
Citation: Puranik, S.; Barve, M.;

Rodi, S.; Patrikar, R. Acceleration of

Trading System Back End with

FPGAs Using High-Level Synthesis

Flow. Electronics 2023, 12, 520.

https://doi.org/10.3390/

electronics12030520

Academic Editor: Akash Kumar

Received: 2 December 2022

Revised: 27 December 2022

Accepted: 3 January 2023

Published: 19 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Acceleration of Trading System Back End with FPGAs Using
High-Level Synthesis Flow
Sunil Puranik 1,*, Mahesh Barve 1, Swapnil Rodi 1 and Rajendra Patrikar 2

1 Tata Consultancy Services, Pune 411057, India
2 Visvesvaraya National Institute of Technology, Nagpur 440012, India
* Correspondence: sunilsavitap@students.vnit.ac.in

Abstract: FPGA technology is widely used in the finance domain. We describe the design of a
financial trading system order processing component using FPGAs, implemented with high-level
synthesis (HLS) flow. The order processing component is the major contributor to increased delays
and low throughput in the current software implementation of trading systems. The objective of
FPGA implementation is to reduce the latency of order processing and increase the throughput of
trading systems as compared to software implementation. Our design is one of the first attempts to
speed up order processing in a trading system using FPGA technology and HLS flow. HLS was used
in implementing the design for higher productivity and faster turnaround time. The design shows
orders of magnitude of improvement in performance indicating that more complex FPGA systems
could be designed using HLS. We obtained more than 2X of an advantage in order processing speed
and a reduction in latency with FPGA technology. Moreover, we gained a 4X advantage in terms of
productivity using HLS.

Keywords: accelerator architectures; field programmable gate arrays; high-level synthesis; system
performance; TCPIP

1. Introduction

Securities trading systems involve the processing of orders that are generated by end
users. These orders are typically placed at a rate of 1 million orders per second and are
expected to be processed at very low latencies. Since all the components of a trading system
such as order validation, lookups, and order matching are implemented in software in
a traditional trading system, the order processing rate is low and the latencies of order
processing are high. Furthermore, physical network delays and TCP/IP stack delays add
to the software delays, resulting in high latencies and low order processing throughput.
So, the idea is to speed up the operation of trading systems by migrating the functionality
of trading system components including order validation, order matching, lookups, and
TCP/IP stack processing from software to hardware.

1.1. Use of FPGAs for Accelerating Trading Systems

The number of trading systems is not very large (around 60 stock exchanges in the
world) [1] and trading systems contain modules that need frequent reconfigurations of
their algorithms as well as parameters. For example, business logic in stock exchanges
requires frequent changes, such as the addition of multi-leg order commands (a multi-leg
options order refers to any trade that involves two or more options that are completed at
once). Since volumes are low and functionality requires frequent changes, the use of ASIC
technology is not justified for trading systems acceleration, and reconfigurable computing
devices such as FPGAs are the best choice for the acceleration of trading systems.

FPGAs [2] are increasingly receiving traction in the field of financial processing where
there is a need for frequent changes in business logic and operating parameters such as the

Electronics 2023, 12, 520. https://doi.org/10.3390/electronics12030520 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12030520
https://doi.org/10.3390/electronics12030520
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12030520
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12030520?type=check_update&version=2


Electronics 2023, 12, 520 2 of 16

load and number of securities to be traded. Added to this, there could be a need for adding
newer algorithms to the existing system to make it more intelligent.

The development time taken by classical VHDL/Verilog-based flows is very long and
productivity is low [2]. There has been a search for alternate flows which can reduce the
development time. High-level synthesis (HLS) [3–6] provides a level of abstraction higher
than Verilog and VHDL. HLS can be used to describe algorithms in C/C++ and convert
them to digital circuits [3]. Additionally, the productivity gained by HLS is orders of
magnitude greater than by traditional methods [7]. HLS is supported through its products
by a number of VLSI vendors such as Vivado HLS by Xilinx [8], HLS by Intel Altera [9], and
Catapult by Mentor [10]. All these products provide tools for writing code in high-level
languages such as C/C++/System C and converting them to Verilog/VHDL.

HLS has been traditionally used for implementing algorithmic workflows making use
of C language. HLS finds use in domains such as image processing and high-frequency
trading (HFT). Boutros et al. [11] described the usage of HLS for designing an HFT system.
Here, we use HLS for speeding up the trading system itself.

As shown in Figure 1 below, the trading system environment consists of users/traders
submitting trade requests and a trading system which is located in the stock exchange.
While HFT trading provides high-speed processing for users submitting trade requests and
sits on the user side, our objective in this paper is to accelerate the trading system itself.
This paper uses HLS to migrate the functionality of trading system components which are
currently implemented in software, to FPGA hardware. This is performed to reduce latency
and increase throughput.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 17 
 

 

such as the load and number of securities to be traded. Added to this, there could be a 
need for adding newer algorithms to the existing system to make it more intelligent.  

The development time taken by classical VHDL/Verilog-based flows is very long and 
productivity is low [2]. There has been a search for alternate flows which can reduce the 
development time. High-level synthesis (HLS) [3–6]provides a level of abstraction higher 
than Verilog and VHDL. HLS can be used to describe algorithms in C/C++ and convert 
them to digital circuits [3]. Additionally, the productivity gained by HLS is orders of mag-
nitude greater than by traditional methods [7]. HLS is supported through its products by 
a number of VLSI vendors such as Vivado HLS by Xilinx [8], HLS by Intel Altera [9], and 
Catapult by Mentor [10]. All these products provide tools for writing code in high-level 
languages such as C/C++/System C and converting them to Verilog/VHDL. 

HLS has been traditionally used for implementing algorithmic workflows making 
use of C language. HLS finds use in domains such as image processing and high-fre-
quency trading (HFT). Boutros et al. [11] described the usage of HLS for designing an HFT 
system. Here, we use HLS for speeding up the trading system itself. 

As shown in Figure 1 below, the trading system environment consists of users/trad-
ers submitting trade requests and a trading system which is located in the stock exchange. 
While HFT trading provides high-speed processing for users submitting trade requests 
and sits on the user side, our objective in this paper is to accelerate the trading system 
itself. This paper uses HLS to migrate the functionality of trading system components 
which are currently implemented in software, to FPGA hardware. This is performed to 
reduce latency and increase throughput. 

computer1

computern

computer2

USERS

IP Network

server1

server2

server3

Front End

Block1

Block2

Blockn

Order Process
Block

Post Trade
Functions

Post
Trade

1

Post 
Trade 

2

Post 
Trade

n

System
1

system
2

System
n

Interface
Systems

Trading System(Stock Exchange)

Data Store

 
Figure 1. Trading system architecture (the block being accelerated is shown in green color). 

1.2. Study Contributions 
The main contributions of this paper are as follows: 

• To increase the order processing rate of the trading system from 1 million orders/sec 
(achieved with software implementation) to 2 million orders/sec with FPGA technol-
ogy. 

• To reduce the latency of order processing commands from 1 microsecond (achieved 
with software implementation) to less than 500 ns. The throughput and latency num-
bers for software implementation have been taken from a large stock exchange. 

Figure 1. Trading system architecture (the block being accelerated is shown in green color).

1.2. Study Contributions

The main contributions of this paper are as follows:

• To increase the order processing rate of the trading system from 1 million orders/sec
(achieved with software implementation) to 2 million orders/sec with FPGA technology.

• To reduce the latency of order processing commands from 1 microsecond (achieved
with software implementation) to less than 500 ns. The throughput and latency
numbers for software implementation have been taken from a large stock exchange.



Electronics 2023, 12, 520 3 of 16

• Additionally, as an important feature of our design, to optimize the use of block RAM
(BRAM) which is a fast on-chip memory inside the FPGA, by the innovative design of
the data structures.

