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Abstract: Data-driven prognostics and health management (PHM) is key to increasing the produc-

tivity of industrial processes through accurate maintenance planning. The increasing complexity of 

the systems themselves, in addition to cyber-physical connectivity, has brought too many chal-

lenges for the discipline. As a result, data complexity challenges have been pushed back to include 

more decentralized learning challenges. In this context, this perspective paper describes these 

challenges and provides future directions based on a relevant state-of-the-art review. 
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1. Mains Challenges 

Process health prognosis is essential to reducing downtime during operating condi-

tions, specifically time-to-repair, and increasing the productivity of operating systems 

through accurate planning of condition-based maintenance tasks, whether the repair 

process is scheduled under working or non-working conditions. Remaining useful life 

(RUL), which is the expected time to complete system failure, is the primary focus in the 

study of system deterioration, aging and damage propagation [1]. Determining RUL 

requires run-to-failure samples labeled with the real RUL time, which is often difficult to 

obtain. This being the case, the state of health (SOH) will be assessed instead via health 

index (HI) and estimating the health stage (HS) [2]. Data-driven methods, especially 

machine learning, are becoming dominant in the field due to the increasing complexity 

issues of physical modeling [3]. As a result, increasing system complexity besides ad-

vanced cyber-physical connectivity means that machine learning will also be facing 

challenges related to modeling complexity, decentralized learning, privacy and security 

as illustrated by Figure 1 [4]. 
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Figure 1. Main challenges for RUL/(HI and HS) predictions. 
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1.1. Modeling Complexity 

RUL modeling with machine learning faces many challenges in providing necessary 

monitoring systems of real-world conditions in terms of generalizing the prediction 

model to unseen samples for the same system or new similar systems to the studied one. 

This poor generalization is the result of several facts related to data availability, data 

complexity, lack of precision, uncertainty of predictions especially for time long-term 

forecasts, data dynamism and online decision-making. 

Data availability: Due to the lack of labeled datasets with real RUL timing, many 

available works are moving towards accelerated life testing [5,6]. Accelerated degrada-

tion experiments provide real-world-like conditions, but lack some real run-to-failure 

patterns. This is because these experiments are subject to even harsher environments 

than real ones and recorded samples may suffer from a higher level of non-stationarity. 

Lack of patterns is the main reason for the poor generalization of training models over 

unseen samples driven by systems operating in real conditions and not accelerated test-

ing. 

Data complexity: It is mentioned that recorded samples from accelerated life ex-

periments resemble incomplete data patterns containing samples with a higher level of 

complexity due to harsh non-stationary conditions. In addition, even if this data is rec-

orded based on real degradation experiments with real run-to-failure time, continuous 

change in working conditions due to internal and external constraints (environmental or 

system-related conditions) drives data with a higher level of dynamicity, massive and 

rapid change, and produces a very complex feature space that is difficult to manage even 

with deep representations [1]. 

Lack of precision: It is undeniable that many works devoted their efforts in estimate 

model approximate accuracy to well-known metrics such as root mean squared errors 

(RMSE) and similar metrics. However, it is worth mentioning that prognosis models are 

not merely a matter of approximation. Indeed, in general, for long-term predictions, the 

distances between the predicted samples and the desired responses become more distant 

as the predictions become longer. In this context, it seems that prognosis is a matter of 

early and late prediction distribution more than of approximation. In this context, preci-

sion analysis is considered mandatory to assess the accuracy of the time-to-predict fail-

ures. 

Precision analysis requires projecting predicted samples into a specific probability 

distribution function (PDF) that helps determine the amount of early and late predictions 

as well as their dispersion from the reference value that is assumed to be solutions opti-

mal [7]. For example, Figure 2 shows three different cases of predicted RUL/HI, where 

the predictions are early, late and good, respectively. It should be mentioned that the 

data used for illustration, in this case, are related to publicly available linear and cyclic 

degradation trends of Li-ion batteries [8]. Such a classification could be driven by many 

approaches, including human-centric approaches and expert backgrounds and assess-

ments of maintenance resource consumption and other potential effects of failures (e.g., 

damage to reputation and life, financial loss, etc.). Therefore, the decision of whether 

predictions are good or bad depends on the nature of the system and the predictions. For 

example, if the system is safety-critical and a failure is completely prohibited, accuracy 

should be maximized as much as possible. However, deciding what the exact threshold is 

for this sub-classification depends on the optimal threshold selection standards defined 

for a specific system [9]. For Figure 2a, prediction errors are scattered far from the center 

in both early and late cases. Similarly, Figure 2b gives more precision while late predic-

tions dominate. Conversely, Figure 2c shows acceptable prediction results exhibiting less 

scatter and more concentration towards the preferred reference value. 
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Figure 2. Example of distributing RUL/HI predictions under different precision levels: (a) bad 

predictions. Predictions are far from the center. Early and late predictions are equally distributed; 

