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Abstract: Due to the low photon count in space imaging and the performance bottlenecks of edge
computing devices, there is a need for a practical low-light imaging solution that maintains satisfac-
tory recovery while offering lower network latency, reduced memory usage, fewer model parameters,
and fewer operation counts. Therefore, we propose a real-time deep learning framework for low-light
imaging. Leveraging the parallel processing capabilities of the hardware, we perform the parallel
processing of the image data from the original sensor across branches with different dimension-
alities. The high-dimensional branch conducts high-dimensional feature learning in the spatial
domain, while the mid-dimensional and low-dimensional branches perform pixel-level and global
feature learning through the fusion of the spatial and frequency domains. This approach ensures a
lightweight network model while significantly improving the quality and speed of image recovery.
To adaptively adjust the image based on brightness and avoid the loss of detailed pixel feature
information, we introduce an adaptive balancing module, thereby greatly enhancing the effectiveness
of the model. Finally, through validation on the SID dataset and our own low-light satellite dataset,
we demonstrate that this method can significantly improve image recovery speed while ensuring
image recovery quality.

Keywords: low-light imaging; real time; frequency domain

1. Introduction

With the rapid development of space technology, the key technology for the cleaning
and recovery of space targets relying on machine vision has attracted extensive attention
and research due to its low cost and rich variety of algorithms. However, most image
processing techniques rely on high image quality, while the actual space environment is
often severely limited in terms of illumination, significantly degrading the performance
of these algorithms. To improve the practical application of these algorithms, a practical
low-light high-quality imaging solution is essential. However, traditional methods such as
histogram equalization and gamma correction directly enhance the brightness and contrast
of the entire image globally, without considering the uneven lighting conditions, resulting
in enhanced images that deviate significantly from reality. Therefore, by leveraging the
powerful fitting capability of deep learning frameworks and incorporating local and global
feature learning, low-light image restoration provides us with a novel solution.

A practical solution must possess a lower network latency, reduced memory usage,
fewer model parameters, and a lower operation count while maintaining satisfactory
restoration. However, these characteristics are contradictory. Currently, most solutions
sacrifice some model speed and computational efficiency to improve image restoration
quality [1–5]. These approaches overlook the performance bottlenecks of edge computing
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devices in the actual deployment process. For instance, the SID [6] and SGN [2] methods
require 562 GMAC and 2474 GMAC floating-point operations, respectively, to restore
a single 4K resolution raw image. Providing such computational power is extremely
challenging for edge devices in space missions. Therefore, we are committed to building a
lightweight model that guarantees restoration quality.

Due to the sequential nature of most network architectures, where the output of one
module serves as the input for the next module, the network inference speed is generally
improved through hardware acceleration or by reducing the complexity of the network
model at the cost of compromising the restoration quality. However, the hardware advan-
tages have still not been fully exploited. To leverage the parallel computing characteristics
of the hardware, we constructed a multi-scale parallel network that simultaneously pro-
cesses different spatial scales after the image input. Additionally, we extensively employed
3 × 3 convolutional kernels to significantly enhance the network’s inference speed while
ensuring image quality.

CNN is a layered approach to data representation, where higher-level feature repre-
sentations rely on lower-level feature representations. It progressively abstracts features
in a hierarchical manner, extracting more advanced semantic information. However, once
instantiated, the receptive field of a CNN is limited by the size of the convolutional kernel,
making it challenging to comprehend global information effectively. Currently, obtaining
global information often involves using transformer structures with a large number of
parameters, which does not align with the requirements of lightweight network designs.
Therefore, we propose utilizing frequency-domain information to enhance the network’s
ability to learn global features. By combining the frequency and spatial domains, we
construct an end-to-end network that ensures a lightweight design while capturing both
long-term and short-term information. This approach significantly improves the ability to
restore low-light images.