• Through, this design, to also increase the throughput of the UPDATE command by
30–40% using pipelined execution as explained in later sections.

We describe how HLS was used for implementing the three main commands INSERT,
UPDATE and DELETE in the trading system back end.

This paper is organized as follows. In Section 2 we describe the related work conducted
in this field. Section 3 describes the general architecture of a trading system. In Section 4,
we describe the problem statement. Section 5 describes the data structures used in the
design and design implementation. Finally, Section 6 describes the performance numbers,
followed by Section 7 on the pipelined execution of the UPDATE command, and Section 8
with the Conclusion and Future Work.

2. Related Work

There have been many examples in the literature of FPGAs being used for accelerating
financial systems, databases, as well as network protocols. They have found use in high-
frequency trading (HFT) [12–14]. These are optimized to achieve the lowest possible latency
for interpreting market data feeds. FPGA acceleration for HFT has been described in [15].
FPGA implementation using HLS for HFT has been described in [11]. The study in [16]
describes the design of a hardware accelerator to speed up the data filtering, arithmetic, and
logical operations of a database. The study in [17] describes the acceleration of a TCP/IP
stack with an FPGA. However, after an extensive literature review, we could not find any
related previous work that describes the acceleration of a trading system front end and
back end with an FPGA.

Trading systems have traditionally existed within the software. Trading system soft-
ware is very much multi-threaded and is usually found in Linux OS [18,19]. The software
makes use of hardware features such as pipelining and multicore technologies. There have
been very few instances of the use of FPGAs for a complete trading system back end. A very
well-known example of the deployment of FPGAs is in the London Stock Exchange [20].
The system promises extensibility and reconfigurability.

There is very little literature regarding the internal architecture of securities trading
systems. This is because these details are mainly proprietary in nature. Moreover, there are
very few companies in this field, and revealing the internal architecture could dent their
competitive advantage. Hence, the architecture details are not published by the trading
system developer firms. Due to this, we were not able to compare the performance of an
FPGA-based system to other systems. However, we compared the performance of our
system to existing software-based systems.

Our paper describes a trading system accelerator design. FPGAs provide a lot of
flexibility that can be exploited by programmers and hardware designers to build accelera-
tors. In data analytics, FPGAs are suited for repetitive tasks. They have been incorporated
into platforms such as Microsoft’s Project Brainwave [21], the Swarm64 Database Accel-
erator [22], Postgres [23], the Xilinx Alveo Data Center Accelerator [24], and Ryft [25].
Key–value stores [26] have also been accelerated using FPGAs. Also, FPGAs have become
a good option for accelerating databases [27].

3. Trading System Architecture at a High Level

The architecture of the system is depicted in Figure 1. It consists of a number of
users/traders connected to the trading system using an IP-based network. These traders
are outside the premise of the trading system. The trading system itself consists of
three components:

1. Front end

a. Connects the traders to an IP network.
b. Accepts orders from users.



Electronics 2023, 12, 520 4 of 16

c. Performs validations.

2. Back end (order processing block)

a. Performs the function of order matching, i.e., matching sell orders with buy
orders and vice versa. It maintains the database of the sell and buy orders
received from users and executes commands to perform order matching.

b. Connects to the front end via an Ethernet IP network.

3. Post trade block Once trading is complete, the post trade block performs functions
such as:

a. Journaling;
b. Recordkeeping;
c. Sending a response back to a user on an IP network.

As stated above, our objectives are

1. To reduce the latency of order processing;
2. To increase the throughput by implementing order processing functions in FPGA hardware.

Both the front end and order processing block (back end) functions, shown in Figure 1,
are implemented in the FPGA using a PCIe-based front end processor board and back end
processor board. This architecture is shown in Figure 2.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 17 
 

 

c. Performs validations. 
2. Back end (order processing block) 

a. Performs the function of order matching, i.e., matching sell orders with buy or-
ders and vice versa. It maintains the database of the sell and buy orders received 
from users and executes commands to perform order matching. 

b. Connects to the front end via an Ethernet IP network. 
3. Post trade block 

Once trading is complete, the post trade block performs functions such as: 
a. Journaling; 
b. Recordkeeping; 
c. Sending a response back to a user on an IP network. 
As stated above, our objectives are 

1. To reduce the latency of order processing; 
2. To increase the throughput by implementing order processing functions in FPGA 

hardware. 
Both the front end and order processing block (back end) functions, shown in Figure 

1, are implemented in the FPGA using a PCIe-based front end processor board and back 
end processor board. This architecture is shown in Figure 2. 

TCP
Offload
Engine

Front End
Processor

TCP
Offload
Engine

Front End Processor FPGA
10G Ethernet
Rx

10G Ethernet
Tx

Front End Processor PCIe Board

TCP
Offload
Engine

Order 
Processing

Block

Back End Processor FPGA
Back End Processor PCIe Board

PCIe Connector PCIe Connector  
Figure 2. Architecture of the trading system implemented in an FPGA. 

The users connect to the front end processor board on the 10G Ethernet network and 
submit trade requests. The front end processor board uses a TCP offload engine (TOE) 
block to perform TCP/IP processing in hardware to reduce the network latency. It contains 
the front end processor FPGA. A block diagram of the front end processor FPGA is shown 
in Figure 3. It contains a TOE which interfaces to users, validations logic, lookups logic, a 
connections management block, and a TOE for interface to the back end processor board. 
Validations logic checks the ranges of different fields in the order request submitted by 
users and verifies that these fields have valid values. Lookups logic performs many 
lookups to verify that the data in the different fields in the order request matches the mas-
ter data. The validations and lookups are performed in parallel by FPGA logic to reduce 
latency. Connections management logic maintains a table of TCP connection IDs against 
the user IDs and ensures the response from the back end processor board to a user request 
is sent on the same TCP connection ID on which the order was received. The second TOE 
performs the function of interfacing with the back end processor FPGA board. 

Figure 2. Architecture of the trading system implemented in an FPGA.

The users connect to the front end processor board on the 10G Ethernet network and
submit trade requests. The front end processor board uses a TCP offload engine (TOE)
block to perform TCP/IP processing in hardware to reduce the network latency. It contains
the front end processor FPGA. A block diagram of the front end processor FPGA is shown
in Figure 3. It contains a TOE which interfaces to users, validations logic, lookups logic, a
connections management block, and a TOE for interface to the back end processor board.
Validations logic checks the ranges of different fields in the order request submitted by
users and verifies that these fields have valid values. Lookups logic performs many lookups
to verify that the data in the different fields in the order request matches the master data.
The validations and lookups are performed in parallel by FPGA logic to reduce latency.
Connections management logic maintains a table of TCP connection IDs against the user
IDs and ensures the response from the back end processor board to a user request is sent on
the same TCP connection ID on which the order was received. The second TOE performs
the function of interfacing with the back end processor FPGA board.



Electronics 2023, 12, 520 5 of 16Electronics 2023, 12, x FOR PEER REVIEW 5 of 17 
 

 

validations

lookups

Connections
Management

TOE TOE

Front End Processor FPGA
10G Ethernet
rx

10G Ethernet
tx

User 
Interface

Backend 
Interface

10G Ethernet
tx

10G Ethernet
rx

 
Figure 3. Block diagram of the front end processor FPGA. 

The back end processor PCIe board connects to the front end processor board on 10G 
Ethernet and performs order matching functions in hardware to reduce processing laten-
cies. The block diagram of the back end processor board is shown in Figure 4. It consists 
of a TOE for interface to the front end processor PCIe board and order processing block, 
which in turn consists of business logic and a command execute block. The business logic 
matches the sell orders against the buy orders. For example, if there is a buy order for a 
particular security at a given price and if it matches the sell order with a lesser price for 
the same security, the trade will be executed. If there is no matching sell order, then the 
buy order will be inserted into the database. When trade happens, orders are either de-
leted from the order database or updated in the order database based on order matching 
quantities. Command execute logic maintains a linked list of orders and performs a dele-
tion, insertion, or update of orders in the order database as described in later sections. 

