
Citation: Yoo, J.; Hwang, J.; Lee, J.;

Yoo, S.; Song, J. CLOCIS:

Cloud-Based Conformance Testing

Framework for IoT Devices in the

Future Internet. Electronics 2023, 12,

4980. https://doi.org/10.3390/

electronics12244980

Academic Editors: Dimitrios

Dechouniotis, Marios Avgeris,

Konstantinos Tsitseklis and

Vitoropoulou Margarita

Received: 11 November 2023

Revised: 6 December 2023

Accepted: 7 December 2023

Published: 12 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

CLOCIS: Cloud-Based Conformance Testing Framework for IoT
Devices in the Future Internet
Jaehoon Yoo 1,† , Jaeyoung Hwang 2,† , Jieun Lee 1 , Seongki Yoo 3 and JaeSeung Song 1,*

1 Department of Computer Security and Convergence Engineering for Intelligent Drones, Sejong University,
Gwangjin-gu, Seoul 05006, Republic of Korea; metoofire@sju.ac.kr (J.Y.); love9ly@sju.ac.kr (J.L.)

2 AI Trustworthiness Verification Team, Telecommunications Technology Association, Bundang-gu,
Seongnam 13591, Republic of Korea; jyhwang@tta.or.kr

3 Center for Future Transport and Cities, Coventry University, Coventry CV1 5FB, UK; ad3869@coventry.ac.uk
* Correspondence: jssong@sejong.ac.kr
† These authors contributed equally to this work.

Abstract: In recent years, the Internet of Things (IoT) has not only become ubiquitous in daily life but
has also emerged as a pivotal technology across various sectors, including smart factories and smart
cities. Consequently, there is a pressing need to ensure the consistent and uninterrupted delivery of
IoT services. Conformance testing has thus become an integral aspect of IoT technologies. However,
traditional methods of IoT conformance testing fall short of addressing the evolving requirements
put forth by both industry and academia. Historically, IoT testing has necessitated a visit to a testing
laboratory, implying that both the testing systems and testers must be co-located. Furthermore, there
is a notable absence of a comprehensive method for testing an array of IoT standards, especially given
their inherent heterogeneity. With a surge in the development of diverse IoT standards, crafting an
appropriate testing environment poses challenges. To address these concerns, this article introduces
a method for remote IoT conformance testing, underpinned by a novel conceptual architecture
termed CLOCIS. This architecture encompasses an extensible approach tailored for a myriad of
IoT standards. Moreover, we elucidate the methods and procedures integral to testing IoT devices.
CLOCIS, predicated on this conceptual framework, is actualized, and to attest to its viability, we
undertake IoT conformance testing and present the results. When leveraging CLOCIS, small and
medium-sized enterprises (SMEs) and entities in the throes of IoT service development stand to
benefit from a reduced time to market and cost-efficient testing procedures. Additionally, this
innovation holds promise for IoT standardization communities, enabling them to champion their
standards with renewed vigor.

Keywords: conformance testing; cloud-based testing; Internet of Things; oneM2M standards;
IoT testing; TTCN-3

1. Introduction

In recent times, the Internet of Things (IoT) has emerged as a promising solution to
address various societal challenges [1]. By seamlessly integrating a plethora of devices—
ranging from sensors and actuators to vehicles—it is anticipated that billions of devices
will be incorporated into diverse sectors such as home automation, industrial automation,
medical aids, the automotive industry, and several others [2–5]. As a result, IoT services
are becoming ubiquitous, affecting every industrial domain. Ensuring a sustainable and
high-quality delivery of IoT services is paramount to prevent grave risks stemming from
malfunctioning devices or products that fail to interoperate [6].

Given this backdrop, IoT testing has evolved as an indispensable facet of IoT technolo-
gies [7,8]. In particular, conformance testing is deemed a critical component of IoT testing
to ensure a certain level of quality assurance. It is employed to validate whether systems or
devices adhere to standards established by telecommunications bodies [9,10]. Furthermore,

Electronics 2023, 12, 4980. https://doi.org/10.3390/electronics12244980 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12244980
https://doi.org/10.3390/electronics12244980
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1426-7086
https://orcid.org/0000-0003-4604-1767
https://orcid.org/0000-0001-5126-5090
https://orcid.org/0000-0002-2157-9651
https://doi.org/10.3390/electronics12244980
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12244980?type=check_update&version=1


Electronics 2023, 12, 4980 2 of 19

the International Telecommunication Union (ITU) acknowledges the significance of confor-
mance testing to ensure that independent implementations based on a uniform standard
remain interoperable [11]. However, conventional testing methodologies are ill suited for
IoT testing, which presents several challenges:

• Testing heterogeneity (issue #1): Presently, numerous IoT standards organizations
are formulating and upholding IoT standards. However, only select entities, such as
oneM2M, are crafting specifications for conformance testing. The majority of research
on IoT testing does not touch on standard-based IoT testing.

• Testing environment (issue #2): IoT services inherently rely on a diverse environment
influenced by varying protocols and standards [6,12]. Consequently, designing a
bespoke IoT testing system to accommodate this heterogeneity is both challenging
and costly.

• Testing intervention (issue #3): Traditional IoT device testing often requires manual
human intervention, which proves inefficient for testing a multitude of devices. Hu-
man interference can also inadvertently skew test results. Hence, automation of the
testing process is imperative [13].

• Testing cost (issue #4): Prior to product launch and certification by authoritative
bodies, face-to-face testing necessitates both testing systems and experts to be co-
located, leading to high expenses and resource consumption [11].

In light of these challenges, we introduce CLOCIS, a cloud-based IoT conformance testing
framework developed using TTCN-3, a specialized protocol testing language. CLOCIS offers
scalability for a diverse array of IoT standards and facilitates remote testing of IoT systems
adhering to different standards. Specifically, issues #1 and #2 are tackled by dynamically
incorporating IoT testing modules catering to different standards. Addressing issue #3,
dedicated components and procedures for device testing have been integrated into the CLOCIS
system. Moreover, web interfaces that empower testing professionals to remotely configure
and execute conformance tests mitigate the need for physical presence in the testing lab,
thereby resolving issue #4. We also present the results of IoT conformance testing utilizing
CLOCIS to validate the proposed architecture’s feasibility.

In conclusion, leveraging CLOCIS can yield the following benefits:

• Elimination of the necessity for distinct testing tools to evaluate other IoT standards,
meaning the versatile CLOCIS system can cater to a spectrum of standard-based
IoT systems.

• Automated testing minimizes human intervention, preventing potential discrepancies
in results.

• The remote testing infrastructure offers small and medium-sized enterprises (SMEs)
and IoT service-developing companies a timely and cost-effective solution, negating
the need for physical lab visits. Moreover, IoT standardization bodies can expedite the
dissemination of their standards.

The subsequent sections of this paper are structured as follows: Section 2 reviews the
existing literature on IoT conformance testing. Section 3 elaborates on the fundamental
concept of conformance testing and the pivotal role of TTCN-3. Following a detailed
introduction to conformance testing and its associated testing language, Section 4 delves
into the CLOCIS architecture and supplementary IoT device testing approaches. Section 5
demonstrates actual IoT conformance testing using CLOCIS, employing oneM2M as the in-
ternational IoT standard. Section 6 concludes the article and outlines prospective endeavors
pertaining to the IoT standard conformance testing tool.

2. Related Work

IoT testing differs markedly from traditional software testing. Since IoT devices
comprise an integration of hardware and software and interact not only with humans
but also with other machines (i.e., machine-to-machine communication), which includes



Electronics 2023, 12, 4980 3 of 19

networking aspects [14,15], the inclusion of a non-human perspective is considered a crucial
aspect of IoT testing [16,17].

