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Abstract: Automatic modulation classification (AMC) based on data-driven deep learning (DL) can
achieve excellent classification performance. However, in the field of electronic countermeasures,
it is difficult to extract salient features from wireless communication signals under scarce samples.
Aiming at the problem of modulation classification under scarce samples, this paper proposes a
few-shot learning method using prototypical network (PN) with residual attention (RA), namely
PNRA, to achieve the AMC. Firstly, the RA is utilized to extract the feature vector of wireless
communication signals. Subsequently, the feature vector is mapped to a new feature space. Finally,
the PN is utilized to measure the Euclidean distance between the feature vector of the query point
and each prototype in this space, determining the type of the signals. In comparison to mainstream
few-shot learning (FSL) methods, the proposed PNRA can achieve effective and robust AMC under
the data-hungry condition.

Keywords: automatic modulation classification; few-shot learning; residual attention; prototypical
network

1. Introduction

Automatic modulation classification (AMC) [1,2] is widely used for military and
civilian fields, including cognitive radio, electronic warfare, and spectrum monitoring [3–5].
Acting as an intermediary between signal detection and demodulation, AMC significantly
facilitates the efficient classification of the modulation types. Thus, it plays an important
role in wireless communication systems.

AMC methods can be categorized into likelihood-based (LB) [6], feature-based (FB) [7],
and deep learning (DL) [8,9]. LB methods rely on probability theory and Bayesian es-
timation theory, utilizing the probability density of the received signals to assess the
potential likelihood hypotheses. FB methods need to extract statistical features from the
received signals, such as time-frequency diagram [10], instantaneous phase [11], bispec-
trum [12], high-order cumulant [13], constellation diagram [14], cyclic spectrum [15], etc. DL
methods [16–19] can automatically extract distinctive modulation features from the re-
ceived signals in a data-driven manner. In recent years, DL methods have made remarkable
achievements in signal processing, which has been with the mainstream pipeline for
the AMC.

DL methods rely heavily on data-driven pattern recognition and feature extrac-
tion, requiring a substantial repository of well-labeled signal samples. However, in non-
cooperative communication scenarios, the intricate and diverse nature of communication
signals complicates the process of gathering and labeling a significant number of samples.
Meanwhile, only a limited number of labeled samples are available and valuable. In such
situations, the DL network suffers from difficult learning, leading to weak generalization
performance and low classification accuracy for AMC.

Few-shot learning (FSL) methods can perform DL-based AMC tasks on small-scale
datasets, which has been in the spotlight [20–25]. FSL, a learning paradigm inspired by
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biological systems, aims to surpass the limitations of conventional DL networks regarding
their capacity for generalization and adaptability across diverse scenarios. Its core idea
involves enhancing learning algorithms or models by discerning relationships among
interconnected tasks, mitigating challenges posed by limited data and subpar generalization
in traditional deep learning. FSL encompasses a training phase where models accumulate
experience from diverse tasks. In the subsequent testing phase, models rapidly adapt to
new tasks with limited labeled samples. In [26], the authors proposed a spatial–temporal
hybrid feature extraction network for few-shot AMC tasks, in which dual feature extraction
branches are designed to map signals onto the spatial and temporal space, respectively, then
a hybrid inference classifier is designed to fuse classification results from both branches.
In [27], the authors proposed an attention relation network (ARN), which introduces
channel and spatial attention, respectively, to learn a more effective feature representation
of support samples. Experimental results show that the ARN method can achieve excellent
performance for AMC even with only one support sample. In [28], the authors proposed
an automatic modulation classification relation network (AMCRN) to distinguish different
modulation types by comparing the feature similarity between test signals and prototypes
of modulation types. Experimental results show that the architecture reached a maximum
classification accuracy of 93%.

It can be concluded that the crucial aspect of FSL-based AMC lies in effectively
representing signal modulation in the data-hungry scenario. However, the majority of the
FSL-based AMC methods exhibit inadequate feature expression capabilities in such cases,
constraining the improvement of related model performance. To address this issue, our
contributions are summarized as follows:

• A novel few-shot learning network based on the prototypical network (PN) with
residual attention (RA), named PNRA, is proposed for signal modulation classification.

• The RA is introduced to guide the learning of the PNRA, thereby enabling the extrac-
tion of salient features with strong intraclass similarity in data-hungry scenarios.

• Compared to mainstream FSL methods, the proposed PNRA can achieve effective and
robust modulation classification performance.

The rest of this paper is organized as follows. Section 2 provides an overview of the
signal model. Section 3 describes the PNRA model in detail. Section 4 presents some
experimental results from various perspectives. Section 5 gives the conclusions.