Business 
Logic

Command
ExecuteTOE

Back End Processor FPGA

10G Ethernet
rx

10G Ethernet
tx

Front End
Interface

Order
Data
Base

OrderIndex
Table

Order Processing Block

 
Figure 4. Block diagram of the back end processor FPGA. 

To reduce network latency, both boards perform TCP/IP processing in hardware us-
ing the TOE block. In our implementation, we focus on the order processing block, which 
is the most critical block in the system in terms of latency experienced for trade requests 
submitted by users. Order processing involves the implementation of a number of com-
mands out of which INSERT, DELETE, and UPDATE order are the most frequent ones 
and occur 95% of the time. So, only these three commands are considered for modeling 
the order processing block: 
1. The INSERT order command, when submitted to the trading system back end, re-

quires the incoming order to be placed in the back end order database by appropri-
ately manipulating the internal data structures. 

Figure 3. Block diagram of the front end processor FPGA.

The back end processor PCIe board connects to the front end processor board on 10G
Ethernet and performs order matching functions in hardware to reduce processing latencies.
The block diagram of the back end processor board is shown in Figure 4. It consists of a
TOE for interface to the front end processor PCIe board and order processing block, which
in turn consists of business logic and a command execute block. The business logic matches
the sell orders against the buy orders. For example, if there is a buy order for a particular
security at a given price and if it matches the sell order with a lesser price for the same
security, the trade will be executed. If there is no matching sell order, then the buy order
will be inserted into the database. When trade happens, orders are either deleted from
the order database or updated in the order database based on order matching quantities.
Command execute logic maintains a linked list of orders and performs a deletion, insertion,
or update of orders in the order database as described in later sections.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 17 
 

 

validations

lookups

Connections
Management

TOE TOE

Front End Processor FPGA
10G Ethernet
rx

10G Ethernet
tx

User 
Interface

Backend 
Interface

10G Ethernet
tx

10G Ethernet
rx

 
Figure 3. Block diagram of the front end processor FPGA. 

The back end processor PCIe board connects to the front end processor board on 10G 
Ethernet and performs order matching functions in hardware to reduce processing laten-
cies. The block diagram of the back end processor board is shown in Figure 4. It consists 
of a TOE for interface to the front end processor PCIe board and order processing block, 
which in turn consists of business logic and a command execute block. The business logic 
matches the sell orders against the buy orders. For example, if there is a buy order for a 
particular security at a given price and if it matches the sell order with a lesser price for 
the same security, the trade will be executed. If there is no matching sell order, then the 
buy order will be inserted into the database. When trade happens, orders are either de-
leted from the order database or updated in the order database based on order matching 
quantities. Command execute logic maintains a linked list of orders and performs a dele-
tion, insertion, or update of orders in the order database as described in later sections. 

Business 
Logic

Command
ExecuteTOE

Back End Processor FPGA

10G Ethernet
rx

10G Ethernet
tx

Front End
Interface

Order
Data
Base

OrderIndex
Table

Order Processing Block

 
Figure 4. Block diagram of the back end processor FPGA. 

To reduce network latency, both boards perform TCP/IP processing in hardware us-
ing the TOE block. In our implementation, we focus on the order processing block, which 
is the most critical block in the system in terms of latency experienced for trade requests 
submitted by users. Order processing involves the implementation of a number of com-
mands out of which INSERT, DELETE, and UPDATE order are the most frequent ones 
and occur 95% of the time. So, only these three commands are considered for modeling 
the order processing block: 
1. The INSERT order command, when submitted to the trading system back end, re-

quires the incoming order to be placed in the back end order database by appropri-
ately manipulating the internal data structures. 

Figure 4. Block diagram of the back end processor FPGA.

To reduce network latency, both boards perform TCP/IP processing in hardware
using the TOE block. In our implementation, we focus on the order processing block,
which is the most critical block in the system in terms of latency experienced for trade
requests submitted by users. Order processing involves the implementation of a number of
commands out of which INSERT, DELETE, and UPDATE order are the most frequent ones
and occur 95% of the time. So, only these three commands are considered for modeling the
order processing block:

1. The INSERT order command, when submitted to the trading system back end, requires
the incoming order to be placed in the back end order database by appropriately
manipulating the internal data structures.



Electronics 2023, 12, 520 6 of 16

2. The UPDATE order command requires the system to change the price of the already
placed order to a new value. Thus, the order data structure stored in the memory
is manipulated to indicate the new price to be used. This is the most commonly
executed command occurring more frequently than INSERT and DELETE. Hence, it
is necessary that the data structures and modules are designed such that the latency
of this command is minimized.

3. The DELETE order command requires that the order placed using the INSERT order
command is removed from the order database and the order is not manipulated
any further.

4. Problem Statement

As described in Section 2, the trading system consists of a 10G network, front end, and
back end blocks. The total order processing latency consists of three components:

1. Network Latency—This consists of TCP/IP processing delays and wire delays. The
TCP/IP processing latency is reduced by implementing TCP/IP processing using
a TOE block in hardware as mentioned in Section 3. This reduces latency from
3–4 microseconds (required by the TCP/IP stack implemented in software) to around
100 ns.

2. Front End latency—This consists of delays involved in validations and lookups which
are performed by the front end. This is reduced by performing validations and
lookups in parallel in FPGA logic.

3. Back End (Order Processing) Latency—This delay is the time required for processing
the INSERT, DELETE, and UPDATE commands as described above. This paper
describes the implementation of an order processing block in an FPGA using HLS to
reduce this latency component.

The INSERT, DELETE, and UPDATE orders form the major chunk of the commands
executed in the trading system. Any acceleration of the trading system would require the
acceleration of these three commands. Thus, the problem at hand is to increase the through-
put of the system and reduce the latency of these transactions. To tackle this problem,
newer data structures and algorithms are needed. The constraints for implementing this
logic in an FPGA are the on-chip memory (BRAM) and FPGA resources.

5. Data Structures

The implementation of the trading system involves the use of the following data structures:

(A) Order Database

The order database stores all the fields and attributes of the order which are placed by
the end users. The order structure has all the details needed for processing a transaction.
Referring to Figure 5, orders are stored in the order database, which is an array of around
one million order structures, stored in Static RAM (a special category of RAM) for fast
access. Typical fields in the order structure are the price, time stamp, volume, security
identifier, buy/sell flag, OrderID, etc. The offset of the order in the order database is called
the OrderIndex and order indexes for all the orders are stored in the order index table
shown in Figure 5.

Each order is identified by a unique 32-bit OrderID and this OrderID is used to address
the order index table. For example, if orders Order0, Order1, . . . OrderK stored at offsets 0,
1, . . . k, respectively, as shown in Figure 5, have OrderIDs m0, m1, . . . mk, then integer 0 is
stored at address m0, integer 1 is stored at address m1 and integer K is stored at address
mk in the order index table. This way, using OrderID in an incoming order, the index of the
order can be obtained from an order index table lookup and the OrderIndex can be used to
locate the order in order database. The order index table is stored in DRAM as OrderID is
32-bit, which requires 4GB of storage.



Electronics 2023, 12, 520 7 of 16Electronics 2023, 12, x FOR PEER REVIEW 7 of 17 
 

 

Order Database

Order0

Order1

Orderk

Ordern-1

OrderIndex i

OrderIndex j

OrderIndex l

Order Index Table

OrderIndex  k
OrderID = mk

 
Figure 5. Order database and order index table. 