Consequently, the complexity of IoT testing has spurred research efforts to propose
testing methods across a range of domains. The research outlined in [18] briefly introduces
a concept for an IoT testing framework that integrates simulation with unit, integration,
and end-to-end testing. Additionally, Ref. [19] investigates the compliance of IoT devices
with privacy policy agreements and develops models to assess the degree of compliance in
terms of privacy criteria. However, these approaches lack a cloud-based testing concept. In
other words, both the testing systems and the test experts must be physically co-located to
conduct product tests.

The advent of cloud-based testing systems presents a formidable solution to previously
encountered challenges. The inherent attributes of cloud computing, such as enhanced
service delivery [20], reduction in production costs and time [21], and increased responsive-
ness to changes in requirements, are leveraged to augment service provision. Consequently,
cloud computing serves as a viable platform for conducting IoT testing, with the added
functionalities of logging and result viewing accessible remotely. The F-Interop frame-
work [22], underpinned by cloud technology, furnishes testing professionals with a remote
environment that supports a diverse range of IoT standards and protocols. However, it pri-
marily focuses on interoperability testing. In parallel, Ref. [23] provides support for remote
IoT testing, with a particular focus on identifying compatibility issues at the firmware level
of IoT devices.

The practice of continuously testing small changes in software systems has proven
to be beneficial and is widely adopted in software development [24]. In this approach,
software is tested in environments that closely mimic production settings. However, when
applied to IoT systems, this method faces unique challenges due to factors such as the large
scale of deployments, the heterogeneity of devices, complex network characteristics, and
the intricate integration with their operational environments. IoT test environments offer a
potential solution by emulating nodes, networks, and domain environments for executing
IoT applications. This approach addresses the testing challenges associated with minor
modifications in IoT devices, though it still necessitates that IoT devices provide a specific
testing interface.

The article by Chernyshev et al. explores the current state of IoT research, including
simulators and testbeds [25]. They identified key research topics and objectives for IoT
and conducted a comparative study of nine simulation tools based on their coverage of
IoT architecture layers as well as three large-scale IoT hardware testbeds. They pinpointed
three major challenges in IoT testing: the lack of support for common IoT communication
standards, insufficient end-to-end service simulation across IoT layers, and significant
discrepancies between simulator and real-world test results. CLOCIS addresses stan-
dardized IoT device testing and cloud-based distributed IoT device testing. However,
as noted in our limitations section, CLOCIS currently does not support the concept of
test offloading.

Linghuan et al. [26] introduced a practical graph-based combinatorial testing frame-
work, CT-IoT, designed to automatically select testing paths for efficient IoT testing. They
detailed the framework’s operation and its application in two real-world IoT systems.
Additionally, the authors proposed four coverage criteria to aid testers in assessing the com-
prehensiveness of IoT system testing. CT-IoT was evaluated on eight real-world systems
from the industry, demonstrating its practicality and effectiveness. CT-IoT offers a solution
for identifying which IoT devices require testing and the network paths to access these
devices. However, it is a proprietary testing solution and is still limited to test functions
that require initiation by the testing IoT device.

Moysis et al. [27] introduced Fogify, an emulator that simplifies modeling, deploying,
and conducting extensive tests on fog and edge computing environments. Fogify allows
users to construct complex fog topologies with varied resources and quality of service (QoS)
parameters, implement containerized configurations in cloud-based or local infrastructures,



Electronics 2023, 12, 4980 4 of 19

and perform dynamic “what-if” scenarios that introduce faults and adjustments in real-
time to evaluate potential service limitations prior to public deployment. While Fogify is
unconventional as a testing tool, enabling the injection of malicious inputs to verify the
robustness of IoT devices in a network, it does not adhere to standardized testing protocols
nor does it support testing initiated by the IoT devices themselves, which sets it apart from
solutions like CLOCIS.

In this paper, we compare the types of devices, scenarios, and environments supported
by the proposed testing system CLOCIS with other IoT testing tools reviewed in this section
(refer to Table 1). This comparison will help to clarify the IoT device testing that CLOCIS
aims to achieve. As previously described, CLOCIS provides standardized IoT device
testing, and in particular, is designed to enable automated remote testing of a large number
of IoT devices, especially constrained IoT devices with limited memory and computing
power, by using a message-triggering approach delivered by the testing system. This
functionality is not offered by previously developed IoT testing tools. Similarly, CLOCIS
does not support all the features provided by other testing tools. For instance, it does not
support testing packet injection in a distributed edge computing environment or real-time
bug detection functions that tools like Fogify offer.

Table 1. Benchmark IoT testing tools compared with CLOCIS to highlight their respective features
and capabilities.

Tools IoT-TaaS
[13]

Autocon
[28]

Fogify
[27]

CT-IoT
[26] CLOCIS

Standard-based ○ ○ X X ○

Remote testing ○ ○ X X ○

Platform testing ○ ○ ○ ○ X

Constrained device X X X X ○

Code testing X X O O X

Environment testing X X O O X

In our previous work [13], we designed a service-oriented automated framework
specifically for IoT testing, aiming to overcome the typical challenges of coordination,
costs, and scalability encountered in traditional software testing, especially for IoT devices
developed as per established standards. Our designed framework includes modules for
remote distributed interoperability testing, scalable automated conformance testing, and
semantic validation testing, all of which are well suited for evaluating IoT devices. This
motivated us to implement the designed testing system.

Subsequently, we defined the necessary features for the envisioned testing system as
requirements, which led to the creation of Autocon-IoT, a system capable of remotely testing
IoT platforms [28]. Autocon-IoT incorporates features for the automated testing of IoT
platforms and suggests a method of testing based on standardized messaging. Despite this,
there were constraints on testing vast numbers of IoT devices. To address these challenges,
this paper introduces a testing solution for functions that must be initiated by IoT devices
with substantial memory and processing limitations.

Table 2 exhibits various comparisons among IoT testing tools and shows features
that CLOCIS can cover. For this comparison, in addition to the testing tools men-
tioned in the literature review, we also examined a commercial IoT testing tool, i.e.,
TTworkbench [29], that utilizes TTCN-3, the formal test description language employed
by CLOCIS.



Electronics 2023, 12, 4980 5 of 19

Table 2. A comparative analysis of various IoT testing tools to demonstrate the range of testing
coverage and environments. This analysis highlights the specific testing targets of CLOCIS.

Tools Environment Testing Target Scalability Comparison with CLOCIS

Fogify [27]

Perform testing on modeling,
deploying, and conducting ex-
tensive tests on fog and edge
computing environments.

It focuses on multiple IoT
nodes within edge and fog
layers, injecting fault packets
into the testing environment.

It evaluates IoT devices op-
erating in edge and fog net-
work environments, limiting
testing to devices connected
to these specific nodes.

It enables testing in distributed
edge and fog environments, pri-
marily focusing on IoT devices
in these settings. However, it
fails to cover cases initiated by
the target IoT device.

CT-IoT [26]
It is engineered to autonomously
determine paths for effective
IoT testing.

Its goal is to test IoT de-
vices with faults within a
shared network.

It has the capability to test
all IoT devices on a common
network.

The tool identifies IoT devices
in need of testing, yet it is re-
stricted to testing functions that
must be initiated by the device
under test.

TTwork-
bench [29]

Commonly utilized in test-
ing laboratories, it operates
within a pre-established
testing environment.

The tool is versatile, support-
ing a range of testing devices,
from IoT gadgets to vehicles.

Utilizing a standardized for-
mal testing description lan-
guage (such as TTCN-3), it
enables scalable testing.