2. An Overview of Signal Model

Assume the received signal r(t) can be defined as:

r(t) = s(t) ∗ h(t) + n(t) (1)

where s(t) represents the RF signal from the transmitter, ∗ denotes the convolution opera-
tion, h(t) denotes the channel impulse response, and n(t) denotes additive white Gaussian
noise (AWGN).

For M-ary phase shift keying (PSK) signals, s(t) can be expressed as:

s(t) =
∞

∑
n=−∞

g(t− nTs) cos(2π fct+φ0+φm) (2)

g(t) =
{

1, 1 ≤ t ≤ Ts
0, others

(3)

where Ts represents the symbol period. fc denotes the carrier frequency. φ0 and φm denote
the initial phase and the modulation phase.

Then, the received signal r(t) is quadrature sampled at the receiver, and the in-
phase/quadrature (I/Q) signal r(n) can be expressed as:

r(n) = [(rI
1, rQ

1 ), (r
I
2, rQ

2 ), · · · , (rI
N , rQ

N)] (4)
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where N denotes the sampling length.

3. PNRA Model
3.1. The PNRA Model

The PNRA mainly consists of two core components: a feature extraction module based
on residual attention and a metrics module based on the prototypical network. RA is
utilized to extract key features from the constellation diagram of wireless communication
signals. PN is utilized to train an effective classifier by measuring the Euclidean distance
between the class prototype and the query point. The detailed architecture of PNRA is
illustrated in Figure 1, conforming to the procedure as follows:

1. Denote the training set Dtrain containing K modulation types. For each modula-
tion type, u1 signals are randomly sampled to construct the support set S, and u2
signals are selected from each modulation to form the query set Q. The support
set is S = {S1, . . . , Sk, . . . , SK} = {(xi, yi)}N1

i=1, where N1 = K ∗ u1, xi denotes the
modulated signal, and yi denotes the modulation type. Similarly, the query set is
Q = {Q1, . . . , Qk, . . . QK} =

{(
xj, yj

)}N2
j=1, where N2 = K ∗ u2,

2. xi and xj are encoded by the RA f with learnable parameters φ to compute feature
vectors. The detailed architecture of RA is shown in Figure 2.

vi = f (xi; φ), i = 1, 2, . . . , N1 (5)

vj = f (xj; φ), j = 1, 2, . . . , N2 (6)

where vi and vj are the feature vectors of signals in the support set and query set,
respectively.

3. The corresponding prototype ck for each modulation type is computed, which is the
mean vector of the signals in the support sets:

ck =
1
u1

∑
xi ,yi∈Sk

vi, i = 1, 2, . . . , u1 (7)

4. The PN has learnable parameters ψ. The detailed architecture of PN is shown in
Figure 3. A distance function d is constructed, and the distance xj from the query
point in the query set to the prototype ck is given as

p
(
y = k | xj; ψ

)
=

e−d(vj ,ck)

∑K
k=1 e−d(vj ,ck)

(8)

d(vj, ck) =
∥∥vj − ck

∥∥2 (9)

where j = 1, 2, . . . , N2.
5. The network parameters are updated by minimizing the loss function lossJ [29]:

lossJ = −log p
(
y = k | xj; ψ

)
(10)
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Figure 1. The architecture of PNRA.

Figure 2. The architecture of RA.

Figure 3. The architecture of PN.

3.2. RA Feature Extraction Module

To enhance the model’s feature extraction capability, we introduce a new residual
attention (RA) module. This module includes channel attention to emphasize critical
channel features and spatial attention to enhance useful spatial features. The attention
mechanism is introduced to deep learning frameworks due to its effectiveness in guiding
a model to pay more attention to critical information. In [30], the authors introduce a
convolutional neural network called SCA-CNN that incorporates spatial and channel
attentions in a CNN. By refining the feature maps, the SCA-CNN performs well by taking
full advantage of the characteristics of CNN to yield attentive image features: spatial,



Electronics 2023, 12, 5005 5 of 13

channel-wise, and multi-layer. The detailed architecture of RA is presented in Figure 2.
RA is utilized to extract the salient feature vector of the constellation diagram of wireless
communication signals under scarce samples.

The format of the constellation diagram for each signal is 32 × 32. RA extracts the
main feature vectors and reduces the dimension of the signal. Then the low-dimensional
feature vectors can be easily mapped into the metric space. Structurally, the RA contains
three ResBlocks and a Flatten layer. Each ResBlock includes a 2D convolution with the
kernel size of 3 × 3, a BatchNorm layer, an activation function Relu, a channel attention
module, a spatial attention module, and a MaxPooling layer with the kernel size of 2 × 2.

