxygen supply. As
can be seen from the confusion matrix in Figure 11, among the confusing actions, carrying is
a 7% probability of being identified as walking because carrying has a certain overlap with
walking and running, and other actions are similar. CPR is a 6% probability of identifying
as C/K since CPR in emergency rescue situations is mostly in a kneeling position. Injection
and infusion can be confused with each other, i.e., 5% of the injections will be predicted
to be infusions and vice versa. Other actions are misclassified with a small probability. In
daily human actions, the common action of walking is a 3% probability of being recognized
as running, 1% probability of being identified as standing, and 4% probability of being
recognized as carrying, because it is easy to be misclassified as carrying when several
people gather in one place. C/K is a 6% probability of being identified as sitting. The above
actions are easily confusing daily actions and medical rescue actions. There are still some
misclassifications of easily confusing actions, but the misclassifications have reduced to
some extent, and the model has a better ability to distinguish confusing actions.

The recognition results are visualized as shown in Figures 12–14. In Figure 12, the
optical flow captures the dynamic action sequence information about the action of dressing
a wound, although the injured man is sitting and relatively still, the action sequences
of the ambulanceman capture the bandage, so the recognition results are the action of
the bandage. Figure 13 shows the recognition results when the persons in the video are
carrying uniformly.
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Figure 12. Bandage action recognition results in a simpler background.

Figure 13. Carrying recognition results in a simpler background.

Figure 14. CPR recognition results in a more complex background.
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For the more complex background situations, when the persons in the video perform
different actions, the recognition result is the action with the highest probability of all
actions, i.e., performing the most important action. Figure 14 gives the recognition results
when the people in the video perform different actions, respectively, standing, C/K, and
CPR, the dynamic action of the main person is CPR, and the recognition results are CPR,
which means that the main execution action of the video is CPR.

Moreover, to verify the effectiveness of the proposed spatial-temporal fusion model, ex-
periments are also conducted on the mainstream dataset UCF101 to compare the proposed
method with the classical and advanced methods.

This paper compares single-flow CNN and various improved methods based on two-
flow CNN, including the algorithm based on C3D, the traditional recognition algorithm
based on two-stream convolutional networks (Two-stream Convnet), the Long-Term Recur-
rent Convolutional Networks (LRCN)-based recognition algorithm, two-stream network
and LSTM fusion recognition algorithm (Two-stream + LSTM), recognition algorithm fused
two-stream network and LSTM in convolutional layer (Two-stream + LSTM + ConvFu-
sion), the improved human action recognition algorithm of Spatial Transformer Networks
(STN) and CNN fusion [31], and the two-stream 3D Convnet fusion action recognition
algorithm [15]. The comparison results are shown in Table 8.

Table 8. The experiment comparison results on the UCF101.

Methods Accuracy Rate

C3D(1 nets) [17] 82.3%
C3D(3 nets) [17] 85.2%
Two-stream [12] 88%

LRCN [22] 82.9%
Two-stream + LSTM [32] 88.6%

Two-stream + LSTM + ConvFusion [33] 92.5%
literature [31] 90.5%
literature [15] 92.6%

The proposed method 93.2%

The comparison results show the proposed spatial and temporal fusion method has
the best recognition effect, the method can accurately recognize the human action in the
videos and verify the effectiveness of the method.

In terms of speed, on the UCF101 public dataset, the time complexity of this method is
determined by TSN and Bi-LSTM with a running speed of 197.2 fps. The time complexity
of C3D is determined by the convolutional layer with a running speed of 313 fps. The time
complexity of the two-stream network is also determined by the convolutional layer with a
running speed of 33.3 fps. The LRCN method is simpler than the C3D network structure,
has a small number of parameters and is easy to train, and runs faster than the C3D network.
The time complexity of literature [32] is determined by Two-stream together with LSTM
with a running speed of 29.7 fps. The time complexity of literature [33], literature [31], and
literature [15] is determined by the convolutional layer and LSTM. Literature [33] runs at
two speeds, 6 fps when the input is an optic flow image and 30 fps when the input is an
RGB frame. The time complexity of literature [31] is determined jointly by STN and CNN,
and its running speed is 37 fps. Literature [15] runs at two speeds, processed at 186.6 fps
when the input is an RGB frame. When the input is an optical flow image, the processing
speed is 185.9 fps.