While this tool also employs
TTCN-3, mirroring CLOCIS’s
fundamental testing approach, it
lacks an upper tester feature and
thus is unable to accommodate
constrained IoT devices.

Continuous
testing [24]

It establishes test environments
conducive to continuous testing.

This method primarily tar-
gets IoT devices operating
in the field that have under-
gone minor modifications
due to patch applications.

With the recommended test-
ing environments in place,
this approach can conduct
scalable tests.

It concentrates on testing
IoT devices with minor
changes; however, it cannot
assess the side effects of
these changes, nor can it test
scenarios initiated by the
devices themselves.

In summary, there has been significant research dedicated to supporting the testing
of IoT within various specialized domains. However, upon analysis, it is apparent that
aspects such as remote testing capabilities and comprehensive testing across various IoT
standards have not been thoroughly addressed.

3. Background Technologies of Conformance Testing and Motivation

The subsequent subsections delineate the procedure and salient features of confor-
mance testing and introduce Testing and Test Control Notation version 3 (TTCN-3) as an
instrumental methodology for conducting conformance assessments.

3.1. Overview of Conformance Testing

Conformance testing enables the identification of both expected and anomalous be-
haviors within specific protocols. However, this form of testing does not encompass the
entire system; rather, it focuses on verifying system compliance with particular scopes or
requirements as delineated in the testing specifications. Moreover, conformance testing
does not evaluate the system’s interoperability with other systems. Specifications for confor-
mance testing in the realms of Global System for Mobile Communications (GSM), Universal
Mobile Telecommunications System (UMTS), and Voice over Internet Protocol (VoIP) have
been formulated by the European Telecommunications Standards Institute (ETSI). These
test specifications are crafted in accordance with the ISO/IEC 9646 conformance testing
methodology, which is well established and documented [30]. References to critical ele-
ments of the ISO/IEC are made within these conformance testing specifications, and the
widely adopted procedures are illustrated in Figure 1. The following items elucidate the
framework and components integral to conformance testing, as well as the role of TTCN-3
in facilitating these assessments:



Electronics 2023, 12, 4980 6 of 19

Base

(Protocol 

Standard)

TSS&TP ATS ICS and IXIT

proforma

SUT

IUT

Test System

ETS

Filled-in ICS 

and IXIT
Compilation

Test selection and

parameterization

Implementation

Figure 1. Generalized procedure of conformance testing [30].

• Test Suite Structure (TSS) and Test Purpose (TP): Derived from the pertinent base
standards, these documents provide a clear, informal narrative of each test’s objectives,
emphasizing the rationale behind the test rather than the specifics of its implementation.

• Abstract Test Suite (ATS): This is the comprehensive set of test cases. Each test
case delineates the precise encoding of the Test Purposes, typically formulated in a
standardized test specification language, such as TTCN.

• Implementation Conformance Statement (ICS) and Implementation Extra Information
for Testing (IXIT): These documents include supplementary details necessary for the
execution of tests, such as specific addresses and timer values.

• Executable Test Suite (ETS): Derived from the ATS, this can be swiftly converted
into an operational format using TTCN compilers, which are compatible with most
contemporary test tool platforms (e.g., C++, Java).

• System Under Test (SUT) and Implementation Under Test (IUT): The SUT refers to
the actual system exposed to testing protocols [31], within which resides the IUT,
representing the realized versions of applications, services, or protocols.

3.2. Role of the TTCN-3

The TTCN-3, a language expressly crafted for protocol testing, has been developed
and is currently maintained by ETSI. This language, which stands as a redesigned variant
based on the Tree and Tabular Combined Notation (TTCN) standard (ITU-T Rec. X.292), is
adept at specifying tests for reactive systems. Its applications are extensive, encompassing
protocol testing, service testing, module testing, and providing application programming
interfaces (APIs) for diverse platforms [32].

TTCN-3 delineates a standardized conceptual model that functions independently
from the SUT, the processing platform, and the language implementation. This model
features well-defined operations for each entity and interfaces to facilitate communication,
management, external data exchange, and logging. These operations are enacted through
the implementation and interpretation into intermediate languages.

The conceptual framework of the TTCN-3-based testing system is illustrated in
Figure 2. This system executes conformance testing through the interactions among distinct
entities, each equipped with specialized functions. These include facilitating communica-
tion with the SUT, managing timers, handling types, and invoking external functions. The
framework also integrates interfaces such as the TTCN-3 Control Interface (TCI) and the
TTCN-3 Runtime Interface (TRI). The Test Executable (TE), which is charged with running
the TTCN-3 module, interacts with these interfaces to activate the actual TTCN-3 modules.
The TTCN-3 conceptual testing system is composed of five key entities, with the following
detailed descriptions of their functions:

• Test Management (TM): This entity serves as the managerial component of a testing
system, where the test developer orchestrates the sequence of test suite executions.
TTCN-3 facilitates the creation of test campaigns and allows for the customization of
log formats and management.



Electronics 2023, 12, 4980 7 of 19

• Component Handling (CH): As the TE can operate in a centralized or decentralized
manner, the role of CH is to synchronize entities across different nodes and manage
their interactions.

• Codec (CD): This entity is responsible for the encoding and decoding of messages
during bidirectional exchanges with the SUT. To facilitate communication, the TTCN-
3’s abstract data representation must be transposed into the actual format mandated
by the standards-based IUT.

• Test Logging (TL): TL manages all logging events produced by the testing system. It is
imperative that the system provides a robust logging mechanism for debugging purposes.

Test System User

System Under Test (SUT)

Test Management (TM)

SUT Adaptor (SA) Platform Adaptor (PA)

Test Executable (TE)

C
o
m

p
o

n
e

n
t 

H
a
n

d
lin

g
 

(C
H

)

C
o
D

e
C

 (
C

D
)

TRI

TCI

Test Logging (TL)

Figure 2. Conceptual testing framework using TTCN-3 as its test description language.

The following types of entities communicate with the TRI interface:

• SUT Adapter (SA): The SA handles the actual communication with the SUT, including
transmitting messages according to specified procedures and receiving messages
from the SUT to relay to the TE. The core functions of the SA involve bidirectional
message exchange and procedural operations with the SUT. Given its role in sending
and receiving messages and procedures, the SA typically exhibits concurrent and
synchronous operations, necessitating individual thread management for processing
inbound and outbound data.

• Platform Adapter (PA): Characterized by its support for timing functions and external
functions, the PA uses timers to manage the execution flow of TTCN-3 code. External
functions enhance the capabilities of TTCN-3 by employing libraries written in native
programming languages like C++ or Java, thereby enabling functionalities beyond the
native scope of TTCN-3.

Building on the conceptual framework of TTCN-3, we will present in the following
section a testing system known as CLOCIS. This system incorporates several enhancements
to address the previously mentioned challenges.

3.3. Motivation

Most software testing is conducted by sending testing inputs from an external system
to the target software and observing the software’s response. In the case of IoT device
testing, it involves dispatching test requests from a system to the IoT device and analyzing
the device’s responses. However, some functionalities require the IoT device to initiate an
action, and the testing system must then verify the accuracy of the messages sent by the
IoT device.



Electronics 2023, 12, 4980 8 of 19

For example, when an IoT device registers with a cloud server, it should transmit a
registration message, which the server processes and responds to. The test system must
be configured to anticipate such registration requests from the IoT device. Subsequently,
the developer activates the IoT device’s registration function to send the request to the
test system. This process necessitates precise coordination between the testing system and
the IoT device for such test cases. The IoT device often requires a separate user interface
or command-line interface to enable the necessary functions, presenting challenges when
testing large volumes of IoT devices.