(b) acceptable predictions. The model is even more precise than in (a). It is an early predictor be-

cause late predictions are almost neglected; (c) good predictions. More precision is provided in this 

case. More concentration towards the center and less dispersion toward early and late predictions. 

The distinctive feature of prognostic predictions is that early and late predictions are 

two different issues and not just a distance from the exact prediction. Indeed, early pre-

dictions consume maintenance resources, while late predictions are too harmful and can 

lead to catastrophic situations and loss of life. Therefore, it is very important to consider 

penalizing their distributions differently in the PDF function to minimize late predictions 

as much as possible. 

In this case, the main challenge facing machine learning models is to provide a 

larger concentration of predictions toward the center of the PDF while also balancing 

(i.e., providing a sort of symmetry) early and late predictions in terms of dispersion to 

keep the maintenance decision as accurate as possible. 

Uncertainty: Uncertainty in RUL/HI prediction models is the result of many factors, in-

cluding hyperparameters, model structure, approximations, algorithmic and experimental 

conditions (conditions when aging experiments are made). Uncertainty quantification is 

necessary to reduce the number of uncertainties in prediction as well as maintenance related 

to decision-making. Two main categories, namely Bayesian techniques and ensemble learn-

ing, are widely investigated [10,11]. The challenge is that existing approaches suffer from 

some problems. Many of them are computationally prohibitive and can be difficult to cali-

brate, which can lead to high sampling complexity and may also require major changes in 

model architecture and training. Figure 3 is introduced to showcase an example of uncer-

tainty quantification of RUL predictions with a 99% confidence interval (CI). In this particu-

lar example, predicted samples that fall outside the CI are considered uncertain. The measure 

of uncertainty in this case is the ratio of samples outside the CI over those inside the CI. 

 

Figure 3. Uncertainty quantification of RUL predictions with a 99% confidence interval. 
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Data dynamism and online decision-making: RUL prediction models have diffi-

culty addressing real online adaptive learning, such as reinforcement learning, in the 

context of data availability and the difficulty of obtaining such experience in real-world 

scenarios due to possible mishaps. In addition, simulation is difficult to approach due to 

the complexity of physical modeling. Thus, most of the studies on this topic are online 

models based on offline data already collected. These simulations do not address the re-

ality of condition monitoring but they remain theoretically possible [12]. 

1.2. Decentralized Training 

Recent cyberphysical connectivity and decentralized architectures of industrial 

processes make it difficult to achieve global generalization of machine learning models 

due to too many challenges such as statistical heterogeneity, systems heterogeneity and 

communication efficiency in smart infrastructures [13]. 

Statistical heterogeneity refers to data distribution. Generally speaking, data come 

from different devices with different working conditions. This means that the data may 

be non-independent and identically distributed (Non-IDD). In this context, it is therefore 

very challenging to have a model that can handle this type of collaborative training 

without experiencing a performance drop. As a result, differences in devices and con-

nectivity methods lead also to differences in data characteristics. This makes it difficult to 

account for these variations in each training run. Regarding communication efficiency, 

the challenges remain communication overhead, especially for mobile devices with lim-

ited resources (e.g., battery-powered devices). Synchronization between these devices 

must also be considered when simulating machine learning models due to the nature of 

communications in smart infrastructure networks. 

1.3. Security and Privacy 

In smart infrastructures, decentralized learning and data sharing do not satisfy data 

privacy conflicts of interest. The main challenges in this case are thus to ensure decen-

tralized training under less data sharing. In addition, connectivity makes the immunity of 

the entire smart infrastructure prone to cyberthreats, which leads to many consequences 

such as breach of confidentiality, integrity and availability of data. 

2. What Do We Have to Work Towards? 

Advances in PHM should not be limited to the performance of the prognosis model. 

