
Citation: Song, R.; Shao, J.; Chi, Y.;

Liang, B.; Chen, J.; Wu, Z. Machine

Learning-Based Soft-Error-Rate

Evaluation for Large-Scale Integrated

Circuits. Electronics 2023, 12, 4978.

https://doi.org/10.3390/

electronics12244978

Academic Editor: Paul Leroux

Received: 6 November 2023

Revised: 9 December 2023

Accepted: 11 December 2023

Published: 12 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Machine Learning-Based Soft-Error-Rate Evaluation for
Large-Scale Integrated Circuits
Ruiqiang Song 1,2,* , Jinjin Shao 1 , Yaqing Chi 1,2,* , Bin Liang 1,2, Jianjun Chen 1,2 and Zhenyu Wu 1,2

1 College of Computer, National University of Defense Technology, Changsha 410073, China;
shaojinjin308@163.com (J.S.); liangbin@nudt.edu.cn (B.L.); cjj192000@163.com (J.C.);
wuzhenyu@nudt.edu.cn (Z.W.)

2 Key Laboratory of Advanced Microprocessor Chips and Systems, Changsha 410073, China
* Correspondence: songrq07@nudt.edu.cn (R.S.); yqchi@nudt.edu.cn (Y.C.)

Abstract: Transient pulses generated by high-energy particles can cause soft errors in circuits, result-
ing in spacecraft malfunctions and posing serious threats to the normal operation of spacecraft. For
integrated circuits used in space applications, it is necessary to first evaluate soft errors caused by
transient pulses. Conventional soft-error-rate evaluation tools are designed to simulate the generation
of transient pulses using many accurate models, while the propagation of transient pulses is primarily
simulated by circuit-level simulation tools. Due to the limitations of simulation tools, conventional
evaluation approaches are limited to the circuit scale. The simulation runtime is unbearable for
large-scale integrated circuits. This paper presents an approach for evaluating the soft error rate using
machine learning. A back propagation neural network is implemented in the proposed approach. It
helps to determine the probability of transient pulse propagation. Compared with the conventional
soft-error-rate evaluation results, the proposed approach demonstrates a strong correlation in both
trend and magnitude. The average difference between the results obtained using the proposed
evaluation method and the experimental results is 23.5%, which is 7.5% higher than that between the
results obtained using the conventional evaluation method and the experimental results. Compared
to the conventional evaluation method, the proposed approach improves the runtime by an order
of magnitude. The proposed approach also benefits the locating of highly sensitive circuit nodes in
large-scale integrated circuits. Circuit design and radiation hardening are both useful applications.

Keywords: machine learning; single event transient; soft error rate; transient pulse propagation

1. Introduction

When a high-energy particle passes through an integrated circuit in the space radiation
environment, it loses energy along its path [1,2]. The lost energy is transferred to the
semiconductor material, ionizing electrons of silicon atoms [3]. These ionized electron-hole
pairs are subject to both drift and diffusion. They move throughout the entire semiconductor
material and are collected by transistors [4–6]. The collected electron-hole pairs produce
unexpected transient pulses in circuit nodes [7]. These transient pulses propagate along
the circuit path and cause soft errors [8–10]. A soft error is a significant threat to integrated
circuits. It alters the logic function and can potentially lead to catastrophic consequences
for an entire chip, system, or even a spacecraft.

To mitigate soft errors in integrated circuits for space applications, it is crucial to
evaluate the soft error rate (SER) during the circuit design phase. In previous works,
several circuit-level evaluation approaches have been proposed to investigate the SER of
integrated circuits [11–21]. These works have proposed many accurate models to generate
transient pulses in circuit nodes. Then, they utilize simulation tools, such as the Simula-
tion Program with Integrated Circuit Emphasis (SPICE) and Technology Computer-Aided
Device (TCAD), to simulate transient pulse propagation and capture. Based on the sim-
ulated results, conventional evaluation approaches determine soft errors and calculate
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the SER of integrated circuits. Due to the limitations of simulation tools, conventional
evaluation approaches are limited to the circuit scale. The simulation runtime is unbearable
for large-scale integrated circuits [22].