To facilitate the testing of functions initiated by the target device, the testing system
should be capable of remotely instructing the IoT device to automatically activate and
execute the function, transmitting the outcome to the testing server. CLOCIS is engineered
to facilitate such remote testing of IoT devices.

4. Design of Cloud-Based IoT Testing Tool

As previously discussed, traditional IoT conformance testing faces challenges with
respect to scalability, cost, and configuration. Thus, there is a pressing need for more effec-
tive methods of IoT conformance testing. In this chapter, we will elucidate the architecture
of CLOCIS and demonstrate how it addresses the aforementioned challenges in traditional
IoT testing.

4.1. The CLOCIS Architecture

As shown in Figure 3, CLOCIS is compartmentalized into two principal logical struc-
tures: IoT testing module repository and IoT testing execution management. Conformance
testing is executed through systematic interactions between components within these struc-
tures. Moreover, CLOCIS features web interfaces that facilitate remote IoT conformance
testing, allowing testing professionals to conduct and review tests from afar. Below, we
delineate the logical structures of CLOCIS and the components within each.

Test Executable Generator (TEG)

Test Executable (TE)

System Under Test (SUT)

< Testing experts >

IoT testing
module repository

IoT testing 
execution management

HTTP MQTT

TCP UDP

IoT protocol modules

JSON XML

IoT serialization modules

oneM2M OCF

IoT testcases modules

Dynamically load the
IoT modules

Io
T 

m
od

ul
e 

re
po

si
to

ry
 in

te
rfa

ce
s

TTCN-3 base

Native language base

IoT standard protocol binding

Request the IoT modules
based on testing experts’
input

Request make the testing
executable file

Setting the IoT testing
configuration

Testing 
Configurations (TC)

Testing Results (TR)
Testing Logs (TL)

C
LO

C
IS

 w
eb

 In
te

rfa
ce

s

Generate testing
executable file

Figure 3. The CLOCIS conceptual architecture.

4.1.1. IoT Testing Modules Repository

This repository houses the IoT test cases and protocol modules necessary to compile
the Test Executable (TE): the operational element for conformance testing, akin to the
Executable Test Suite (ETS) within the testing methodology framework. TTCN-3 serves as a
testing notation language, devoid of inherent communication functions. To address this, the
defined TTCN-3 constructs must be amalgamated with programming languages—such as
C, Java, or C++—that provide the requisite functionality for actual testing, as outlined in the
Platform Adapter section (refer to Section 3.2). This integration facilitates communication
with the SUT while accommodating various protocols and standards.



Electronics 2023, 12, 4980 9 of 19

In CLOCIS, the testing environment is dynamically assembled via a modular approach
to accommodate the functions necessary for SUT interaction. IoT standard certification
authorities offering certification programs can thus readily furnish a diverse array of IoT
standards to testers through new testing modules. However, utilizing these modules neces-
sitates an additional step known as IoT protocol binding—the process of amalgamating IoT
modules—which will be further explained below.

4.1.2. IoT Testing Execution Management

This component manages testing configurations and outcomes, and generates the
conformance testing execution file based on input from testing professionals. The testing
configuration (TC) retains files specifying test parameters defined by the testers, such as
the IP addresses of devices or platforms, IoT protocols, and serialization formats.

The Testing Result (TR) and Testing Log (TL) components store the outcomes and
logs of conformance tests. Test case verdicts are categorized as follows: “Pass” when the
SUT behaves as expected, “Fail” when it does not, “Inconclusive” when a definitive result
cannot be ascertained, and “Error” when there are faults within the testing system [33]. The
logs capture message exchanges between the testing system and the SUT, providing testers
with insight into the compliance of IoT platforms or devices with standards. Should the
results be unsatisfactory, testers can consult the logs to pinpoint and rectify the issues.

To alleviate the labor-intensive nature of drafting new test configurations, TC offers
an environment for saving and retrieving previous settings, enabling testers to conduct
tests more efficiently without repeatedly reconstructing the testing environment. Both test
results and logs can be archived within CLOCIS, allowing testers to reference past tests via
the TR and TL.

In the pivotal process facilitated by IoT testing execution management, testers can sub-
mit TE generation data to CLOCIS for the creation of the TE. The Test Executable Generator
(TEG) evaluates the IoT standards to be tested, retrieves the relevant modules—including
test cases, serialization modules, and protocol modules—and integrates them. CLOCIS
can also invoke native language libraries from the IoT module repository during the TE
compilation process, resulting in the creation of an integrated TE through the inclusion of
pertinent IoT modules.

4.2. Procedures for IoT Conformance Testing Using CLOCIS

The IoT conformance testing methodology utilizing CLOCIS is delineated into two
distinct phases. Initially, the process entails generating an executable file, termed Test
Executable (TE), leveraging the modules within the IoT module repository. Subsequently,
testing specialists compose IoT testing configuration files and transmit these to the TE to
execute the conformance testing.

During the phase of executable file generation, the paramount procedure is IoT proto-
col binding. While TTCN-3 inherently supports encoding methods such as Abstract Syntax
Notation One (ASN.1), Basic Encoding Rules (BER), and Packed Encoding Rules (PER), it
is necessary to accommodate various protocols. Thus, plugin modules are provisioned to
facilitate common IoT protocols such as HTTP, MQTT, and CoAP. Furthermore, standard
IoT test cases, which elucidate the requisite behaviors for assessment, must be conjoined
with corresponding IoT protocols to facilitate the exchange of intelligible messages between
CLOCIS and the SUT.

The port type within TTCN-3, designated to manage communication with the SUT,
delineates permissible message types during testing. This port type is charged with the
transmission and reception of messages. Nonetheless, if a protocol that has not undergone
binding is dispatched to the SUT, the message will remain indecipherable. Therefore,
messages should be conveyed subsequent to the IoT protocol binding procedures. Since
standard port behavior is typically developed by IoT standards organizations and dissemi-
nated as certified testing cases, a novel methodology for IoT protocol binding is imperative,
particularly as testing system developers are not authorized to alter testing cases.



Electronics 2023, 12, 4980 10 of 19

As shown in Figure 4, the “Port with Translation Capability”, an augmented TTCN-3
construct, enables the conversion of one message form to another during the process of
sending or receiving messages. Despite the definition of testing behavior upon a single
structured data type set, it is applicable in scenarios wherein the actual communication
involves disparate structured data types, for instance, in cases where the SUT operates
on a different layer of the protocol stack compared to the testing system. Concretely,
oneM2M standard (service layer) primitives can be transmitted to HTTP-based (application
layer) oneM2M IoT platforms or devices following the oneM2M HTTP protocol binding
encoding scheme [34].

Standard port 

behaviour

Port in translation mode

Translation behaviour

OutFunction is 

implicitly invoked 

InFunction is 

implicitly invoked

Test System Interface

Inner message

queue

Send translated 

testing messages

System Under Test (SUT)

Outer message 

queue

Send testing information to OutFunction

Send testing results 

based on SUT standard

Send translated testing 

results to Inner queue

OUTINOUT IN

Existing testing 

procedures

Figure 4. Port with translation capability [35].

In this framework, the port type adhering to IoT standards conveys the requisite
testing information to the OutFunction, which is then employed to transform standard
behaviors into formats comprehensible to the SUT. Subsequently, the IoT protocol binding
process is executed within the OutFunction as per the specific protocol binding specification
of an IoT standard. Upon completion of the IoT protocol binding procedures, the refor-
matted messages are dispatched to the SUT. Post-testing, the results derived from the SUT
standards are communicated to the InFunction, which is tasked with retranslating SUT-
understandable behaviors into standardized behaviors; the messages are then converted
and conveyed in a manner intelligible to the standard port behavior within that function.