In recent years, researchers have made significant progress in low-light image en-
hancement, deblurring, denoising, and other related areas [1–3,6–9]. These achievements
typically assume that images are captured in somewhat dim environments with relatively
moderate noise simulation. However, the lighting environment in space is complex and
uneven, resulting in an uneven distribution of pixel intensity values in low-light images. A
significant number of pixels have low intensity values, which leads to the loss of detailed
pixel information in the feature data extracted by the deep learning network during training
and inference. This occurs because the intensity values of the image pixels are too small,
resulting in network feature data being rounded to zero during parameter propagation
and thus the loss of detailed pixel information. To ensure that network architectures incor-
porating frequency-domain information can better improve the image restoration effects,
we drew inspiration from the idea of A-rate thirteen-fold cross-validation and introduced
an adaptive balancing mechanism to simulate the camera’s ISO setting. Before feeding
the image data into the deep learning network, we used an adaptive balance module to
enhance the quality of the restored image. This approach significantly improved upon
the limitations of solely amplifying the original image, as in SID [6], resulting in a greater
enhancement in image quality.

In summary, our contributions are as follows:

1. We constructed a lightweight end-to-end network that processes image data obtained
from the original sensor through multi-scale parallel processing, greatly reducing the
image acquisition time;

2. The multi-scale image processing branch incorporates both spatial- and frequency-
domain fusion networks, reducing the network parameters and computational com-
plexity while ensuring image restoration quality;

3. We introduced an adaptive balancing mechanism as a pre-processing step to enhance
the effectiveness of lightweight application models.
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2. Related Work

Low-light imaging has received extensive research attention in recent years, and we
will briefly introduce three aspects of this research: lightweight models, low-light image
enhancement, and the frequency-domain processing of images.

2.1. Lightweight Models

The goal of lightweight networks is to reduce model parameterization and complexity
while preserving model accuracy. They can be broadly categorized into model compression
and lightweight network structure design. Model compression techniques such as pruning,
quantization, and decomposition are used to decrease the size of the model. Network struc-
ture design involves designing more lightweight network architectures like MobileNet,
ShuffleNet, and EfficientNet. The latest lightweight low-light image enhancement networks
include DCE [3], LLPackNet [4], and RETNet [10]. DCE reduces the number of convolu-
tional layers, but the increased processing at low scales still results in significant network
latency. LLPackNet operates at higher scale spaces but yields subpar results. RETNet
achieves a balance between restoration quality and inference speed by utilizing parallel
inference with multiple-scale networks. However, its heavy reliance on CNNs neglects
the extraction of global structural features. Therefore, by considering the pros and cons of
these three network approaches, we adopted a multi-scale processing model suitable for
hardware acceleration. The aim was to accelerate inference speed, reduce model parameters
and complexity, and better adapt to spatial environments [11–15].

2.2. Low-Light Image Enhancement

In recent years, many excellent algorithms have emerged for low-light image enhance-
ment. Traditional algorithms include methods such as histogram equalization [16] and
gamma correction that simultaneously compress bright pixels and increase the brightness
of dark regions. However, these methods often assume that the image already contains a
good representation of the scene content and do not explicitly model image noise. Methods
based on the Retinex model [17] decompose low-light images into reflection and illumina-
tion components, which are composed of priors or regularization. The estimated reflection
component is considered as the enhanced result. However, inaccurate prior information
may lead to the appearance of artifacts and color deviations in the enhancement results [18].

Deep learning methods have become popular for low-light image enhancement due to
their enhanced accuracy, robustness, and speed. These methods include supervised learn-
ing (SL) approaches like LLNet [19], MBLLEN [20], Retinex-Net [17], LightenNet [21], and
SICE [22]; reinforcement learning (RL) approaches like DeepExposure [23]; unsupervised
learning (UL) approaches like Enlightenment [24]; and semi-supervised learning (SSL)
approaches like DRBN [25]. These methods have opened up new avenues for low-light
image enhancement through end-to-end deep networks. However, when considering ex-
tremely low-light imaging scenarios, such as space environments, where there is significant
noise and color distortion and network inference speed and robustness are crucial, the
aforementioned networks may not meet the practical deployment requirements.