This paper presents a novel approach for evaluating SER in order to reduce the
simulation runtime. A back propagation neural network (BPNN) is implemented to
determine the probability of transient pulse propagation. The SER can be determined based
on the probability of propagation. The proposed approach does not require determining
the probability value of transient pulse propagation to flip-flops through actual circuit-level
simulation. Instead, it takes the probability of pulse propagation for each instance in
the data path as the input value. This input is then fed into a machine learning model,
and the propagation probability value is obtained through the calculation of the machine
model. A chip with three test circuits was designed using commercial CMOS technology
to investigate the accuracy of the proposed approach. The proposed approach achieves a
good consistency in both trend and order of magnitude.

2. SER Evaluation Overview

In previous works, several approaches for evaluating soft error rate (SER) have been
proposed. These approaches are used to evaluate key circuits, including combination
circuits, flip-flops, and SRAM. In general, the existing soft error evaluation approaches
are mainly divided into three categories: SPICE-level evaluation approaches, TCAD-level
evaluation approaches, and Monte Carlo-based evaluation approaches.

The SPICE-level evaluation approach is widely used. Based on the SPICE device
model and the netlist of the evaluated circuit, a separate current source is introduced
directly at the sensitive node of the circuit to simulate the transient current caused by
incident particles [23–25]. Then, it simulates the corresponding circuit response to obtain
soft errors. Correas et al. simulated the evaluation of a 90 nm SRAM circuit using the
SPICE circuit-level soft error evaluation tool. The evaluation results obtained are in good
agreement with the experimental results [12]. Shambhulingaiah et al. utilized the same
tool to simulate sequential instances, such as flip-flops, and identified the sensitive nodes
of the flip-flop [13]. Wang and Du et al. utilized the SPICE circuit-level simulation tool to
simulate the propagation process of single-event transients in large-scale combinational
circuits. Their objective was to assess the impact of single-event transient pulses on soft
errors in these circuits [14,15]. Li et al. simulated and analyzed the reliability of integrated
circuits using the SPICE tool and proposed a corresponding evaluation process [16].

The TCAD-level evaluation approach differs different from the SPICE-level evaluation
approach. It first constructs the TCAD model based on the layout structure and manufac-
turing process parameters of the circuit instance. Then, the TCAD model simulates the
ionization of electron-hole pairs in the incident particles using a specific numerical distribu-
tion, such as exponential or Gaussian distribution. The transport process of electron-hole
pairs in the TCAD model is calculated using the carrier drift diffusion and other models
embedded in the TCAD simulation tool. It simulates the charge collection of the instance
and the instantaneous response of the circuit node, and determines whether the circuit
instance produces soft errors. Yoni et al. constructed a comprehensive 3D TCAD model us-
ing the layout structure of D flip-flops. They subsequently simulated the circuit’s response
when the D flip-flop cell was exposed to terrestrial neutrons [17]. Xu et al. utilized TCAD
simulation tools to investigate the mechanism of soft errors in standard instances. They
also employed a combination of TCAD simulation tools and SPICE circuit-level simulation
tools [18].

Recently, the Monte Carlo-based evaluation approach has become an important evalu-
ation approach. It utilizes Monte Carlo tools, such as Geant4 and SRIM, to simulate and
calculate the interaction between the incident particles and the semiconductor material.
Then, it converts the charge accumulated by the incident particles in the material into
charge and transient current collected by the device through charge transport and charge
collection mechanisms. Finally, it simulates the transient response of the circuit using
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additional simulation tools and determines whether a soft error occurs. Many Monte
Carlo-based evaluation approaches have been proposed to evaluate the SER of circuits,
such as MRED [11], MUSCA SEP3 [22], PHITS-HyENEXSS [19], and IRT [20].