At the conformance testing juncture, CLOCIS supports application programming
interfaces (APIs) to interface with users. Utilizing these APIs, testing experts can submit
the testing configuration files containing the parameters for the conformance assessment.
Thereafter, these configurations are integrated into the TE, and the test cases are executed.
The outcomes and logs are cataloged within the TR and TL and are made accessible to
the testing professionals via the web interface. These results afford the testing experts the
means to ascertain if the device or platform has been meticulously developed in accordance
with IoT standards.

By employing the aforementioned functionalities, testing experts can remotely assess
their services, whilst testing laboratories are empowered to augment their IoT testing
repertoire through the expansion of the IoT standard module. Nonetheless, given that
only the platform can currently be tested within this architecture, an ancillary structure is
required to facilitate the testing of IoT devices.

4.3. Methodology for Testing IoT Devices

The methodology delineated herein primarily addresses the conformance testing
of IoT platforms and, as such, is not inherently designed for the direct testing of IoT
devices. To elucidate, within this framework, CLOCIS functions as a client, transmitting
messages based on test cases to the IoT platform operating as a server, thereby determining



Electronics 2023, 12, 4980 11 of 19

conformance. Consequently, the testing paradigm for IoT devices must be structured such
that CLOCIS assumes the role of a server and the IoT devices act as clients.

Typically, IoT device testing commences subsequent to the activation of the testing
system. A testing expert may then directly initiate a test case and manually input specific
messages into the testing system to ascertain device suitability. The primary challenge,
however, is that testing experts are often required to manually execute an extensive series
of test cases pertaining to IoT device functions. During this process, the potential for
human error is heightened, particularly when inadvertent test cases are conducted. To
mitigate such issues, the triggering message (TM) and upper tester (UT) have been devised
to automate the process, obviating the need for human intervention.

• Triggering message (TM): This is a communicative protocol between the testing system
and the upper tester (UT), essential for the execution of specific tests by the testing
system. It encapsulates critical testing information, such as the test case name, protocol
details, serialization information, and the requisite data that the IoT device’s body
should encompass before transmission to the testing system. Upon receipt of the TM
by the UT, it ascertains the necessary testing parameters based on the provided data
and accordingly instructs the device.

• Upper tester (UT): The UT is responsible for receiving the TM from the testing system
and subsequently relaying commands to the device. While TMs are standardized for
the exchange of information between the testing system and the UT, the UT’s analysis
of the TM and the execution of device-specific functions can be uniquely implemented
by the device manufacturer.

Employing the aforementioned functionalities facilitates automated conformance
testing for IoT devices, which proceeds as follows (see Figure 5): (1) The testing expert
inputs the test specifics into the test generator (TG) of CLOCIS and initiates a test case for
a designated device. (2) The testing system dispatches a TM, which contains pertinent
testing details, such as the test case name, serialization data, protocol type, and the testing
system’s address and port information. If the test cases relate to the POST or PUT methods,
the TM also includes data detailing the content to be sent in the body format. (3) Upon
receiving the TM, the UT analyzes the content, determines the required testing actions, and
executes the appropriate function on the Implementation Under Test (IUT), subsequently
conveying the results back to the testing system. (4) Ultimately, the device’s response to the
function under verification allows the testing system to render a verdict—such as pass or
fail—and thereby evaluate the device’s compliance with the standard.

CLOCIS SUT

UT

IUT

Te
st

 E
xe

cu
ta

bl
e

②

③

④

TC, TR, TL

IoT testing 
execution

module repository

TriggeringMessage

IoT testing message
IoT testing 
execution 

management

Testing configuration
①

TriggeringMessage Ack

⑤ Testing result

IoT testing message Ack

Figure 5. Procedure of the IoT device conformance testing.



Electronics 2023, 12, 4980 12 of 19

Therefore, the CLOCIS architecture not only enables remote conformance testing for
various protocols and standards but also supports the automated conformance testing of IoT
devices. The ensuing section will explore the implementation of the CLOCIS architecture.

4.4. Triggering Message Handling

The dissemination of the triggering message, as depicted in the second step of Figure 5,
along with its corresponding acknowledgment are pivotal to the conformance testing
of IoT devices facilitated by CLOCIS. This necessitates a precise definition of both the
triggering message and acknowledgment process. Consequently, this section meticulously
explores the composition of the triggering message and the methodology for interpreting
and generating an acknowledgment.

The upper tester (UT) utilizes the triggering message for the conveyance of control
commands between the test system and the upper tester application. Each control command
incorporates vital parameters specific to a given test case. The message type for triggering
the upper tester is aligned with distinct formats for data exchange, and these formats
adhere to the specifications of the TTCN-3 primitive.

CLOCIS, as the testing apparatus, employs the UtTrigger primitive to dispatch a
control command. Conversely, the UT leverages the UtTriggerAck primitive to signal the
receipt and successful processing of the command back to CLOCIS. CLOCIS initializes the
UtTrigger primitive to direct the triggering message to the target Implementation Under Test
(IUT). Upon successful receipt, the IUT uses the UtTriggerAck primitive to acknowledge
CLOCIS. Subsequently, the IUT engages with the test system utilizing oneM2M request and
response primitives aligned with the predefined test cases that correspond to the issued
control command.

Algorithm 1 presents a method for parsing a trigger message received via an HTTP
POST request. This process is central to the functioning of CLOCIS. The procedure
parseTriggerMessagetakes two inputs: a request (req) and a response object (res). The
algorithm begins by checking the validity of the incoming request. If the request is not
valid, the system sends a “BAD_Request” response. If the request is valid, the algorithm
proceeds to extract several key pieces of information from the request:

• to: the target resource in the testing system (TS) that the operation should be directed to.
• op: the type of operation to be performed.
• ty: the type of resource, if specified in the request.
• pc: the content of the primitive operation, if specified in the request.

If the UT and the SUT reside in the same application entity (AE), then the AE is
instructed to generate an operation based on the extracted information (to, op, ty, pc). If
the UT and SUT do not reside in the same AE, the system establishes a Secure Shell (SSH)
connection to execute the necessary commands remotely. After the command execution,
the system sends an “OK_Request” response, indicating the successful processing of the
trigger message. This algorithm is designed to allow remote IoT device testing by triggering
devices to perform specific operations autonomously. It is a key component in enabling
automated testing processes within an IoT framework.

Consider a scenario where the control command’s objective is to assess “Test System
prompts IUT to execute a test case for the creation of an <AE> with a ’labels’ attribute
within a CSEBase resource”; subsequent to the exchange of the relevant triggering message
and acknowledgment, the test system dispatches a message to create the <AE> resource.



Electronics 2023, 12, 4980 13 of 19

Algorithm 1 Parsing Algorithm of TriggerMessage

Require: req is the HTTP POST request
Require: res is an object to send response

1: AE is an application entity Object
2: ssh for SSH connection
3: procedure PARSETRIGGERMESSAGE(req, res)
4: if req is not valid then
5: res.sendResponse(BAD_Request)
6: else
7: to← req.get_To() . Target Resource in TS
8: op← req.get_Operation() . Operation Type
9: if ty exist in req then

10: ty← req.get_Ty() . Resource Type
11: end if
12: if pc exist in req then
13: pc← req.get_Pc() . PrimitiveContent
14: end if
15: if UT-SUT reside in AE then
16: AE.generateOperation(to, op, ty, pc)
17: else
18: SSH← ssh.connect()
19: command← createCommand()
20: SSH.execCommand(command)
21: end if
22: res.sendResponse(OK_Request)
23: end if
24: end procedure

The following outlines the criteria for defining UtTrigger and UtTriggerAck primitives:

1. The UtTrigger primitive is articulated as a requestPrimitive serialized in JSON format.
2. The UtTrigger includes parameters such as the following:

• operation: (mandatory) the operation type that the IUT is incited to execute.
• resourceType: (optional) the resource type of the target resource against which

the IUT is prompted.
• to: (mandatory) the target resource against which the operation is to be performed.
• primitiveContent: (optional) encapsulates the resource attributes to be included

in the requestPrimitive.