Chen [6] created the SID dataset and proposed an end-to-end network for restoring
high-definition RAW images from extremely low-light conditions. This work prompted
several studies on recovering extremely low-light images [4,5], with most of them using
U-Net as a reference network for restoration, achieving good restoration results. However,
these methods require substantial processing time and memory usage. Wei [26] proposed a
noise formation framework for synthesizing dark RAW images for CMOS sensors. Taking
inspiration from this, we developed a lightweight low-light imaging system based on the
original sensor’s RAW image data.

2.3. Frequency-Domain Processing of Images

Frequency-domain processing is an image processing technique that involves trans-
forming an image from the spatial domain to the frequency domain for operations such
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as filtering, enhancement, and compression. The frequency domain reflects the degree
of spatial variations in an image. Common frequency-domain processing methods in-
clude Fourier transform and wavelet transform. In recent years, many computer vision
tasks have employed frequency-domain-based methods. FDA [27] swaps low-frequency
spectra between images to mitigate the impact of style variations on image segmentation.
LaMa [28] applies the structure of fast Fourier convolution to image rendering. GFNet [29]
learns long-range spatial dependencies in the frequency domain for image classification.
SDWNet [30] introduces wavelet transform into deep networks. Considering the unique
characteristics of the spatial environment, we propose a deep neural network that merges
the frequency domain and spatial domain of the image. This approach aims to intro-
duce global features, capture long-term and short-term information, and enhance the
quality of the restored images while minimizing the number of model parameters and
computational requirements.

3. Methods
3.1. Network Architecture

A low-light imaging system needs to ensure a reliable restoration quality, higher mem-
ory efficiency, faster computational speed, and deployability on edge devices. Currently,
most network models enhance low-light images by applying low-light image enhance-
ment techniques to RGB images processed by cameras. However, the camera algorithm
processing of the original data can result in the loss of certain information. Therefore, we
developed the end-to-end solution depicted in Figure 1, where the original image data from
the imaging system are used as the input to generate the corresponding RGB-format image.

Figure 1. Network backbone structure. The network employs an end-to-end solution with multi-scale
parallel processing, taking the input of raw image data from the imaging system and generating
corresponding images in RGB format.

As shown in Figure 2, due to the 2 × 2 Bayer pattern used for stitching the raw images
from the camera, specific color information is included. To decouple the four color channels
and perform downsampling on the matrix data separately, we utilized Pixel-Shuffle. The
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downsampling factors were 2, 8, and 32, and the three branches were processed in parallel,
as illustrated in Figure 1.

Figure 2. The camera’s raw image was stitched using a 2 × 2 Bayer pattern, which contained specific
color information. We utilize Pixel-Shuffle to separate the four color channels.

As shown in Figure 1, in the low-dimensional branching (LDB) branch, the data
dimension was reduced to 4 and the image size was (H/2, W/2) after downsampling with
a factor of 2. Due to the high image resolution, traditional CNNs have weaker global feature
learning abilities. Therefore, we introduced frequency-domain processing inspired by Res
FFT-Conv [31] and constructed the ResFFT module. The details of ResFFT will be discussed
in Section 3.2. Similarly, in the medium-dimensional branching (MDB) branch (Figure 3),
the data dimension was 64 and the image size was (H/4, W/4) after downsampling with
a factor of 4. The ResFFT module was also introduced to enhance the network’s global
feature learning abilities with frequency-domain information. By combining the frequency
domain and spatial domain, the network can capture long-term and short-term information
while remaining lightweight.

As shown in Figure 1, in the high-dimensional branching (HDB) branch, after down-
sampling with a factor of 32, the data dimension became 1024, and the image size was
(H/32, W/32). Since the resolution in the high-dimensional branch was the lowest, adding
frequency-domain processing would result in excessive computation with minimal effects.
Therefore, the focus was on the high-dimensional features of the image. We performed
initial data processing using Conv-block and then adopted the Multi-RDB module, as
shown in Figure 3. The Multi-RDB module was constructed by densely connecting several
RDB (residual dense block) modules. It comprehensively learned the high-dimensional
feature information of the original data, enhanced the utilization of information in the
original data, and thus improved the model’s performance.