Each order is identified by a unique 32-bit OrderID and this OrderID is used to ad-
dress the order index table. For example, if orders Order0, Order1, … OrderK stored at 
offsets 0, 1, … k, respectively, as shown in Figure 5, have OrderIDs m0, m1, … mk, then 
integer 0 is stored at address m0, integer 1 is stored at address m1 and integer K is stored 
at address mk in the order index table. This way, using OrderID in an incoming order, the 
index of the order can be obtained from an order index table lookup and the OrderIndex 
can be used to locate the order in order database. The order index table is stored in DRAM 
as OrderID is 32-bit, which requires 4GB of storage. 
B) Security Pointers Table 

Order nodes are used to store important and frequently accessed information about 
an order (for example, the price, OrderID, buy/sell flag, etc.). There is one order node cor-
responding to every order in the order database. For faster access, order nodes are stored 
in BRAM at the same offset as the corresponding order in the order database. (This offset 
is the same as the OrderIndex in the order index table). Since order nodes contain only the 
frequently accessed information about the order, the use of block RAM (BRAM) is opti-
mized. Each security is identified by a unique TokenID. The head pointer to each security 
linked list is stored in the securities pointer table as shown in Figure 6, at the offset equal 
to the TokenID. For each security, order nodes for a particular price are stored in a vertical 
linked list, as shown in Figure 6. They are sorted according to the time stamps. For a given 
security, there is a vertically linked list of order nodes for each price point. The price point 
information is stored in a dummy order node and these dummy order nodes are arranged 
as a horizontally linked list. The dummy order nodes or price points are arranged in the 
decreasing order of prices for buy orders and in the increasing order of prices for sell 
orders. Pointers or offsets to the order nodes and dummy order nodes are stored in a free 
pool, which is accessed as first-in, first-out (FIFO). FIFO stores the offsets of order nodes 
and dummy nodes. A pointer to the new order node is obtained during an INSERT com-
mand execution from the free pool and the pointer is returned to the free pool during the 
execution of the DELETE command. 

Figure 5. Order database and order index table.

(B) Security Pointers Table

Order nodes are used to store important and frequently accessed information about
an order (for example, the price, OrderID, buy/sell flag, etc.). There is one order node
corresponding to every order in the order database. For faster access, order nodes are
stored in BRAM at the same offset as the corresponding order in the order database. (This
offset is the same as the OrderIndex in the order index table). Since order nodes contain
only the frequently accessed information about the order, the use of block RAM (BRAM)
is optimized. Each security is identified by a unique TokenID. The head pointer to each
security linked list is stored in the securities pointer table as shown in Figure 6, at the offset
equal to the TokenID. For each security, order nodes for a particular price are stored in a
vertical linked list, as shown in Figure 6. They are sorted according to the time stamps. For
a given security, there is a vertically linked list of order nodes for each price point. The
price point information is stored in a dummy order node and these dummy order nodes are
arranged as a horizontally linked list. The dummy order nodes or price points are arranged
in the decreasing order of prices for buy orders and in the increasing order of prices for
sell orders. Pointers or offsets to the order nodes and dummy order nodes are stored in
a free pool, which is accessed as first-in, first-out (FIFO). FIFO stores the offsets of order
nodes and dummy nodes. A pointer to the new order node is obtained during an INSERT
command execution from the free pool and the pointer is returned to the free pool during
the execution of the DELETE command.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 17 
 

 

Head
Ptr1

Head
Ptr1

Head
Ptr2

Head
Ptr2

buy sell
Dummy 

node
Dummy 

node
Dummy 

node

Order
Node

Order
Node

Order
Node

Order
Node

Order
Node

Order
Node

Order
Node

Order
Node

Order
Node

Order
Node

Order
Node

Order
Node

Dummy 
node

Dummy 
node

Order
Node

Order
Node

Order
Node

Order
Node

Order
Node

Order
Node

Order
Node

Order
Node

PricePoint1 PricePoint2 PricePointn

Time
stamp1

Time
stamp2

Time
stampn

Time
stamp3

PricePoint1PricePointn

Head
Ptrm

Head
Ptrm

TokenID Head
Ptrn

Head
Ptrn

 
Figure 6. Securities pointer table. 

6. HLS Implementation of the Order Processing Block 
A block diagram of the order processing block which executes the INSERT, UPDATE, 

and DELETE commands is shown in Figure 7 below. The order processing block consists 
of the following components: 
1. Command Queue—The command queue is used to store the commands delivered 

on the command interface. 
2. Command Decode Logic—This block reads the commands from the command queue 

and decodes them. Based on the command code, it calls the different functions in the 
command execute block to execute the command. 

3. Command Execute Block—This block contains all the subfunctions required to exe-
cute the INSERT, DELETE, and UPDATE commands as explained later. 

4. Free Pool FIFO—The Free Pool FIFO stores the pointers to free order nodes and 
dummy order nodes. 

5. Dummy Order Node Array—The dummy order node array is used to store the linked 
list of dummy order nodes which contain the price information of buy and sell or-
ders. They are stored in BRAM for faster access. 

6. Order Node Array—The order node array is used to store the linked list of order 
nodes which contain the frequently accessed information about the orders. These are 
stored in BRAM for faster access. 

7. Order Index Table—As explained earlier, the order index table is used to store Order-
Index information and is accessed by OrderID. This table is implemented in DRAM. 

8. Command Status Queue—This contains the status of the commands that were deliv-
ered on the command interface. 

9. Order Database—The order database contains the orders placed by users of the trad-
ing system. It is stored in SRAM for faster access. 

Figure 6. Securities pointer table.



Electronics 2023, 12, 520 8 of 16

6. HLS Implementation of the Order Processing Block

A block diagram of the order processing block which executes the INSERT, UPDATE,
and DELETE commands is shown in Figure 7 below. The order processing block consists of
the following components:

1. Command Queue—The command queue is used to store the commands delivered on
the command interface.

2. Command Decode Logic—This block reads the commands from the command queue
and decodes them. Based on the command code, it calls the different functions in the
command execute block to execute the command.

3. Command Execute Block—This block contains all the subfunctions required to execute
the INSERT, DELETE, and UPDATE commands as explained later.

4. Free Pool FIFO—The Free Pool FIFO stores the pointers to free order nodes and
dummy order nodes.

5. Dummy Order Node Array—The dummy order node array is used to store the linked
list of dummy order nodes which contain the price information of buy and sell orders.
They are stored in BRAM for faster access.

6. Order Node Array—The order node array is used to store the linked list of order
nodes which contain the frequently accessed information about the orders. These are
stored in BRAM for faster access.

7. Order Index Table—As explained earlier, the order index table is used to store
OrderIndex information and is accessed by OrderID. This table is implemented
in DRAM.

8. Command Status Queue—This contains the status of the commands that were deliv-
ered on the command interface.

9. Order Database—The order database contains the orders placed by users of the trading
system. It is stored in SRAM for faster access.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 17 
 

 

Command
Queue

Command
Interface

Command
Decode 
Logic

Command
Execute

Dummy
Order
Node
Array

Order
Node
ArrayOrder Data

Base

Order Index
TableCommand

Status
Queue

Command Cmplt
Interface

Order Book TOP 
(HLS) Free Pool

Fifo

 
Figure 7. Block diagram of the order processing block implemented in HLS. 