Additionally, we provide the response status code (RSC) definitions for the UtTrig-
gerAck primitive as follows. A response status code of OK (value 2000) indicates that the
System Under Test (SUT) has successfully received the triggering message from the test
system. A response status code of BAD_REQUEST (value 4000) signifies that the SUT has
misinterpreted the UtTrigger primitive. Given that the triggering message is integral to
controlling IoT devices, only the aforementioned response status codes are permissible
within the UtTriggerAck primitive.

For the exchange of triggering messages, the Hypertext Transfer Protocol (HTTP) is
designated as the protocol for ongoing communication between the TS and upper tester
application due to its extensive support among IoT devices and advantageous attributes
such as persistent connection, programming simplicity, and versatility.

Control commands embedded within the HTTP request body must be serialized into
JavaScript Object Notation (JSON), as it is exceptionally lightweight and facilitates effortless
parsing and generation by machines.

In alignment with these specifications, Table 3 exemplifies the exchange of triggering
messages between CLOCIS and the IUT. It delineates a scenario wherein the test aim is to
evaluate “Test System prompts the IUT to execute a test case for the deletion of an <AE>



Electronics 2023, 12, 4980 14 of 19

resource.” The triggering message and its acknowledgment are documented in the first and
second rows, respectively. As previously articulated, any response to a triggering command
solely comprises a response status code, which, for triggering operations, is strictly confined
to either 2000 (OK) or 4000 (BAD_REQUEST), in accordance with operational protocols.

Table 3. UtTrigger and UtTriggerAck primitives.

Primitive Triggering Message

Ut Trigger

Request {
"m2m: rqp " : {
" op " : 4 , // i n d i c a t e DELETE operat ion
" to " : {TARGET_AE_RESOURCE_ADDRESS}
// i n d i c a t e Target AE resource addr .
}
}

Ut Trigger Ack

Response {
"m2m: rsp " : {
" r s c " : 2000
}
}

5. Implementation and Evaluation

This section outlines the implementation of the CLOCIS and provides practical exam-
ples through the testing of IoT device conformance. Specifically, we apply the oneM2M IoT
standard, which is recognized as a widely utilized benchmark in the IoT domain.

As previously discussed, TTCN-3 serves as a language designed to describe the desired
testing behaviors. A testing framework that can compile TTCN-3 code into an executable
format and facilitate communication with the System Under Test (SUT) is indispensable.
Eclipse Titan is an open-source conformance testing framework that adheres to the TTCN-3
conceptual model, offering compilation and execution capabilities within the TTCN-3
environment. Within Eclipse Titan, constructs known as “Test Ports (TPs)” and “Protocol
Modules” are defined. TPs are developed to handle the transmission and reception of actual
messages, supporting essential IoT protocols such as HTTP, MQTT, and CoAP through C++
plugins. The protocol modules facilitate the straightforward encoding and decoding of
messages in formats like JSON or XML. Given that Eclipse Titan embodies the functionality
required by CLOCIS, it has been selected as the foundation for CLOCIS’s development.
However, Eclipse Titan only supports the basic IP protocol stack and lacks cloud-based
testing functionality. Therefore, IoT standard binding procedures specific to CLOCIS must
be comprehended, and capabilities for cloud-based IoT conformance testing need to be
integrated into Eclipse Titan.

For our evaluation, we conducted conformance testing with an open-source IoT service
layer platform (i.e., Mobius). Mobius provides a standardized framework for building
and integrating various IoT services. It implements the oneM2M standard, which ensures
interoperability between devices and services across different IoT ecosystems. The platform
supports data collection, device control, and communication, enabling developers and
organizations to deploy scalable and cross-domain IoT solutions efficiently. Mobius also
comes with standardized IoT devices called nCUBE-thyme. nCUBE-Thyme is part of
the Mobius IoT platform’s ecosystem, ensuring compatibility and adherence to oneM2M
standards and allowing for efficient and standardized IoT device and data management.

The nCUBE-thyme was employed as the SUT for this purpose. The nCUBE-Thyme,
predicated on the oneM2M standard, is available in Node.js, Java, and Android versions.



Electronics 2023, 12, 4980 15 of 19

For this evaluation, the Node.js version was utilized. oneM2M is an international IoT
standardization consortium whose objective is to reduce fragmentation within the IoT
service layer standards, involving eight ICT standard development organizations and
approximately 200 member entities (http://onem2m.org/, accessed on 1 December 2023).
Moreover, oneM2M has been actively developing testing specifications, including those
for conformance and interoperability testing, with a oneM2M ATS based on TTCN-3 being
developed and made accessible (https://git.onem2m.org/TST/ATS) [36,37] (accessed on 1
December 2023). Further, the oneM2M product profile specification encompasses an array
of feature sets mandated for certification by the testing authority [38].

To demonstrate practical IoT device conformance testing and performance evaluation,
we performed conformance testing using the CLOCIS and upper tester we developed. The
testing was conducted on a computer equipped with Ubuntu 16.04 LTS OS, an Intel Core
i7-7800X CPU @ 3.50GHz X2 Processor, and 8.0GB of RAM. We established a suite of 30 test
cases, encompassing general capability (GEN), registration (REG), and data management
and repository function (DMR) as a single test set, and executed these test sets 30 times
to evaluate IoT device conformance. The execution of the IoT device conformance testing
averaged 2.5 s per test set, with a standard deviation of 0.165. This demonstrates the
feasibility of remotely reviewing test results via CLOCIS and provides the testing expert
with an opportunity to address issues identified through the IoT device’s functional test
outcomes during or subsequent to the development process.

Building upon this concept, CLOCIS supports a web-based front conformance testing
tool, as shown in Figure 6. This tool allows for the remote testing of IoT devices, enabling
testers to conduct assessments without the need to physically visit IoT testing laboratories.
Moreover, the framework’s automated testing capabilities permit developers to debug
their products autonomously, both throughout and subsequent to the development process.
Figure 6 presents a screenshot of the web-based oneM2MTester, illustrating a historical
overview of the conformance testing results for an Implementation Under Test (IUT) based
on the oneM2M standard.

Figure 6. CLOCIS conformance testing result screenshot capture.

6. Lessons Learned

The CLOCIS testing system is designed to assess IoT devices with limited memory
and processing capabilities, which are called constrained IoT devices. Specifically, CLOCIS
can prompt the devices being tested to initiate predefined actions, such as sending a
registration request to the testing system. Without CLOCIS, developers would need to
create an additional emulator to initiate such requests and implement extra code for
testing and debugging, which consume additional memory and processing resources. This

http://onem2m.org/
https://git.onem2m.org/TST/ATS


Electronics 2023, 12, 4980 16 of 19

supplementary code must be removed before devices are dispatched to end users as it can
present security vulnerabilities that attackers might exploit.

Due to the deployment of cloud infrastructure, CLOCIS is susceptible to network
latency and reliability issues, which could affect the accuracy and timeliness of testing
results. The performance may also be influenced by various environmental factors, such as
internet connectivity, cloud availability, and server capacity. These challenges are common
when using cloud-based testing tools. To address these issues, two strategies can be
considered. The first involves uploading the emulator of the device under test to the
cloud, conducting all tests there, and then allowing the results and certification reports
to be downloaded. The second strategy proposes creating a lightweight version of the
cloud-based testing system, offloading it as an instance to an edge node on the same
network as the device under test, and performing edge-computing-based testing. Both
approaches show promise for commercial testing service applications and could potentially
be implemented in CLOCIS for future use as a commercial testing tool.