After the HDB branch, the data were upsampled four times using Pixel-Shuffle and
concatenated with the data from the MDB branch (Figure 4). The concatenated data were
then combined again with the data from the LDB branch to obtain a 24-dimensional matrix.
After adjusting the dimensions using convolutional kernels and upsampling with a factor
of 2, the low-light enhanced RGB image was obtained. In the overall network architecture,
we followed the principles outlined in RepVGG [32], on a GPU, the computational density
of a 3 × 3 convolution is four times higher (theoretical computation divided by the time
taken) compared to 1 × 1 and 5 × 5 convolutions [33]. Therefore, the entire network was
constructed using 3 × 3 convolutional kernels. In the HDB branch, to deal with the higher
parameter dimensionality, we employed grouped convolution to reduce the computational
complexity.
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Figure 3. Multi-RDB module, formed by dense residual connections with several RDB (residual
dense block) modules.

Figure 4. Res-FFT module, formed by the addition of the Conv-block, frequency-domain branch, and
original image branch.

3.2. Frequency-Domain Processing

Discrete Fourier transform (DFT) is the cornerstone of modern digital signal processing,
with its one-dimensional mode shown in Equation (1):

X[k] =
N−1

∑
n=0

x[n]e−j 2π
N kn (1)

x[n] is a complex sequence, where X[k] represents the spectrum at frequency ωk =
2π
N kn and j represents the imaginary unit. It is evident that the spectrum at any frequency

carries global information. This introduces the two-dimensional Fourier transform, which
is applicable to images. Its formula is shown in Equations (2) and (3):

F(u, v) =
M−1

∑
x=0

(
N−1

∑
y=0

f (x, y)e−j2π ux
M )e−j2π

vy
N (2)

f (x, y) =
1

MN

M−1

∑
u=0

N−1

∑
v=0

F(u, v)ej2π( ux
M +

vy
N ) (3)

We can consider the two-dimensional discrete Fourier transform (DFT) as two consec-
utive one-dimensional DFTs, as in Equation (2). Based on the fast computation algorithm
FFT (fast Fourier transform) for the one-dimensional DFT, the two-dimensional Fourier
transform can be converted into two successive one-dimensional FFTs, thereby enabling
fast conversion between the spatial domain and the frequency domain.

As shown in Figure 5, in the same scene, high-exposure images contain more frequency-
domain information compared to low-exposure images. Inspired by Res FFT-Conv [31], we
introduced ResFFT into our network for frequency-domain processing, capturing both the
long-term and short-term interactions and learning the global structural information in the
image. As shown in Figure 4, ResFFT is composed of a Conv-block, a frequency-domain
branch, and the original image branch. By incorporating the LeakyReLU function in the
branches to adjust the thresholds, the information from both the spatial and frequency
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domains is learned within the same module to some extent, avoiding the deficiency of
global feature learning in CNNs.

Figure 5. Comparison of high-illumination images and low-illumination images in the frequency
domain.

3.3. Adaptive Balance

Due to the low photon count and low signal-to-noise ratio in low-exposure images, the
intensity values of the original image data are typically low. This can lead to information loss
during the training and inference process of neural networks. SID [6] proposed a front-end
amplifier that multiplies all pixel values in the image by a factor of Amp, as in Equation (4):

Amp = m ·
(

∑i,j xi,j

H ·W

)−1

(4)

where xi,j represents the pixel intensity and m is a hyper-parameter that constrains the
amplification factor to within [0, 1]. However, low-light images based on the space environ-
ment differ from this scenario. Low-light images in space often have saturated highlights,
which can introduce halo artifacts. The low-photon count is uniform, resulting in an overall
low image intensity. This amplification factor is not suitable for these conditions. One needs
a higher amplification factor for low intensity values compared to high intensity values,
making the amplification curve approximate a logarithmic function. Drawing inspiration
from the A-law compression used in PCM encoding in communication, we approximated
the logarithmic function using a segmented linear approach. Smaller values are assigned
larger weights, while larger intensity values are assigned smaller weights, as shown in
Figure 6.