Specifically, the channel attention module focuses on the critical channel features
using both average-pooling and max-pooling operations, generating two different sets of
average-pooled features and max-pooled features, respectively. Both sets of features are
then forwarded to a multi-layer perceptron (MLP). After the shared network is applied
to each feature, the output feature vectors are merged using element-wise summation.
The merged feature vectors are normalized using a sigmoid function to ensure that the
weights for each channel fall within the range of 0 to 1. Ultimately, the normalized weights
are applied to each channel of the input feature map, achieving channel-wise adaptive
weighting. Given a feature map F as the input to the channel attention module, the outputs
Mc(F) and F′ are given as:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (11)

F′ = Mc(F) ∗ F (12)

where ∗ denotes element-wise multiplication, and σ denotes the sigmoid function.
Likewise, the spatial attention module focuses on useful spatial features using both

average-pooling and max-pooling operations along the channel axis, generating two dif-
ferent sets of average-pooled features and max-pooled features, respectively. Both sets of
features are merged using element-wise summation and then convolved by a standard
convolution layer. The output feature vectors are normalized using a sigmoid function to
ensure that the weights for spatial dimensions fall within the range of 0 to 1. Ultimately,
the normalized weights are applied to the spatial dimensions of the input feature map,
achieving spatial adaptive weighting. Given a feature map F′ as the spatial attention input,
the outputs Ms(F′) and F′′ are given as:

Ms(F′) = σ( f 3×3([AvgPool(F′); MaxPool(F′)])) (13)

F′′ = Ms(F′) ∗ F′ (14)

where ∗ denotes element-wise multiplication, σ denotes the sigmoid function, and f 3×3

represents a convolution operation with the filter size of 3× 3.
By introducing the channel attention module and the spatial attention module, the

network can adaptively learn the importance of each channel and its importance in differ-
ent spatial locations. This enables RA to effectively leverage the relationships among
channels and the diversity of features, thereby improving the performance of signal
classification tasks.

3.3. PN Metrics Module

To improve the few-shot classification ability of the model, PN [29] is utilized to train
an effective classifier, measuring the Euclidean distance between the class prototype and
the query point. It learns a metric space in which points cluster around a single prototype
representation for each signal class. Firstly, the network learns a non-linear mapping of
the input signal into an embedding space and takes the mean of its support set in the
embedding space to be each signal class prototype. Classification is then performed for
an embedded query point by identifying the nearest class prototype. By minimizing the
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loss function to update the network parameters, samples in the same signal category are
brought closer, while samples from different signal categories are pushed farther apart. The
detailed architecture of PN is presented in Figure 3.

According to Figure 3, x is the feature vector of the query signal point, and c1, c2, and
c3 represent different signal prototypes. By calculating the Euclidean distance between x
and signal prototypes c1, c2, and c3, respectively, the distance between the query signal
point x and signal prototype c2 is shorter. Therefore, x is classified into the type represented
by c2.

4. Experimental Results and Discussion
4.1. Datasets

To evaluate the performance of the proposed method, we conduct experiments on
the RadioML2016.10a dataset [31]. The dataset comprises eight digital modulated signals
widely used in wireless communications, including 8PSK, BPSK, CPFSK, GFSK, PAM4,
16QAM, 64QAM, and QPSK. Each sample includes in-phase and quadrature (IQ) channels.
The SNR ranges from −20 dB to 18 dB with an interval of 2 dB. Signals are modulated
at a rate of eight samples per symbol. In addition, random walk drifting of the carrier
frequency oscillator, additive white Gaussian noise (AWGN), and Rician fading of the
channel impulse response are taken into account in the process of generating signals.
Furthermore, translation, dilation, and unknown scale are introduced when the signal
is transmitted through harsh channels. Specifically, four out of eight modulation types
are selected to constitute the training set. Then, the remaining four modulation types are
utilized to test the models. The details of the experimental dataset are shown in Table 1.

Table 1. The details of the experimental dataset

Parameter Value

Train set BPSK, 8PSK, 16QAM, GFSK

Test set QPSK, PAM4, 64QAM, CPFSK

The number of samples in the support set for
each signal 15

The number of samples in the query set for
each signal 20

All experiments are conducted on the Nvidia GeForce RTX 2080Ti GPU. In the training
process, the deep learning framework is tensorflow. The training parameters are shown in
Table 2. In the testing stage, to avoid the contingency caused by a single test, we use the
average accuracy of 1000 test experiments as the final evaluation indicator. The calculation
formula acc of a single test is defined as:

acc = (
Ntrue

Nall
) ∗ 100% (15)

where Ntrue is the number of samples correctly classified, and Nall is the number of all samples.