As can be seen from Table 8, the speed of the proposed method is slower than both
the C3D and LRCN methods, mainly due to the high time complexity caused by the
introduction of Bi-LSTM. Compared with the other methods, the proposed method is
fast. Overall, the proposed method has the highest recognition accuracy and relatively
fast speed.
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In recent years, human action recognition methods have focused on deep learning.
At present, the latest methods mainly include the TS-PVAN action recognition model
based on attention mechanism [34], skeleton-based ST-GCN for human action recognition
with extended skeleton graph and partitioning strategy [35], human action recognition
based on 2D CNN and Transformer [36], linear dynamical system approach for human
action recognition with two-stream deep features [37], and hybrid handcrafted and learned
feature framework for human action recognition [38]. Comparative analysis with the latest
methods is as follows.

(1) The TS-PVAN action recognition model based on attention mechanism can ade-
quately extract spatial features and possess certain generalization abilities, but the temporal
network of the TS-PVAN cannot efficiently model long-range time structure and extract
rich long-term temporal information. This paper introduces Bi-LSTM to model long-term
motion and fully mine the long-term temporal information.

(2) The human action recognition method combined Skeleton-based ST-GCN with
extended skeleton graph and partitioning strategy can extract the non-adjacent joint rela-
tionship information in the human skeleton images, and divide the input graph of Graph
Convolutional Network (GCN) into five types of fixed length tensors by the partition
strategy, to include the maximum motion dependency. However, this method does not
consider the temporal features. The proposed method extracts temporal information using
the temporal network of the two-stream network.

(3) 2D CNN is one of the mainstream methods for human action recognition at present.
2D CNN-based framework not only has the advantages of lightweight and fast reasoning
ability but also operates on short segments of sparsely sampled whole videos. However,
2D CNN still suffers from the insufficient representation of some action features and a lack
of temporal modeling capability. The human action recognition method based on 2D CNN
and Transformer adopts 2D CNN architecture of channel-spatial attention mechanism
to extract spatial features in frames, utilizes Transformer to extract complex temporal
information between different frames, and improves the recognition accuracy. However,
Transformer extracts spatial and temporal features in sequential order, and as the number
of frames increases, the number of parameters also increases substantially, causing a burden
for the calculation. The paper adopts a dual-stream network structure to extract the spatial-
temporal information, so the spatial-temporal feature extraction is in parallel, and the TSN
sparse sampling strategy is used to avoid the greater computational burden caused by the
increase in the number of frames.

(4) The human action recognition method combined linear dynamical system approach
with two-stream deep features captures the spatial-temporal features of human action using
a dual-stream structure. The method operates directly on video sequences. The longer
the video sequence is, the more time is consumed. The presented method adopts the
time domain segmentation strategy for TSN to randomly sample fragments and speed up
the operation.

(5) The human action recognition method based on hybrid handcrafted and learned
feature framework uses a two-dimensional wavelet transform to decompose video frames
into separable frequency and directional components to extract motion information. The
dense trajectory method is used to extract feature points for tracking continuous frames.
However, this method can only deal with videos with clear action boundaries, which is
also a disadvantage of the proposed method.

6. Conclusions

To address the problem that the spatial-temporal fusion network does not fully fuse
the spatial and temporal dimension information which leads to a decrease in human
action recognition accuracy, this paper proposes a dynamic scene human action recognition
method based on the spatial and temporal fusion network model. Considering the strong
asynchrony and time sequence of video action recognition, a spatial-temporal feature
asynchrony fusion framework is designed to extract spatial and asynchronous temporal



Electronics 2022, 12, 538 21 of 22

features for fusion. Utilize Bi-LSTM to fully extract temporal information to capture video-
level motion information and fuse spatial-temporal information, and realize human motion
recognition by Softmax. The presented method can model long-term motion behaviors
by modeling the asynchronous relationship between the moving image and the motion
sequence (optical flow). The proposed method is still far away from practical application,
so the robustness and real-time performance of the method can be further studied in
the future.
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