Figure 6. Weight allocation demonstration.
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According to the principle of dividing into thirteen parts with the A rate, we divide
the interval [0, 1] into eight equal parts, and the interval of each part is:

(
25 · (n− 1)

28 ,
25 · n

28 ) n ∈ [0, 8] (5)

By extending the interval [0, 1] to [0, 255], we obtain the following:

(25 · (n− 1), 25 · n) n ∈ [0, 8] (6)

We set bn as an intermediate variable:

bn = 25 · n, n ∈ [0, 8] (7)

wi,j = 25−n, bn < xi,j < bn+1, i f n = 0, wi,j = 16 (8)

bi,j = bi,n−1 = 25 · (n− 1), bn < xi,j < bn+1, i f n = 0, bi,j = 0 (9)

Due to the common use of 8-bit encoding in cameras, we can derive Equations (7) and (8),
where wi,j is the weighting parameter, and bi,j is the offset. The pixel intensity values of
the image after adaptive balance are calculated as in Equation (10), where m is a hyper-
parameter that controls the overall brightness:

X
′
= m · (W · X + Bn−1) = m ·


w1,1x1,1 + b1,1 w1,2x1,2 + b1,2 · · · w1,jx1,j + b1,j
w2,1x2,1 + b2,1 w2,2x2,2 + b2,2 · · · w2,jx2,j + b2,j

...
...

. . .
...

wi,1xi,1 + bi,1 wi,2xi,2 + bi,2 · · · wi,jxi,j + bi,j

 (10)

4. Experimental Results
4.1. Experimental Settings

We used the PyTorch framework to train and test our network on an AMD R7-6800H
and RTX3060. We employed the Adam optimizer for training, conducting 1 million itera-
tions. The learning rate was set to 0.001 for the first 250,000 iterations and then reduced by
a factor of 10 every 250,000 iterations. During the training process, we utilized the random
cropping of 512 × 512 patches and weight normalization to constrain all convolutional
layers. During the training process, we employed a weighted combination of three types of
losses, as defined in Equation (11), to form the Losstotal :

Losstotal = λ1 · Loss1 + λ2 · Loss2 + λ3 · Loss3 (11)

where L1 loss is referred to as Loss1, SSIMLoss is referred to as Loss2, and we indicate the
utilization of high-dimensional features extracted by VGG as Loss3.

We used the low-light SID dataset [6], which consists of outdoor scenes where the
illuminance range of the camera is typically between 0.2 lux and 5 lux. In indoor scenes,
the camera illuminance generally falls between 0.03 lux and 0.3 lux. The dataset includes
short-exposure raw images and corresponding long-exposure ground-truth (GT) images
for benchmark testing. It comprises two sub-datasets, with the Sony dataset having an
image resolution of 4256 × 2848 pixels and the Fuji dataset having an image resolution of
6032 × 4032 pixels. Our main focus was on testing via the Sony dataset.

We compared three publicly available code solutions for low-light image enhancement:
SID, LDC, and SGN. In Table 1, we used multiple evaluation metrics related to practical
deployability: the number of model parameters, number of MAC operations, inference
speed, and restoration quality. Since most reported inference speed metrics are based
on high-performance GPUs, and our objective was reliable deployability on resource-
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constrained edge devices with limited computational power, we tested the CPU inference
speed and the number of GMAC operations. Therefore, we provide a comparison of both
the CPU and GPU inference speeds in the report.

Table 1. Compared to networks with large parameter and computational requirements, we made
progress in terms of inference speed and computational efficiency. Moreover, the image restoration
quality reached a satisfactory level.The bold font signifies that we have achieved the optimal level in
the corresponding indicator.