Table 2. The training parameters.

Parameters Value

Learning rate 0.001

Optimizer Adam

Episode 500

Dropout 0.2
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4.2. Performance Comparisons with Different Values of u1

To evaluate the classification performance of the PNRA under different u1 values, we
consider four different values: 1, 5, 10, and 15, respectively. The value of u2 is set to 20. For
each modulation type, u1 signals are randomly sampled to construct the support set S, and
u2 signals are selected from each modulation to form the query set Q. A detailed split of
the datasets in the training and test stages is listed in Table 1. The experimental results are
shown in Figure 4.

Figure 4. The number of samples required for signal prototype generation.

From Figure 4, the classification accuracy of PNRA at u1 = 15 significantly outper-
forms that at u1 = 1 and u1 = 5. When u1 = 15, the PNRA achieves a classification accuracy
of 94.5% at 14 dB, which is an improvement of 1.5% compared to the case when u1 = 10.
By increasing the value of u1, the PNRA learns the differences between different classes
from a larger sample pool, thereby enhancing its performance on new tasks. However, the
rate of improvement in classification accuracy slows down, indicating diminishing returns
from increasing the number of samples in the support set. In the following part, we set
u1 = 15 to construct the prototype for each modulation signal.

4.3. Performance Comparisons of Different Feature Extraction Methods

To evaluate the performance of the RA in this paper, we compared five different
feature extraction networks. Different feature extraction networks are convolutional neural
network (CNN), deep residual network (ResNet), long short-term memory (LSTM), convo-
lutional long short-term memory fully connected deep neural networks (CLDNNs), and
residual attention (RA). A detailed split of the datasets in the training and test stages is
listed in Table 1. The number of signals in support set u1 is set to 15, and the number of
signals in query set u2 is set to 20. The experimental results under different feature extrac-
tion modules are shown in Figure 5. Table 3 presents several different feature extraction
module structures proposed in this paper.

Table 3. Several different feature extraction module structures.

LSTM RA CNN CLDNN

Conv2d + BN + ReLU
Conv2d + BN + ReLU MaxPool2D

ResBlock MaxPool2D Conv2d + BN + ReLU
LSTM layer ResBlock Conv2d + BN + ReLU MaxPool2D
LSTM layer ResBlock MaxPool2D LSTM layer

Flatten Flatten Flatten Flatten
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Figure 5. Performance comparisons of different feature extraction methods.

As shown in Table 3, the CNN comprises two convolutional layers and a Flatten layer.
Each convolutional layer includes a 2D convolution (Conv2d) with the kernel size 3 × 3, a
BatchNorm (BN) is used for normalization after each convolutional layer to accelerate the
network convergence speed, a rectified linear unit (ReLU) serves as the activation function,
and a MaxPooling layer with the kernel size 2 × 2 (MaxPool2D) is employed to reduce data
dimension, simplifying the network complexity and reducing the computation amount.
The LSTM consists of two LSTM layers and a Flatten layer. Each LSTM layer is composed
of 64 LSTM cells. Generally, the LSTM cell mainly controls the flow and loss of feature
information extracted from the signal through the three gate mechanisms of forget gate,
memory gate, and output gate. The CLDNN contains two convolutional layers, a LSTM
layer, and a Flatten layer. The ResNet contains three ResBlocks and a Flatten layer. Each
ResBlock includes a 2D convolution with the kernel size 3 × 3, a BatchNorm layer, an
activation function Relu, and a MaxPooling layer with the kernel size 2 × 2. The RA is
illustrated in Figure 2.

According to Figure 5, the RA feature extraction module achieves superior classifica-
tion accuracy due to the introduction of the attention mechanism. This allows the PNRA
network to focus more on the parts that are beneficial to classification when extracting
signal features.

4.4. Performance Comparisons of PNRA with Mainstream FSL Methods

To evaluate the classification performance of the PNRA under the data-hungry sce-
nario, we compared the classification accuracy of PNRA with three FSL methods, including
model-agnostic meta-learning (MAML) [32], matching network (MN) [33], and relation
network (RN) [34]. Specifically, 15 samples and 20 samples are randomly selected from each
modulation type to form the support set and the query set, respectively. The experimental
results of various FSL methods are shown in Figure 6.