Currently, CLOCIS has been developed to perform testing of functionalities before
the deployment of IoT devices. Once deployed in the field, IoT devices often require
additions or modifications to their features, as well as patches for bugs. For CLOCIS to
operate effectively in real-time systems, solutions addressing these aspects need further
development. Additionally, real-time testing should be conducted without disrupting
the services provided by the IoT device, which necessitates the operation of a parallel
testing process within the IoT device itself. However, this requirement for an additional
process poses a challenge for constrained IoT devices, which have significant limitations.
Therefore, further research is needed to enable the real-time testing of IoT devices on
constrained devices.

7. Future Work and Conclusions

In the contemporary landscape, the Internet of Things (IoT), in conjunction with
technologies like artificial intelligence and 5G, finds applications in numerous industries
and facets of daily life. The deployment of IoT services without thorough verification
during development can lead to malfunctions in devices or platforms, potentially causing
grave repercussions for various industries and the public. Hence, rigorous verification is
imperative prior to the operation of IoT services. IoT conformance testing is one testing
methodology undertaken to detect and pre-emptively resolve such issues, identifying
potential operational failures at an early stage. However, traditional IoT conformance
testing necessitates the physical presence of test experts in a laboratory setting, which is
not always feasible. Moreover, the majority of research on IoT conformance testing does
not account for the methods pertaining to IoT standards conformance, and establishing
a testing environment that accommodates the heterogeneity inherent in the myriad of
standards and protocols presents a significant challenge in the realm of IoT.

In this article, we address these issues by introducing the architecture and imple-
mentation methodology of CLOCIS, an adaptable tool for IoT conformance testing, and
demonstrate the remote execution of IoT conformance testing using oneM2M, an interna-
tional IoT standard. CLOCIS not only enables the testing of the oneM2M standard but also
facilitates the incorporation and examination of various other IoT standards. This capa-
bility presents small and medium-sized enterprises (SMEs) with time and cost efficiency
while also aiding standards organizations in accelerating the widespread adoption of IoT
standards. As part of our future endeavors, we plan to extend support to future releases of
oneM2M and other IoT standards.

Author Contributions: Writing—original draft, J.Y. and J.H.; Writing—review & editing, J.L. and S.Y.;
Supervision, J.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a National Research Foundation of Korea (NRF) grant funded
by the Korea government (MEST) (NRF-2023R1A2C1004453).

Data Availability Statement: Data are contained within the article.



Electronics 2023, 12, 4980 17 of 19

Conflicts of Interest: The authors declare no conflict of interest

Abbreviations
The following abbreviations are used in this manuscript:

TTCN-3 Testing and Test Control Notation version 3
SUT System Under Test
IUT Implementation Under Test
SME Small and medium-sized enterprise
GSM Global System for Mobile Communications
UMTS Universal Mobile Telecommunications System
ETSI European Telecommunications Standards Institute
TSS Test Suite Structure
TP Test Purpose
ATS Abstract Test Suite
ICS Implementation Conformance Statement
ETS Executable Test Suite
TCI TTCN-3 Control Interface
TRI TTCN-3 Runtime Interface
TEG Test Executable Generator
ASN.1 Abstract Syntax Notation One
BER Basic Encoding Rules
PER Packed Encoding Rules
TM Triggering message
TC Testing configuration
CH Component Handling
TL Test Logging
TR Testing Result
SA SUT Adapter
PA Platform Adapter
UT Upper tester

References
1. Ahlgren, B.; Hidell, M.; Ngai, E.C.H. Internet of Things for Smart Cities: Interoperability and Open Data. IEEE Internet Comput.

2016, 20, 52–56. [CrossRef]
2. Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 2014, 1, 22–32.

[CrossRef]
3. Ziegler, S.; Crettaz, C.; Ladid, L.; Krco, S.; Pokric, B.; Skarmeta, A.F.; Jara, A.; Kastner, W.; Jung, M. Iot6–moving to an ipv6-based

future iot. In Proceedings of the Future Internet Assembly, Dublin, Ireland, 7–9 May 2013 ; Springer: Berlin/Heidelberg, Germany,
2013; pp. 161–172.

4. Rajab, H.; Cinkelr, T. IoT based Smart Cities. In Proceedings of the 2018 International Symposium on Networks, Computers and
Communications (ISNCC), Rome, Italy, 19–21 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4.

5. More than 50 Billion Connected Devices. White Paper, (ERICSSON, 2013) . Available online: https://api.semanticscholar.org/
CorpusID:16270177 (accessed on 6 December 2023).

6. Brady, S.; Hava, A.; Perry, P.; Murphy, J.; Magoni, D.; Portillo-Dominguez, A.O. Towards an emulated IoT test environment for
anomaly detection using NEMU. In Proceedings of the 2017 Global Internet of Things Summit (GIoTS), Geneva, Switzerland,
6–9 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6.

7. Ahmed, B.S.; Bures, M.; Frajtak, K.; Cerny, T. Aspects of Quality in Internet of Things (IoT) Solutions: A Systematic Mapping
Study. IEEE Access 2019, 7, 13758–13780. [CrossRef]

8. Sand, B. IoT Testing-The Big Challenge Why, What and How. In Proceedings of the International Internet of Things Summit,
Rome, Italy, 27–29 October 2015; Springer: Cham, Switzerland, 2015; pp. 70–76.

9. Koné, O.; Castanet, R. Test generation for interworking systems. Comput. Commun. 2000, 23, 642–652. [CrossRef]
10. Zhang, Y.; Li, Z. IPv6 conformance testing: Theory and practice. In Proceedings of the 2004 International Conferce on Test,

Charlotte, NC, USA, 26–28 October 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 719–727.
11. Kim, E.E.; Ziegler, S. Towards an open framework of online interoperability and performance tests for the internet of things.

In Proceedings of the 2017 Global Internet of Things Summit (GIoTS), Geneva, Switzerland, 6–9 June 2017; IEEE: Piscataway, NJ,
USA, 2017; pp. 1–6.

http://doi.org/10.1109/MIC.2016.124
http://dx.doi.org/10.1109/JIOT.2014.2306328
https://api.semanticscholar.org/CorpusID:16270177
https://api.semanticscholar.org/CorpusID:16270177
http://dx.doi.org/10.1109/ACCESS.2019.2893493
http://dx.doi.org/10.1016/S0140-3664(99)00223-6


Electronics 2023, 12, 4980 18 of 19

12. Reetz, E.S.; Kuemper, D.; Moessner, K.; Tönjes, R. How to test IoT-based services before deploying them into real world. In
Proceedings of the European Wireless 2013; 19th European Wireless Conference, Guildford, UK, 16–18 April 2013; VDE-Verlag:
Berlin, Germany, 2013; pp. 1–6.

13. Kim, H.; Ahmad, A.; Hwang, J.; Baqa, H.; Le Gall, F.; Ortega, M.A.R.; Song, J. IoT-TaaS: Towards a prospective IoT testing
framework. IEEE Access 2018, 6, 15480–15493. [CrossRef]

14. Kanstrén, T.; Mäkelä, J.; Karhula, P. Architectures and Experiences in Testing IoT Communications. In Proceedings of the
2018 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Västerås, Sweden,
9–13 April 2018; IEEE: Piscataway, NJ, USA, 2018.

15. Hagar, J.D. Software Test Architectures and Advanced Support Environments for IoT. In Proceedings of the 2018 IEEE
International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Västerås, Sweden, 9–13 April
2018; IEEE: Piscataway, NJ, USA, 2018.