The INSERT, UPDATE, and DELETE commands delivered over the command inter-
face are stored in the command queue. The command decode logic reads the commands 
from the queue, decodes the commands, and calls the command execute logic functions 
to execute the required command. Command execute logic implements HLS functions to 
read the order node from the free pool FIFO, return the order node to the free pool, insert 
the order node into the order node array, remove the order node from the order node 
array, read the OrderIndex from the order index table, and manipulate the pointers for 
inserting and deleting the order nodes in the order node arrays. The dummy order node 
array and order node array are implemented as doubly linked lists as shown in Figure 6. 
As the order index table is stored in DRAM and the order database is stored in SRAM, 
which are both off-chip memories, the AXI master interface is used for accessing these 
data structures. We used the pragma HLS interface m_axi port = ord_ind_arr for imple-
menting the AXI master interface. We also used the pragma HLS interface bram port = 
ord_nd_arr and pragma HLS interface bram port = dmy_nd_arr for implementing BRAM 
interfaces for order node and dummy order node arrays, respectively. To implement pipe-
lined operations, pragma HLS pipeline II= n was used. The pipeline pragma was also used 
to pipeline the loops and obtain a higher frequency operation. Pragma HLS latency = 
max_value was used for constraining latency values. 

Table 1 below shows the HLS pragmas used in the code in tabular form. 

Table 1. Details of the pragmas used in the HLS code for the order book top. 

Sr. 
No. Block Name Pragma Value 

1 Order_book_top HLS Interface m_axi port = ord_ind_arr 
2 Order_book_top HLS Interface m_axi port = ord_bk_arr 
3 Order_book_top HLS Interface  Bram port = ord_nd_arr 
4 Order_book_top HLS Interface  Bram port = dmy_nd_arr 
5 Command Execute HLS Pipeline II = 1 
6 HLS_top HLS Latency Max 200 
7 Command Queue HLS Stream Depth = 8 
8 Command Status Queue HLS Stream Depth = 8 

The steps involved in executing the INSERT, UPDATE, and DELETE commands by 
the order processing block are described below. 

Figure 7. Block diagram of the order processing block implemented in HLS.

The INSERT, UPDATE, and DELETE commands delivered over the command interface
are stored in the command queue. The command decode logic reads the commands from
the queue, decodes the commands, and calls the command execute logic functions to
execute the required command. Command execute logic implements HLS functions to read
the order node from the free pool FIFO, return the order node to the free pool, insert the
order node into the order node array, remove the order node from the order node array,
read the OrderIndex from the order index table, and manipulate the pointers for inserting
and deleting the order nodes in the order node arrays. The dummy order node array and
order node array are implemented as doubly linked lists as shown in Figure 6. As the order



Electronics 2023, 12, 520 9 of 16

index table is stored in DRAM and the order database is stored in SRAM, which are both
off-chip memories, the AXI master interface is used for accessing these data structures. We
used the pragma HLS interface m_axi port = ord_ind_arr for implementing the AXI master
interface. We also used the pragma HLS interface bram port = ord_nd_arr and pragma
HLS interface bram port = dmy_nd_arr for implementing BRAM interfaces for order node
and dummy order node arrays, respectively. To implement pipelined operations, pragma
HLS pipeline II= n was used. The pipeline pragma was also used to pipeline the loops
and obtain a higher frequency operation. Pragma HLS latency = max_value was used for
constraining latency values.

Table 1 below shows the HLS pragmas used in the code in tabular form.

Table 1. Details of the pragmas used in the HLS code for the order book top.

Sr. No. Block Name Pragma Value

1 Order_book_top HLS Interface m_axi port = ord_ind_arr

2 Order_book_top HLS Interface m_axi port = ord_bk_arr

3 Order_book_top HLS Interface Bram port = ord_nd_arr

4 Order_book_top HLS Interface Bram port = dmy_nd_arr

5 Command Execute HLS Pipeline II = 1

6 HLS_top HLS Latency Max 200

7 Command Queue HLS Stream Depth = 8

8 Command Status Queue HLS Stream Depth = 8

The steps involved in executing the INSERT, UPDATE, and DELETE commands by
the order processing block are described below.

The order processing block (back end logic) decodes the orders received from the front
end and takes the following steps during the execution of each of the INSERT, UPDATE,
and DELETE order commands:

A. INSERT Order

1. Get the pointer to the new order node (offset of the order node) from the free
pool FIFO.

2. Store the order structure in SRAM at the same offset (offset obtained in step 1) as
the order node.

3. Make the entry in the order index table in DRAM. Write the offset of the order
in DRAM (which is the same as the offset of the order node in BRAM) in the
order index table using the OrderID as the address. (The OrderID is received as
a part of the order request). Set a flag to indicate that the content of the location
is valid.

4. Traverse the dummy order nodes linked list to find the location where the order
node corresponding to the new order can be placed based on the price field in
the order.

B. UPDATE Order

1. Using the OrderID field in the request as an address, read the OrderIndex (offset
of the order in SRAM) from the order index table stored in DRAM memory.

2. Using the OrderIndex, the order node corresponding to the order is accessed.
3. This order node is moved to the new price point position and added at the end of

the vertical linked list of order nodes and deleted from the current price position
in the vertical linked list under the dummy node corresponding to the old price
position. If there is only one order node under the dummy node corresponding
to the old price position, the dummy node is deleted and returned back to the
free pool FIFO.



Electronics 2023, 12, 520 10 of 16

4. If the dummy node corresponding to the new price position does not exist, it
is obtained from the free pool and added to the horizontal linked list, and the
order node is added at the head of the vertical linked list under the newly added
dummy node.

C. DELETE Order

1. Using the OrderID field in the request as an address, read the OrderIndex from
the order index table stored in DRAM. Reset the flag in the DRAM location
indicating that the location content (OrderIndex) is no longer valid.

2. Locate the order node using the OrderIndex. The order node is at the same offset
in block RAM (BRAM) as the order structure in SRAM and this offset is equal to
the OrderIndex. Remove the order node from the linked list by manipulating the
pointers in the time vertical linked list. If it was the only node under the dummy
node, then remove the corresponding dummy node as well. Return the order
node back to the free pool FIFO.

The algorithmic steps for executing the INSERT, UPDATE, and DELETE commands
are shown in Figure 8 below:

Electronics 2023, 12, x FOR PEER REVIEW 11 of 17 
 

 

Start

Read Command 
From queue & 

Decode

 Command
code ? 

INSERT UPDATE DELETE

Get  pointer to new 
Order Node from Free 

Pool  Fifo. Populate the 
Order Node

Store Oder Structure in 
SRAM at offset =  pointer 

obtained in step 1

Write the pointer 
obtained in step 1 at 
offset = OrderID in 

OrderIndex Valid Flag=1 

Traverse Dummy Order 
Link list, place the Order 
Node obtained step 1 in 

vertical linked list 

Read the OrderIndex 
using OrderID in the 

Order as Offset to 
OrderIndex Table

read the Order Node 
using OrderIndex   as 
offset and move it to 
new price position 

Delete the Order Node 
from Original Price 
position(old price). 

Add OrderNode to 
vertical linked list at new 

price position in the 
order

Dummy Node exists
At New price position?

No

Yes

Get Dummy Node 
Pointer from Free Pool 
Fifo. Populate Dummy 

Node 

Read the OrderIndex 
using OrderID in the 

Order as Offset to 
OrderIndex Table

Reset the Valid flag in 
OrderIndex table 

Locate the Order Node 
using OrderIndex 

obtained in Step  1. 

Delete the Order Node in 
step 3 from Vertical 

linked list. 

Delete Dummy node also 
if there is only one node 

in vertical linked list. 

Return Order Node 
Pointer to Free Pool Fifo

Get the dummy node 
from Free pool Fifo if the 
price position Does not 

already exist

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

6

 
Figure 8. Algorithms for the execution of the INSERT, UPDATE, and DELETE commands. 