Indeed, for recent smart infrastructure technologies, connectivity, privacy and security 

must be considered. Therefore, prognosis models should be improved in the context of 

modeling complexity, involving federated learning and secured learning process and 

information sharing. In other words, what we should design is: “an accurate, precise, se-

cure, and online adaptive decentralized federated learning system” (see last statement from 

Section 1.1 of [1]). 

2.1. Reducing Complexity 

In the context of reducing modeling complexity while keeping generalization capa-

bility, data generation (e.g., generative models), reducing model architecture, precision 

analysis, uncertainty quantification and adaptive learning are very important. 

Data generation: Generative models, such as autoencoders, including denoising 

autoencoders [14] and more specifically generative adversarial networks (GANs) [15], are 

very popular in this field. Denoising autoencoders allow producing robust meaningful 

representation by training learning models to produce accurate representation under the 

presence of data corruption. Unlike autoencoders, which are completely unsupervised 

networks, GANs are used to generate data from different random noises based on two 

parts, namely the generator, which generates new samples, and the discriminator, which 

classifies samples as real or false. Generative models are very important in augmenting 
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data by generating new samples that are statistically similar to the training data. These 

samples are synthetic instances of data very similar to the real ones. In the context of 

PHM, generative models will help in filling the gap of poor generalization related to the 

absence of degradation patterns. 

In addition, transfer learning also will help generate meaningful representations 

from different source domains and working conditions to fill in the gap of lack of sam-

ples [12]. 

Improving model architecture: Model architecture increases complexity in terms of 

computational cost; therefore, more effort should be devoted to developing less complex 

architectures while keeping accuracy the same as deep networks. In this context, least 

squares variants and the Kalman filter can be considered when training deep learning 

models [16–18]. 

Precision analysis: To help the prediction errors to surround the desired PDF value, 

more effort should be devoted to improving learning models in a prognosis context and 

not only to accurate approximation. Therefore, the following solutions can be considered: 

(i) Defining the appropriate loss function to be minimized during the training process, 

such as the same PDF function of the precision; (ii) Learning from labels autoencoding 

has also proven its capability to reshape the predicted responses and can contribute to a 

better fit of the desired results [19]. 

Uncertainty quantifications: Uncertainty quantification is essential in reducing 

prediction models’ uncertainty. Accordingly, more efforts should be focused on analyz-

ing the uncertainty of predictions under different algorithmic architectures and data 

complexity. In this context, the following research areas can be further explored (see [10], 

§ 7.1.2. “Future directions based on applications”): (i) Use of meta-reinforcement learning 

models for better decision-making with a better certainty; (ii) Approximate Bayesian in-

ference in sequential decision-making applications should be used as an internal proce-

dure of larger methods; (iii) Density Filtering Techniques (ADF); (iii) Ensemble-based 

sampling; and (iv) Quantification of uncertainties for multi-agent systems. 

Adaptive online learning: Reinforcement learning features give the most interesting 

insights in modern online learning, which allows agents to learn in an interactive envi-

ronment by trying and correcting their mistakes; it makes predictions based on the 

feedback of its actions. Additional efforts should be made in a PHM context, as there are 

only a few contributions of RUL model reconstruction, [20–22]. 

2.2. Federated Learning 

Federated learning is the available solution for data privacy in decentralized learn-

ing. Its core idea is to train a generalized and global learning model without data sharing 

[23]. However, works on federated learning are scarce in the context of PHM. Only a few 

papers are available on this topic [24,25]. Federated learning faces decentralized learning 

challenges besides privacy concerns related to data sharing. In this context, more em-

phasis should be placed on considering federated learning for PHM. 

2.3. Security 

Machine learning-based prognosis models, which are supposed to be federated 

learning ones, are subject to external threats. In this context, there is almost a complete 

lack of studies related to PHM while it is the most important area in the field of condition 

monitoring, especially cyberphysical connectivity and internet of things technologies. As 

such, more investigation efforts should be devoted to this topic in the future. 

3. Conclusions 

Most machine learning-based systems condition prognosis studies available in the 

literature deal with model performance while ignoring intelligent infrastructures’ most 

important factors, namely decentralized learning, privacy and security of the learning 



Electronics 2023, 12, 527 6 of 7 
 

 

models. In this context, this paper briefly provided readers with the most important 

challenges faced by data-driven PHM and specifically suggested future guidance to ad-

dress these challenges. As a result, challenges range from data availability and complex-

ity and drift to statistical heterogeneity, system heterogeneity, communications efficien-

cy, privacy and security of cyber-physical connectivity. 
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