16. Taivalsaari, A.; Mikkonen, T. A Roadmap to the Programmable World: Software Challenges in the IoT Era. IEEE Softw. 2017,
34, 62–80. [CrossRef]

17. Abdallah, M.; Jaber, T.; Alabwani, N.; Alnabi, A.A. A Proposed Quality Model for the Internet of Things Systems. In Proceedings
of the 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman,
Jordan, 9–11 April 2019; IEEE: Piscataway, NJ, USA, 2019.

18. Bures, M. Framework for Integration Testing of IoT Solutions. In Proceedings of the 2017 International Conference on Computa-
tional Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 14–16 December 2017; pp. 1838–1839. [CrossRef]

19. Subahi, A.; Theodorakopoulos, G. Ensuring Compliance of IoT Devices with Their Privacy Policy Agreement. In Proceedings of
the 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud), Barcelona, Spain, 6–8 August 2018;
IEEE: Piscataway, NJ, USA, 2018.

20. Leah Riungu-Kalliosaari, L.; Taipale, O.; Smolander, K. Testing in the Cloud: Exploring the Practice. IEEE Softw. 2012, 29, 46–51.
[CrossRef]

21. Gao, J.; Bai, X.; Tsai, W.T.; Uehara, T. Testing as a Service (TaaS) on Clouds. In Proceedings of the 2013 IEEE Seventh International
Symposium on Service-Oriented System Engineering, San Francisco, CA, USA, 25–28 March 2013; pp. 212–223. [CrossRef]

22. Palattella, R.M.; Sismondi, F.; Chang, T.; Baron, L.; Vučinić, M.; Modernell, P.; Vilajosana, T.W. F-Interop Platform and Tools:
Validating IoT Implementations Faster. In Proceedings of the 17th International Conference on Ad Hoc Networks and Wireless,
ADHOC-NOW 2018 , Saint-Malo, France, 5–7 September 2018; IEEE: Piscataway, NJ, USA, 2018; Volume 6, pp. 15480–15493.

23. Chen, W.K.; Liu, C.H.; Liang, W.W.Y.; Tsai, M.Y. ICAT: An IoT Device Compatibility Testing Tool. In Proceedings of the 2018 25th
Asia-Pacific Software Engineering Conference (APSEC), Nara, Japan, 4–7 December 2018; IEEE: Piscataway, NJ, USA, 2018.

24. Beilharz, J.; Wiesner, P.; Boockmeyer, A.; Pirl, L.; Friedenberger, D.; Brokhausen, F.; Behnke, I.; Polze, A.; Thamsen, L. Continuously
Testing Distributed IoT Systems: An Overview of the State of the Art. In Proceedings of the Service-Oriented Computing—ICSOC
2021 Workshops, Dubai, United Arab Emirates, 22–25 November 2021; Springer International Publishing: Cham, Switzerland,
2022; pp. 336–350.

25. Chernyshev, M.; Baig, Z.; Bello, O.; Zeadally, S. Internet of Things (IoT): Research, Simulators, and Testbeds. IEEE Internet Things
J. 2018, 5, 1637–1647. [CrossRef]

26. Hu, L.; Wong, W.; Kuhn, D.; Kacker, R.; Li, S. CT-IoT: A combinatorial testing-based path selection framework for effective IoT
testing. Empir. Softw. Eng. 2022, 27, 32 . [CrossRef]

27. Symeonides, M.; Georgiou, Z.; Trihinas, D.; Pallis, G.; Dikaiakos, M.D. Fogify: A Fog Computing Emulation Framework. In
Proceedings of the 2020 IEEE/ACM Symposium on Edge Computing (SEC), San Jose, CA, USA, 12–14 November 2020; pp. 42–54.
[CrossRef]

28. Hwang, J.; Aziz, A.; Sung, N.; Ahmad, A.; Le Gall, F.; Song, J. AUTOCON-IoT: Automated and Scalable Online Conformance
Testing for IoT Applications. IEEE Access 2020, 8, 43111–43121. [CrossRef]

29. TTworkbench Test Automation Platform . Available online: https://www.spirent.com/products/test-automation-platform-
ttworkbench (accessed on 5 December 2023).

30. Moseley, S.; Randall, S.; Wiles, A. Experience within ETSI of the combined roles of conformance testing and interoperability
testing. In Proceedings of the 33rd European Solid-State Device Research—ESSDERC ’03 (IEEE Cat. No. 03EX704), Delft,
The Netherlands, 22–24 October 2003; IEEE: Piscataway, NJ, USA, 2003; pp. 177–189.

31. European Telecommunications Standards Institute (ETSI). Methods for Testing and Specification (MTS): Deployment of Model-Based
Automated Testing Infrastructure in a Cloud; European Telecommunications Standards Institute (ETSI): Sophia Antipolis, France, 2016.

32. Grabowski, J.; Hogrefe, D.; Réthy, G.; Schieferdecker, I.; Wiles, A.; Willcock, C. An introduction to the testing and test control
notation (TTCN-3). Comput. Netw. 2003, 42, 375–403. [CrossRef]

33. Muhammad, F. An Introduction to Umts Technology: Testing, Specifications and Standard Bodies for Engineers and Managers; Universal-
Publishers: Irvine, CA, USA, 2008.

34. oneM2M. oneM2M-TS-0009: HTTP Protocol Binding; Release 4, V4.5.0; 2023.
35. Etsi, E. ETSI ES 201 873-1: Methods for Testing and Specification (MTS); the Testing and Test Control Notation Version 3 Part 1: TTCN-3

Core Language; V4.15.1; 2023.
36. Swetina, J.; Lu, G.; Jacobs, P.; Ennesser, F.; Song, J. Toward a standardized common M2M service layer platform: Introduction to

oneM2M. IEEE Wirel. Commun. 2014, 21, 20–26. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2018.2802489
http://dx.doi.org/10.1109/MS.2017.26
http://dx.doi.org/10.1109/CSCI.2017.335
http://dx.doi.org/10.1109/MS.2011.132
http://dx.doi.org/10.1109/SOSE.2013.66
http://dx.doi.org/10.1109/JIOT.2017.2786639
http://dx.doi.org/10.1007/s10664-021-10017-1
http://dx.doi.org/10.1109/SEC50012.2020.00011
http://dx.doi.org/10.1109/ACCESS.2020.2976718
https://www.spirent.com/products/test-automation-platform-ttworkbench
https://www.spirent.com/products/test-automation-platform-ttworkbench
http://dx.doi.org/10.1016/S1389-1286(03)00249-4
http://dx.doi.org/10.1109/MWC.2014.6845045


Electronics 2023, 12, 4980 19 of 19

37. Hwang, J.; An, J.; Aziz, A.; Kim, J.; Jeong, S.; Song, J. Interworking Models of Smart City with Heterogeneous Internet of Things
Standards. IEEE Commun. Mag. 2019, 57, 74–79. [CrossRef]

38. oneM2M. oneM2M-TS-0025: Product Profiles; Release 3, V3.1.0; 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MCOM.2019.1800677

	Introduction
	Related Work
	Background Technologies of Conformance Testing and Motivation
	Overview of Conformance Testing
	Role of the TTCN-3
	Motivation

	Design of Cloud-Based IoT Testing Tool
	The CLOCIS Architecture
	IoT Testing Modules Repository
	IoT Testing Execution Management

	Procedures for IoT Conformance Testing Using CLOCIS
	Methodology for Testing IoT Devices
	Triggering Message Handling

	Implementation and Evaluation
	Lessons Learned
	Future Work and Conclusions
	References