7. Performance Numbers 
To obtain the performance numbers, we implemented the order processing block in 

HLS, Verilog, and software. The setup consisted of a Vivado HLS IDE and QuestaSim sim-
ulator for SystemVerilog. HLS code was run, first in the Vivado HLS IDE environment to 
confirm logical correctness. Co-simulation was conducted to understand whether the gen-
erated Verilog also worked correctly. The HLS code was synthesized on a Xilinx Ultrascale+ 
FPGA board (Virtex UltraScale+ VCU118-ES1 Evaluation Platform with xcvu9p-flga2104-2L 
FPGA). It was synthesized with a clock cycle of 3 ns. Latency numbers for overall processing 
(front end + order processing block) were computed for the system using C-RTL co-simula-
tion in Vivado and the use of SystemVerilog simulations under QuestaSim. The software 
implementation of the front end and the order processing block consisted of C code run on 
a fault tolerant machine with a Red Hat Linux 7, 16-core CPU (Intel (R) Xenon(R) CPU ES-
2667 V3 @ 3.20 GHz), and 256GB of RAM. The data structures used in the software were 

Figure 8. Algorithms for the execution of the INSERT, UPDATE, and DELETE commands.

7. Performance Numbers

To obtain the performance numbers, we implemented the order processing block in
HLS, Verilog, and software. The setup consisted of a Vivado HLS IDE and QuestaSim
simulator for SystemVerilog. HLS code was run, first in the Vivado HLS IDE environment
to confirm logical correctness. Co-simulation was conducted to understand whether



Electronics 2023, 12, 520 11 of 16

the generated Verilog also worked correctly. The HLS code was synthesized on a Xilinx
Ultrascale+ FPGA board (Virtex UltraScale+ VCU118-ES1 Evaluation Platform with xcvu9p-
flga2104-2L FPGA). It was synthesized with a clock cycle of 3 ns. Latency numbers for
overall processing (front end + order processing block) were computed for the system using
C-RTL co-simulation in Vivado and the use of SystemVerilog simulations under QuestaSim.
The software implementation of the front end and the order processing block consisted
of C code run on a fault tolerant machine with a Red Hat Linux 7, 16-core CPU (Intel (R)
Xenon(R) CPU ES-2667 V3 @ 3.20 GHz), and 256GB of RAM. The data structures used in
the software were different since there was no consideration of the block RAM for software
implementation. The software uses hashmap and treemap data structures for the order
book. As for the synchronization, single-writer principles were followed to avoid locking
contentions in the performance critical path. In a few scenarios, compare and swap low
latency locks were used. Dedicated isolated cores were assigned to every process to avoid
CPU switching. Due to the sequential nature of software, having more CPU cores did not
give significant performance improvement.

The performance of the design was measured based on various parameters, namely,
resource utilization, latency, and throughput. Overall, the time required for processing
one order was around 500 ns for HLS and Verilog, while it was around 1 microsecond
for software. Table 2 gives the details of the resource utilization of the final system after
synthesis in the xcvu9p-flga2104-2L FPGA. These details of the resource utilization were
made available by the Vivado HLS synthesis tool.

Table 2. Resource utilization.

Flip Flops/
Total/

Utilization

LUTs/
Total/

Utilization

Memory kb/
Total/

Utilization

10629/
2364480/

0.45%

18769/
1182240/

1.58%

105/
4320/

2%

7.1. Setup for Latency and Performance Measurement

A block diagram of the test bench and design under test (DUT) for measuring the
latency and performance of different commands is shown in Figure 9. The DUT consists of
Verilog code of the order processing block implemented in HLS. The test bench consists
of the command generator, command queue, command latency mean execution time
calculator, and report generator. The command generator generates a random mix of
INSERT, UPDATE, and DELETE commands using SystemVerilog constrained random
generation and submits the commands to the DUT on the command interface. The weighted
random distributions of different commands are generated using the dist operator of
SystemVerilog random generation. Commands are also queued into the command queue
as they are submitted to the DUT along with the time stamp. Commands are executed
by the DUT in the order in which they are submitted. The DUT indicates that command
execution is complete with the Cmd_cmplt pulse shown in Figure 9. This signal is used to
record the command completion time. Commands are retrieved from the command queue
in FIFO order, and the command execution time and command latency are calculated by
the mean time and latency calculate block, respectively. This block also maintains the count
of how many UPDATE, DELETE, and INSERT commands were executed in a particular test
case. The report generator prints the report of the latency and command mean execution
time for the INSERT, UPDATE, and DELETE commands.



Electronics 2023, 12, 520 12 of 16

Electronics 2023, 12, x FOR PEER REVIEW 12 of 17 
 

 

different since there was no consideration of the block RAM for software implementation. 
The software uses hashmap and treemap data structures for the order book. As for the syn-
chronization, single-writer principles were followed to avoid locking contentions in the per-
formance critical path. In a few scenarios, compare and swap low latency locks were used. 
Dedicated isolated cores were assigned to every process to avoid CPU switching. Due to the 
sequential nature of software, having more CPU cores did not give significant performance 
improvement. 

The performance of the design was measured based on various parameters, namely, 
resource utilization, latency, and throughput. Overall, the time required for processing 
one order was around 500 ns for HLS and Verilog, while it was around 1 microsecond for 
software. Table 2 gives the details of the resource utilization of the final system after syn-
thesis in the xcvu9p-flga2104-2L FPGA. These details of the resource utilization were 
made available by the Vivado HLS synthesis tool. 

Table 2. Resource utilization. 

Flip Flops/$$$Total/$$$Uti-
lization 

LUTs/$$$Total/$$$Utiliza-
tion 

Memory kb/$$$Total/$$$Utili-
zation 

10629/$$$2364480/$$$0.45% 18769/$$$1182240/$$$1.58% 105/$$$4320/$$$2%  

7.1. Setup for Latency and Performance Measurement 
A block diagram of the test bench and design under test (DUT) for measuring the la-

tency and performance of different commands is shown in Figure 9. The DUT consists of 
Verilog code of the order processing block implemented in HLS. The test bench consists of 
the command generator, command queue, command latency mean execution time calcula-
tor, and report generator. The command generator generates a random mix of INSERT, UP-
DATE, and DELETE commands using SystemVerilog constrained random generation and 
submits the commands to the DUT on the command interface. The weighted random dis-
tributions of different commands are generated using the dist operator of SystemVerilog 
random generation. Commands are also queued into the command queue as they are sub-
mitted to the DUT along with the time stamp. Commands are executed by the DUT in the 
order in which they are submitted. The DUT indicates that command execution is complete 
with the Cmd_cmplt pulse shown in Figure 9. This signal is used to record the command 
completion time. Commands are retrieved from the command queue in FIFO order, and the 
command execution time and command latency are calculated by the mean time and latency 
calculate block, respectively. This block also maintains the count of how many UPDATE, 
DELETE, and INSERT commands were executed in a particular test case. The report gener-
ator prints the report of the latency and command mean execution time for the INSERT, 
UPDATE, and DELETE commands. 

Command
Execute

Order 
Data 
Base

(SRAM 
Model)

Order 
Index
Table

(DRAM)

DUT

Command
Generator

Command
queue

Command
Interface

Cmd_
cmplt

Command
Mean
Time/

latency
Calculate

Report
Generator

Test Bench

 
Figure 9. Block diagram of the SystemVerilog test bench and DUT.

7.2. Latency Measurements

The following were our observations with regard to latency for each of the commands:

1. DELETE Order The latency for the DELETE order operation remains constant. It does
not change based on the order number or the location of the order in the buy/sell
linked list.

2. INSERT Order

The INSERT operation involves traversing the buy/sell dummy order node linked list
and placing the incoming order under the appropriate dummy order node. If needed (if the
price point does not exist), a new dummy order node may be inserted, and the incoming
order placed under this dummy node. Thus, we see that the time for the INSERT order is
dependent on the time spent traversing the buy/sell linked list or the number of dummy
nodes (hops) that have to be inspected. Thus, latency depends directly on the number
of hops.