SID LDC SGN Ours

Parameters (million) 7.78 8.6 3.5 0.891

GMACs Sony 562.06 >2000 >2000 60.5
Fuji 1273.64 >2000 >2000 121.07

CPU inference times (s) Sony 4.21 >50 20.52 0.96
Fuji 8.11 >50 >50 1.78

GPU inference times (ms) Sony 197.66 >1500 1113.85 57.92
Fuji 384.87 >1500 >1500 106.26

PSNR (dB)/SSIM
Sony 28.88/0.787 29.56/0.799 28.91/0.789 28.85/0.794
Fuji 26.61/0.680 26.70/0.681 26.90/0.683 26.62/0.681

Based on the data in Table 1, our network showed significant improvements across
all five metrics. The SID, LDC, and SGN networks had 4–10 times more parameters and
significantly more GMAC operations than our network, but we could maintain comparable
restoration quality. Furthermore, our inference speed was 4–10 times faster than the
aforementioned three networks and was acceptable for edge devices in space environments.

Based on the data comparison in Table 2, our lightweight low-light enhancement
network outperformed LLPackNet in all five metrics. Taking the Sony dataset as an
example, we achieved improvements of 1.02 dB/0.044 in the PSNR/SSIM with fewer
parameters than LLPackNet. Compared to the RETNet network, with an increase of 0.11 M
parameters and minimal improvement in the floating-point operation metric GMACs, we
observed improvements of 0.19 dB/0.004 in the PSNR/SSIM.

Table 2. Comparison to the two currently known best-performing lightweight networks.The bold
font signifies that we have achieved the optimal level in the corresponding indicator.

LLPackNet RETNet Ours

Parameters (million) 1.16 0.785 0.891

GMACs Sony 83.46 59.8 60.5
Fuji 166.12 119.66 121.07

CPU inference times (s) Sony 1.73 0.76 0.96
Fuji 3.25 1.4 1.78

GPU inference times (ms) Sony 70.96 46.24 57.92
Fuji 138.34 93.83 106.26

PSNR (dB)/SSIM
Sony 27.83/0.75 28.66/0.790 28.85/0.794
Fuji 24.13/0.59 26.60/0.682 26.62/0.681

To enhance the effectiveness of the entire network in the space environment, we
constructed a dataset consisting of 1574 low-light satellite images with a resolution of
4256 × 2848, using a methodology similar to that described for building the datasets in the
SID paper. In comparison to models with a larger number of parameters like SID, LDC, and
SGN, our network maintained good restoration quality even when achieving a 4–10 times
faster inference speed. Furthermore, compared to LLPackNet, we significantly improved
both the inference speed and restoration quality. In the case of the RETNet network,
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there were minimal differences in the inference time, but we observed improvements of
0.59/0.021 in the PSNR/SSIM. Our constructed network exhibited superior global structural
learning capabilities due to the more regular satellite structures in our low-light satellite
dataset, even surpassing the SID network in the corresponding indicators.

As shown in Table 3, in order to better evaluate the color reconstruction performance
of our network framework, we adopted a dataset construction method similar to that
described in the SID paper and captured 30 sets of low-light images of the Macbeth color
checker under different illuminations, along with their corresponding high-light images.
By conducting inference using our network trained on both the SID and our own satellite
datasets, the restored images achieved an average PSNR of 28.79 dB and SSIM of 0.765,
surpassing the performance metrics of both the SID dataset and our self-constructed
satellite datasets. The specific results are shown in Figure 7, in which only the color block
information of the Macbeth color checker was retained for better comparison.

Table 3. The comparison between CPU inference speed and restoration quality in our constructed satel-
lite dataset and 30 groups of images of the Macbeth color checker captured under different illuminations.