Figure 6 shows that the proposed PNRA achieves superior classification accuracy.
The classification accuracy of the PNRA exceeded 80% at 2 dB SNR. In addition, when
the SNR is equal to 10 dB, the PNRA outperforms MN and RN by a margin of 6.5% and
3.1%, respectively, and when the SNR is equal to −6 dB, the PNRA outperforms MN and
RN by a margin of 3.7% and 4.2%, respectively. PNRA measures the similarity between
samples through Euclidean distance. Euclidean distance belongs to Bregman divergence;
the difference between different types of modulation signals in the metric space can be
maximized, leading to better classification results. MAML seeks an optimal initialization
parameter through learning multiple tasks so that the network can quickly adapt to new
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types of signals. However, the MAML needs to be fine-tuned when facing new types of
signals. Due to the data-hungry nature of the signal, it is difficult to apply to networks with
large parameters, limiting the further improvement of MAML performance. These results
indicate the effectiveness of the PNRA.

Figure 6. Experimental results of various FSL methods.

4.5. Performance Comparisons of PNRA under Different Dataset Splits

To evaluate the classification performance of the PNRA under different signal cat-
egories in the training stage and test stage, we randomly consider two dataset splits.
Specifically, four out of eight modulation types are randomly selected to constitute the
training set, while the remaining four modulation types are utilized for testing the models.
The signal split scheme is presented in Table 4. The number of signals in support set u1 is
set to 15, and the number of signals in query set u2 is set to 20. The experimental results
under different dataset splits are shown in Figure 7. Figure 8 displays the confusion matrix
for the split1 test set of the PNRA when SNR is equal to 18 dB, while Figure 9 displays the
confusion matrix for the split2 test set of the PNRA under the same SNR condition.

Table 4. The split scheme of all signals

Splits Train Set Test Set

split1 BPSK, 8PSK, 16QAM, GFSK QPSK, PAM4, 64QAM, CPFSK

split2 BPSK, PAM4, 16QAM, GFSK QPSK, 8PSK, 64QAM, CPFSK

Figure 7. Experimental results under different dataset splits.
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Figure 8. The confusion matrix for the split1 test set.

Figure 9. The confusion matrix for the split2 test set.

To intuitively observe the classification situation of query signal points, Principal
Component Analysis (PCA) is employed to visualize the classification results. Figure 10
displays the classification result for the split1 test set of the PNRA when SNR is equal to
18 dB, while Figure 11 displays the classification result for the split2 test set of the PNRA
under the same SNR condition.

According to Table 4, the test set of split1 is composed of four different digital mod-
ulation signals, while the test set of split2 contains two similar phase shift keying (PSK)
modulation signals. As seen in Figures 8 and 10, PNRA achieves superior classification
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accuracy. However, as seen in Figures 9 and 11, the classification accuracy for split2 test
set drops noticeably compared to split1 due to confusion between QPSK and 8PSK signals.
Experimental results show that the PNRA can adapt to the scenarios where the signal
categories in the train set and test set differ. In addition, varying dataset splits result in
differences in classification accuracy under the same method. Since the labels assigned
to the training and testing sets were entirely separate of the PNRA and the RN methods,
different signal categories in the training stage and test stage have a certain impact on the
classification accuracy.

Figure 10. The PCA figure of split1.

Figure 11. The PCA figure of split2.

According to Figure 7, when SNR is greater than −10 dB, the classification accuracy
of split2 test set drops obviously compared to split1 for both PNRA and RN methods.
Therefore, the classification accuracy is influenced by the similarity of modulation signal
types in the test set. When the SNR is equal to 10 dB, PNRA outperforms RN by a margin
of 3.1% for split1 and outperforms RN by a margin of 2.8% for split2. When the SNR is
equal to −6 dB, PNRA outperforms RN by a margin of 1.6% for split1 and outperforms RN
by a margin of 1.3% for split2. These results indicate the robustness of the PNRA.

5. Conclusions

In this paper, we propose a novel method named PNRA to achieve effective and
robust AMC under the data-hungry condition. The RA component is utilized to extract
the salient features between signals with different modulations, while the PN component
effectively addresses the challenge of limited labeled samples in the data-hungry scenario.
Experimental results demonstrate that the proposed PNRA achieves superior performance
compared to mainstream FSL methods and facilitates few-shot modulation classification of
new target signals. Future works will focus on improving the classification accuracy when
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the test set contains multiple similar modulation signal types and utilizing a large number
of unlabeled signal samples to enhance the FSL-based AMC task.
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