3. UPDATE Order

The UPDATE operation involves placing one timestamp node in a new location in
the buy/sell linked list. The latency is dependent on the number of hops from the current
dummy node location to the new dummy node location.

To compute latency, two types of traffic were generated for the system:

a. Sequential traffic that gave a fixed sequence of INSERT, UPDATE, and DELETE commands.
b. Random traffic that gave INSERT, UPDATE, and DELETE commands in some weighted

proportion. The proportion was configurable.

These timings have been observed with the QuestaSim SystemVerilog Simulator
designed by Mentor Graphics.

7.3. Atomic Transaction Level Latency

From the latency test cases, the following latencies (refer to Table 3) have been observed
for the INSERT, UPDATE, and DELETE commands. (These numbers were calculated from
sequential traffic tests by giving few INSERT, DELETE, and UPDATE commands).



Electronics 2023, 12, 520 13 of 16

Table 3. Latencies of various commands.

Command Name Latency (Clocks) Comment

INSERT 52 This is for inserting one price point after
the initial insertion.

DELETE 45 This timing is constant, irrespective of the
number of price points, as expected.

UPDATE 36 This is for the first UPDATE with one hop.

7.4. Formulae for the Expected Latency

For the INSERT/UPDATE commands, the linked list has to be traversed. The number
of dummy nodes between the start and the end node is called hops. After running sequen-
tial and random traffic tests, we observed the following relationship between the number
of hops and corresponding latency for each command:

• INSERT: Clocks for N hops = 50 + 2xN
• UPDATE: Clocks for N hops = 34 + 2xN
• DELETE: Total number of clocks = 45

N in the above formulae is the number of hops. Here, latency is the number of clock
cycles with the clock having a period of 3 ns. These latencies were calculated with C-RTL
co-simulation and do not include DRAM access latency and DDR controller latency. As
expected, the latency of INSERT and UPDATE was proportional to the number of hops
while the DELETE latency was constant irrespective of the number of hops.

7.5. Observed Latency under Various Price Depths (Hops)

This study is applicable to UPDATE commands.
Table 4 above shows the latency numbers for 1200 total commands of which the first

300 were inserts and the rest were random where the percentages of INSERT, UPDATE,
and DELETE were 10%, 80%, and 10%, respectively.

Table 4. Latencies of various depths for UPDATEs.

Max.
Hop

Min. Latency
(Clocks)

Max. Latency
(Clocks)

Avg. Latency
(Clocks)

Std. Dev. Latency
(Clocks)

20 70 149 89 10

30 70 159 96 15

40 70 165 100 16

Table 5 below has 1200 total commands of which the first 300 were INSERTs and the
rest were random where the weights of the INSERT, UPDATE, and DELETE commands
entered were 5%, 90%, and 5%, respectively. From the tables, we can conclude that the
minimum time was for the first UPDATE. It can be inferred from the table that irrespective
of the distribution, the average latency and maximum latency depend on the number of
hops, while the minimum latency remains constant as expected.

Table 5. Latencies of various hops for UPDATEs.

Max. Hop Min. Latency
(Clocks)

Max.
Latency
(Clocks)

Avg. Latency
(Clocks)

Std. Dev. Latency
(Clocks)

20 70 151 90 10

30 70 171 97 15

40 70 169 101 17



Electronics 2023, 12, 520 14 of 16

7.6. Throughput

The throughputs for the INSERT, UPDATE, and DELETE commands were calculated
based on the mean time required for the execution of the commands for a given number of
hops. The mean time gives the time it takes in ns to execute the command. The throughput
of the system was computed under various kinds of loads. The following table, Table 6,
depicts the throughput for the INSERT, UPDATE, and DELETE commands. The hops in
the table indicate the initial depth of the linked list which vary according to the INSERT
and DELETE traffic.

Table 6. Throughput of various commands.

Sr. No. Command Hops Execution
Times (ns)

Throughput
(commands/sec)

1 INSERT 20 367 2724.79 × 103

2 INSERT 30 361 2770.08 × 103

3 INSERT 40 367 2724.79 × 103

4 UPDATE 20 270 3703.703 × 103

5 UPDATE 30 291 3436.4 × 103

6 UPDATE 40 303 3300.330 × 103

7 DELETE 20 153 6535.9 × 103

8 DELETE 30 162 6172.8 × 103

So, the throughput for the command is
(109)/(mean command execution time) commands per second
Note: This calculation was obtained with traffic from 90% UPDATE, 5% INSERT, and

5% DELETE commands.
The software implementation of the INSERT and UPDATE commands takes 1.5 mi-

croseconds (0.67 million commands/sec) while DELETE takes 1.2 microseconds (0.84 million
commands/sec). It can be seen that with an FPGA, the throughput of all the commands in-
creased to more than 2 million commands/sec (which is the same as orders/sec). Furthermore,
the average latency of the command execution was reduced to around 300 ns.

7.7. Productivity

Verilog implementation took 6 months while HLS implementation took 1.2 months
with two engineers with experience of 8–10 years.

8. Pipelined Execution of UPDATE Command

The execution of the UPDATE command involves two phases: 1. Fetch—In this phase,
the OrderIndex of the order which is stored in the order index table is fetched using the
OrderID as the address. Since the order index table is stored in DRAM, the fetching of
the OrderIndex takes longer compared to BRAM. 2. Execute Phase—This phase involves
moving the order node to a new price position, adding at the end of the vertical linked list
of order nodes and deleting the order node from the current price position in a vertical
linked list under the dummy node corresponding to the old price position. If the fetch and
execute phases are carried out sequentially without any overlap, the execution time of the
UPDATE command increases, resulting in less throughput for UPDATE. To address this
issue, we modified the UPDATE command execution logic such that there is an overlap
between the execution of the fetch and execute phases. This was achieved by executing the
fetch and execute phases in a pipelined fashion. The fetch logic looks up the order index
table using the OrderID as the address and writes the OrderIndex read from DRAM into
a first-in, first-out (FIFO) queue. The execute command reads the OrderIndex from the
queue and uses it to locate the order in the order database. After locating the order node,



Electronics 2023, 12, 520 15 of 16

the execute logic moves it to the new position in the horizontally linked list of price nodes.
Since the fetching of the OrderID for the next UPDATE command overlaps with the execute
phase of the previous UPDATE command, the effective execution time of the UPDATE
command is reduced significantly, if the UPDATE commands are received sequentially.
Since the percentage of UPDATE command is very high (around 90% of the total commands
are UPDATEs), this modification results in a 30–40% increase in the throughput of the
UPDATE command as shown in Table 7 below.

Table 7. Throughput for various commands with the pipelined execution of UPDATE.

Command Hops Execution Times (ns) Throughput
(commands/sec)

INSERT 20 367 2724.79 × 103

INSERT 30 361 2770.08 × 103

INSERT 40 367 2724.79 × 103

UPDATE 20 189 5290.703 × 103

UPDATE 30 218 4587.4 × 103

UPDATE 40 224 4464.330 × 103

DELETE 20 153 6535.9 × 103

DELETE 30 162 6172.8 × 103

9. Conclusions and Future Work

In this study, we have implemented the order processing block of a trading system
with FPGA technology. By migrating the functionality of order processing from software to
hardware, we were able to obtain more than 2X of an advantage in throughput and order
processing latency was reduced to less than 500 ns. The design was implemented with HLS.
HLS methodology is comparatively new and is an emerging technology that is not mature as
of yet. However, our observation is that the results of latency and throughput obtained with
HLS are very close to Verilog implementation. With HLS, we achieved almost 4X–5X of an
improvement in throughput for the INSERT and UPDATE commands compared to software
implementation. However, to obtain results close to a highly optimized and efficient Verilog
implementation, various optimization techniques need to be tried out as recommended below:

• Using HLS stream variables internally to implement FIFOs and carry out concur-
rent/overlapped executions of subfunctions of the three commands.