3. The SER Evaluation Using Machine Learning Models
3.1. The Transient Pulse Propagation Probability

A conventional register-to-register circuit path in integrated circuits is shown in
Figure 1. It is used to explain the evaluation of transient pulse propagation using machine
learning models. When a high-energy particle strikes this circuit, some logic instances (such
as C0) collect the ionized electron-hole pairs and produce a transient pulse at circuit nodes.
Then, the transient pulse propagates to flip-flops along circuit paths. When the transient
pulse arrives at the input pin of instance C1, it propagates directly, and the probability of
transient pulse propagation PC1 is equal to 1. However, when the transient pulse arrives
at the input pin of instances C2 and C3, it may not propagate due to logic masking. For
instance, C2 is an OR-gate instance. The transient pulse can only propagate when the value
of the other input pin is 0. Similarly, C3 is an AND-gate instance. The transient pulse is
able to propagate only when the value of the other input pin is 1. Therefore, the transient
pulse propagation probabilities PC2 and PC3 depend on the instance type and input pin
values. The values are determined using the following equations:

PC2 = 1 − Potherpin,1 (1)

PC3 = Potherpin,1 (2)

where Potherpin,1 is the probability when the value of the other pin is 1. If the input vectors
are random, Potherpin,1 is equal to 0.5. The transient pulse that can propagate to flip-flops
is determined by the propagation probabilities along the circuit path. For instance, the
transient pulse that can propagate to flip-flop 1 (FF1) is determined by PC1, PC2, and PC3. If a
relationship between PFF1 and PC1–PC3 can be determined, the transient pulse propagation
can be easily evaluated.
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Figure 1. A conventional registers-to-registers circuit path.

Unfortunately, determining the relationship between flip-flops and logic cells along
the circuit path is challenging due to the complexity of circuit structures. A simple fitting
equation may not be suitable for all circuit structures. Recently, machine learning has been
widely used in integrated circuit design [18,26]. Some machine learning models are used
to analyze circuit structures in order to identify inherent connections between circuit cells.
In this paper, a machine learning model (BPNN) is used to determine the relationship
between flip-flops and logic instances along the circuit path. The BPNN is first described
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in [27], and its basic structure consists of neurons, interconnection layers, and connection
weight values. In this paper, the BPNN model consists of an input interconnection layer,
a hidden interconnection layer, and an output interconnection layer. The basic structure
is shown in Figure 2. The input layer consists of 20 neurons, which is determined by the
maximum number of stages in the data paths. The number of neurons in a hidden layer
and the number of hidden layers are adjustable parameters. They can impact the prediction
accuracy of the BPNN model. The transient pulse propagation probability calculated by
the BPNN model is significantly different from the results of SPICE-level simulations when
the number of neurons in one hidden layer is lower (5 to 10). The prediction accuracy is
less than 0.6. With an increase in the number of neurons in the hidden layer, the model’s
prediction accuracy is significantly improved. When the number of neurons exceeds 15,
the calculation accuracy of the BPNN model can approach 0.9. However, the prediction
accuracy does not improve any further when the number of neurons exceeds 20. Instead,
the training time and prediction time increase significantly. In particular, when the number
of neurons in the hidden layer reaches 23, the model’s prediction accuracy is reduced by
2% to 5%. There was overfitting during the training of the BPNN model. Therefore, the
hidden layer consists of 15 neurons. This ensures that the calculations are highly accurate
and also allows for a more efficient training and prediction time. Furthermore, the model’s
prediction accuracy does not significantly improve as the number of hidden layers increases.
However, including additional connection weight values required significant adjustments,
which led to a substantial increase in training time. Therefore, there is only a single hidden
layer used to construct the BPNN model. The output layer consists of 10 neurons, which is
determined by the range of propagation probability. The input vectors of the BPNN are
the probabilities of transient pulse propagation along the circuit path. The output value of
the BPNN is the probability that a transient pulse can propagate to a flip-flop. The basic
neuron is activated by the sigmoid function:

f (xi) =
1

1 + e−x (3)
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Based on Equation (3), the neurons in the input layer can be calculated using the
following equation:

f (PCi) =
1

1 + e−PCi
(4)

The input values of neurons in the hidden layer are determined by the output values
of neurons in the input layer. The neurons in the hidden layer can be calculated by the
following equation:

Nj,hidden =
M−1

∑
i=0

wij f (PCi) (5)

where wij represents the connection weight value between the input layer and the hidden
layer. Nj,hidden represents the output value of the hidden layer neuron. Similarly, the
neurons in the output layer can be calculated using Equation (5), and the transient pulse
propagation probability to flip-flops can be determined:

PFFk =
N−1

∑
j=0

wjk Nj,hidden (6)