SID LDC SGN LLPackNet RETNet Ours

CPU inference times (s) 4.21 >50 20.52 1.73 0.76 0.96

PSNR (dB)/SSIM
Satellite 26.53/0.677 26.95/0.679 26.75/0.672 25.35/0.632 26.13/0.653 26.72/0.674
Macbeth 28.48/0.736 28.97/0.763 28.78/0.738 27.12/0.657 28.13/0.729 28.79/0.765

Figure 7. Comparison of low-light image restoration. The first row shows the ground-truth (GT)
images, the second row displays the low-light images, and the third row exhibits the restored images.
The first four columns represent the restoration results of the SID dataset, the fifth column represents
the restoration results of the satellite dataset, and the sixth column represents the restoration results
of the Macbeth color checker constructed by our team under low illumination.

It is evident that our network achieved excellent restoration results on low-light images.
The excellent performance of our proposed lightweight framework is attributed to the
multi-scale parallel processing network. In the LDB and MDB branches, we constructed
the ResFFT module to fuse the spatial and frequency domains and learn the global and
local features of the image, capturing both long-term and short-term information. In the
HDB branch, we adopted the multi-RDB module to focus on the high-dimensional spatial
features of the image, achieving effects similar to methods like SID and SGN.

Additionally, due to the non-uniform illumination in low-light images and the pre-
dominantly low pixel values, we introduced an adaptive balance pre-processing module.
This module segmented and linearly amplified the pixel values to avoid the loss of detailed
feature information caused by the gradient operations becoming zero during network infer-
ence. It greatly enhanced the stability and effectiveness of the network. Furthermore, the
multi-scale parallel processing and significant reduction in parameter quantity resulted in
a substantial increase in inference speed. Our model achieved a balance between inference
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speed and restoration quality, making it more suitable for deployment on hardware devices
in space.

4.2. Ablation Experiment

In our network configuration, the ResFFT module and adaptive equalization module
were implemented to verify their effectiveness. We conducted experiments by removing the
frequency-domain branches of the ResFFT module and the adaptive equalization module
separately, and the results are shown in Table 4.

Table 4. The results of the ablation experiments were obtained by separately removing the frequency-
domain branch and the adaptive equalization module.

PSNR (dB)/SSIM Decreasing Value

Original network architecture 28.85/0.794 0/0
Removing the frequency-domain modules 28.13/0.772 0.72/0.22
Removing the adaptive balancing module 28.31/0.785 0.54/0.09

When we disabled all frequency-domain branches and trained the network on the SID
Sony dataset, the PSNR/SSIM decreased from 28.85 dB/0.794 to 28.13 dB/0.772, resulting
in a decrease of 0.72 dB/0.22.

Similarly, when we excluded the adaptive equalization module during the network
training process, the PSNR/SSIM dropped from 28.85 dB/0.794 to 28.31 dB/0.785, with a
decrease of 0.54 dB/0.09.

These results indicate the effectiveness of both the frequency-domain branches of
the ResFFT module and the adaptive equalization module in maintaining the network
performance.

5. Conclusions

In this paper, we developed a fast and lightweight model for low-light imaging. The
original image data were fed into a parallel multi-scale network, allowing for innovative
pixel-level and global feature learning in both the spatial and frequency domains. By
introducing a pre-adaptive balancing mechanism, we enhanced the effectiveness of the
model in adapting to different light levels. When compared to models with parameter
quantities 4–10 times larger than ours, our model achieved 4–20 times faster inference
speeds on the CPU and GPU while preserving recovery quality on the SID dataset and
our custom low-light satellite image dataset. Furthermore, our model achieved superior
recovery results with only a marginal increase of 0.7 in the GMAC operations compared to
existing lightweight models. This fulfills the requirements of real-time performance and
deployability for space missions. Ablation experiments confirmed the effectiveness of our
proposed network model compared to solely using CNNs for spatial-domain processing
and highlighted the importance of adaptive balancing for the entire system.

This paper presents a pre-processing step for space missions, providing improved
generalization for subsequent tasks such as target tracking and non-cooperative target pose
estimation algorithms in space applications.
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