• Using an optimal mix of Verilog and C code in which certain latency and time-critical
subfunctions are coded in Verilog, and the rest of the logic is coded in C and imple-
mented in HLS.

• Design under test (DUT) consists of the Verilog implementation of the order processing
block. As an alternative approach, the same DUT can be ported on an Intel HLS
Compiler, and the results compared with those obtained from Xilinx Vivado HLS.

Author Contributions: Conceptualization, S.P. and S.R.; methodology, S.P.; software, M.B.; validation,
S.P. and M.B., formal analysis, R.P.; writing—original draft preparation, S.P.; writing—review and
editing, S.P. and M.B.; supervision, R.P. All authors have read and agreed to the published version of
the manuscript.

Funding: Research received no external funding.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Study does not report any data.

Conflicts of Interest: Authors declare no conflict of interest.



Electronics 2023, 12, 520 16 of 16

References
1. Top 10 Stock Exchanges in the World 2022. Available online: https://www.edudwar.com/top-10-stock-exchanges-in-the-world/

(accessed on 3 January 2022).
2. Readler, B. Verilog by Example: A Concise Introduction for FPGA Design; Full Arc Press: Washington, DC, USA, 2011.
3. Coussy, P.; Morawiec, A. High-Level Synthesis: From Algorithm to Digital Circuit; Springer: Berlin/Heidelberg, Germany, 2008.
4. Baranov, S. High Level Synthesis of Digital Systems: For Data Path and Control Dominated Systems; ISBN Canada: Toronto, ON,

Canada, 2018.
5. Gajski, D.D.; Ramachandran, L. Introduction to high-level synthesis. J. IEEE Des. Test Arch. 1994, 11, 44–54. [CrossRef]
6. Ren, H. A brief introduction on contemporary High-Level Synthesis. In Proceedings of the IEEE International Conference on IC

Design & Technology, Austin, TX, USA, 28–30 May 2014.
7. Sarkar, S.; Dabral, S.; Tiwari, P.K.; Mitra, R.S. Lessons and Experiences with High-Level Synthesis. IEEE Des. Test Comput. 2009,

26, 34–45. [CrossRef]
8. Vivado Overview. Available online: https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

(accessed on 3 January 2022).
9. Intel® High Level Synthesis Compiler. Available online: https://www.altera.com/products/design-software/high-level-design/

intel-hls-compiler/overview.html (accessed on 3 January 2022).
10. C++/SystemC Synthesis. Available online: https://www.mentor.com/hls-lp/catapult-high-level-synthesis/c-systemc-hls

(accessed on 4 February 2022).
11. Boutros, A.; Grady, B.; Abbas, M.; Chow, P. Build fast, trade fast: FPGA-based high-frequency trading using high-level synthesis.

In Proceedings of the 2017 International Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico,
4–6 December 2017.

12. Brogaard, J.A. High Frequency Trading and its Impact on Market Quality. In Proceedings of the 5th Annual Conference on
Empirical Legal Studies, New Haven, CT, USA, 5–6 November 2010.

13. Chlistalla, M. High-Frequency Trading Better than Its Reputation? Deutsche Bank Research Report; Deutsche Bank: Frankfurt,
Germany, 2011.

14. Chiu, J.; Lukman, D.; Modarresi, K.; Velayutham, A. High Frequency Trading; Stanford University Research Report; Stanford
University: Stanford, CA, USA, 2011.

15. Leber, C.; Geib, B.; Litz, H. High Frequency Trading Acceleration Using FPGAs. In Proceedings of the 21st International Conference
on Field Programmable Logic and Applications, Chania, Greece, 5–7 September 2011; Available online: https://ieeexplore.ieee.org/
document/6044837 (accessed on 4 February 2022).

16. Malazgirt, G.A.; Sönmez, N.; Yurdakul, A. High Level Synthesis Based Hardware Accelerator Design for Processing SQL Queries.
Available online: https://www.researchgate.net/publication/282503089_High_Level_Synthesis_Based_Hardware_Accelerator_
Design_for_Processing_SQL_Queries (accessed on 4 February 2022).

17. Ruiz, M.; Sidler, D.; Sutter, G.; Alonso, G.; López-Buedo, S. Limago: An FPGA-Based Open-Source 100 GbE TCP/IPStack.
IEEE Trans. Electron Devices 1988, 35, 2454–2455. Available online: https://ieeexplore.ieee.org/document/8891991 (accessed on
4 February 2022).

18. Kerrisk, M. The Linux Programming Interface: A Linux and UNIX System Programming Handbook, 1st ed.; No Starch Press: San Francisco,
CA, USA, 2010.

19. Bovet, D.P.; Cesati, M. Understanding the Linux Kernel, 3rd ed.; O’Reilly Media: Sebastopol, CA, USA, 2005.
20. Market Infrastructure Business Development. Available online: https://www.lseg.com/areas-expertise/technology/capital-

markets-technology-services/millennium-exchange (accessed on 4 February 2022).
21. Project Brainwave. Available online: https://www.microsoft.com/en-us/research/project/project-brainwave/ (accessed on

4 February 2022).
22. Swarm64. Available online: https://swarm64.com/ (accessed on 4 February 2022).
23. PostgreSQL: The World’s Most Advanced Open Source Relational Database. Available online: https://www.postgresql.org/

(accessed on 4 February 2022).
24. Alveo U250 Data Center Accelerator Card. Available online: https://www.xilinx.com/products/boards-and-kits/alveo/u250

.html (accessed on 4 February 2022).
25. BlackLynx. Available online: https://www.ryft.com/ (accessed on 4 February 2022).
26. Hsiue, K.D. FPGA-Based Hardware Acceleration for a Key-Value Store Database. Master’s Thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA, 2014.
27. Papaphilippou, P.; Luk, W. Accelerating Database Systems Using FPGAs: A Survey. In Proceedings of the 28th International

Conference on Field Programmable Logic and Applications (FPL), Dublin, Ireland, 27–31 August 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.edudwar.com/top-10-stock-exchanges-in-the-world/
http://doi.org/10.1109/54.329454
http://doi.org/10.1109/MDT.2009.84
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/c-systemc-hls
https://ieeexplore.ieee.org/document/6044837
https://ieeexplore.ieee.org/document/6044837
https://www.researchgate.net/publication/282503089_High_Level_Synthesis_Based_Hardware_Accelerator_Design_for_Processing_SQL_Queries
https://www.researchgate.net/publication/282503089_High_Level_Synthesis_Based_Hardware_Accelerator_Design_for_Processing_SQL_Queries
https://ieeexplore.ieee.org/document/8891991
https://www.lseg.com/areas-expertise/technology/capital-markets-technology-services/millennium-exchange
https://www.lseg.com/areas-expertise/technology/capital-markets-technology-services/millennium-exchange
https://www.microsoft.com/en-us/research/project/project-brainwave/
https://swarm64.com/
https://www.postgresql.org/
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.ryft.com/

	Introduction 
	Use of FPGAs for Accelerating Trading Systems 
	Study Contributions 

	Related Work 
	Trading System Architecture at a High Level 
	Problem Statement 
	Data Structures 
	HLS Implementation of the Order Processing Block 
	Performance Numbers 
	Setup for Latency and Performance Measurement 
	Latency Measurements 
	Atomic Transaction Level Latency 
	Formulae for the Expected Latency 
	Observed Latency under Various Price Depths (Hops) 
	Throughput 
	Productivity 

	Pipelined Execution of UPDATE Command 
	Conclusions and Future Work 
	References