The most important aspect of BPNN is training the connection weight value wij
and wjk. These connection weight values significantly affect the accuracy of evaluating
transient pulse propagation. In this paper, several benchmark circuits from the ISCAS
85 suite are selected. The ISCAS ’85 benchmark circuits are ten combinational circuits
provided to authors at the 1985 International Symposium on Circuits and Systems. They
have subsequently been used by many researchers as a basis for comparing results in test
generation. The selected circuits are used to create a training set. The training set is used to
calibrate connection weight values. A benchmark circuit structure is shown in Figure 1. It is
used to illustrate how to generate the training set. Firstly, one circuit instance is randomly
selected, such as C0. Based on the C0, circuit instances C1, C2, and C3 are extracted because
they are part of the data path. The probabilities of transient pulse propagation for PC1, PC2,
and PC3 are determined. Secondly, a SPICE-level simulation tool is used to simulate the
propagation of transient pulses in the benchmark circuit. The input value of the circuit
changes randomly with each clock cycle, allowing the value in each circuit instance to be
altered. A dual exponential current source is then injected into the C0. The equation of the
dual exponential current source can be shown in our previous work [28]. The SPICE-level
simulation tool is used to determine whether the transient pulses can propagate to flip-flop
1. This process is repeated multiple times (such as 1000 times) to count the number of
pulses that successfully propagate to flip-flop 1. The propagation probability PFF1,simulation
is obtained by dividing the count data by the total number of injected transient pulses.
Finally, PC1, PC2, PC3, and PFF1,simulation constitute one datum in the training set. Then,
another circuit instance is selected, such as C4, C5 or C6. The above steps are repeated to
obtain more data in the training set. During BPNN training, PC1, PC2, and PC3 are used
as input data. BPNN calculates the transient pulse propagation probability PFF1,prediction
through Equations (4)–(6). This data will be different from PFF1,simulation. Based on the
prediction results PFF1,prediction and the simulation results PFF1,simulation, connection weight
values are calibrated using the following equations:

E(w) =
1
2

N−1

∑
k=0

(PFFk ,prediction − PFFk ,simulation)
2 (7)

wij,new = wij,old − η1
∂E(w)

∂wij,old
(8)
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wjk,new = wjk,old − η1
∂E(w)

∂wjk,old
(9)

In this paper, parallel simulation is used to accelerate the generation of training data.
The cost to obtain the training data is no more than 9 h for each test circuit. Approximately
12,000 training data were generated through the simulations mentioned above. In total,
60% of the data was used to train the BPNN model, and the remainder was used for model
validation. The prediction accuracy of the model is calculated using the Equation (10).
P represents the precision value of the prediction. TP represents the number of positive
predictions that are correct, while FP represents the number of positive prediction errors.
The calculation results are detailed in Table 1.

P =
TP

TP + FP
(10)

Table 1. The results of the training.

Transient Pulse Propagation Probability Range Prediction Precision Value

0.1 0.914
0.2 0.922
0.3 0.904
0.4 0.893
0.5 0.877
0.6 0.911
0.7 0.864
0.8 0.844
0.9 0.857
1.0 0.821

3.2. The Transient Pulse Capture Evaluation

Another important aspect of SER evaluation is the capture of transient pulses. When a
transient pulse arrives at the input pin of flip-flops, such as FF1 in Figure 1, it needs to meet
a certain signal–clock relationship to be captured. If the transient pulse is not captured by
flip-flops, it will not alter the stored value of the flip-flops and will not result in a soft error.
Figure 3 shows the relationship between the transient pulse and the clock waveform. The
capture of transient pulses depends on both the width of the pulse and the period of the
clock. The probability of capturing transient pulses in flip-flops can be calculated using the
following equation:

Pcapture,FFk=
Twidth
Tperiod

PFFk ,prediction (11)

where PFFk ,prediction is calculated by the BPNN. Tperiod represents the clock period, while
Twidth denotes the transient pulse width. Since the incident time of high-energy particles
is random, it is also random whether the transient pulse and the clock period satisfy the
signal-clock relationship. Therefor, a random function in the range of 0 to 1 is used to
determine whether the transient pulse is captured by flip-flops. For each flip-flop affected
by the transient pulse, the random function generates a value. If the random value is lower
than the transient pulse capture probability Pcapture,FFk , the transient pulse can be captured
by flip-flops. On the contrary, the transient pulse is not captured when the random value
exceeds the probability of capturing the transient pulse.
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4. The SER Evaluation Approach

Based on the above SER evaluation principles, a machine learning-based SER evalua-
tion approach is proposed. The basic flow of the proposed approach is shown in Figure 4.

The gate-level netlist of the circuit serves as an input file for the proposed evaluation
approach. Before starting SER evaluation, the number of transient pulses that need to be
injected is determined based on both the incident particle flux and the area of the circuit (the
layout area or the sum of all instance areas). For instance, if the flux of the incident particles
is 1 × 107 ions/cm2 and the circuit’s layout area is 1 mm2, it indicates that 1 × 105 ions
will strike the circuit. Therefore, when performing SER evaluation, the proposed approach
also needs to evaluate the soft errors that occur in the circuit after 1 × 105 transient pulse
injections. In addition, since the location of the incident particle is random, its impact
on the circuit instance is also random. Therefore, for each transient pulse injection, the
proposed approach first randomly selects a circuit instance based on the circuit netlist.
This means that the circuit instance is affected by the incident particles, resulting in the
production of a transient pulse. Secondly, for each data path, all connected logic instance
types from the selected instance to flip-flops are extracted. Each logic instance type is then
converted into a probability of transient pulse propagation. It is important to note that since
the selected logical instance may affect multiple flip-flops, it is often possible to generate
multiple input data for the machine learning model in the second step. Thirdly, the data are
inputted into the calibrated BPNN model, and the propagation probability of the transient
pulse to a flip-flop is calculated using Equations (4)–(6). Fourthly, Equation (11) is used
to determine whether the transient pulse will be captured by the flip-flop based on the
calculated propagation probability. If the result calculated in Equation (11) is less than the
random value generated by the random function, the transient pulse is considered to be
captured by the flip-flop. The number of soft errors has increased by one. Fifthly, once all
affected flip-flops have been traversed, the number of soft errors in the circuit caused by a
transient pulse can be determined. After calculating all transient pulse injections, the total
number of soft errors can be determined under a specific incident flux condition. The soft
error rate of the circuit can be calculated.
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Figure 4. The basic flow of the proposed approach.

A comparison between the proposed approach and other conventional evaluation
approaches is shown in Table 2. The proposed approach only uses the BPNN model
to obtain SER evaluation results. It does not realistically simulate the transient pulse
propagation and capture using circuit-level simulation tools. The proposed approach can
reduce the run time of SER evaluation and is not limited by the size of the circuit. It is worth
noting that the proposed approach not only obtains the SER of the evaluated circuit. It is
also useful for locating highly sensitive circuit nodes in the evaluated circuit. For instance,
specific circuit nodes are selected in the proposed approach. Then, the SER flow runs to
obtain the SER of specific circuit nodes. Compared to the calculated results, the nodes of
the high-sensitive circuit are located.
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Table 2. Comparison of the proposed approach with other state-of-the-art approaches.

SER evaluation The transient pulse The transient pulse
approach generation evaluation propagation evaluation

SPICE-level The dual exponential current source, Circuit-level
simulation approach etc. simulation tools

TCAD-level Ionization charge distribution model Circuit-level
simulation approach Carrier transport equation, etc. simulation tools

Monte Carlo-based Nested sensitive volumes model Circuit-level
simulation approach Drift diffusion equation, etc. simulation tools

The proposed approach Pulse width data that vary with LET Machine learning model

5. The SER Evaluation Approach Validation
5.1. Test Chip Design and Experimental Setup

A SER test structure was designed using commercial CMOS technology to investigate
the accuracy of the proposed approach. The schematic of the SER test structure is shown
in Figure 5. It consists of one random vector generator, two test circuits, and one SER
detection circuit. The random vector generator (Linear Feedback Shift Register, LFSR) is
used to create the input vectors. The test circuit consists of combinational logic instances
and flip-flops. Note that two test circuits have the same topology and layout structures.
However, they are spaced out widely to ensure that an incident particle only impacts
one test circuit, as shown in Figure 6. The input pins of two test circuits are connected
to the random vector generator. It ensures the test circuits have the same input vectors.
The SER detection circuit consists of several XOR-gate instances and OR-gate instances.
The XOR-gate instances compares the output values of two test circuits. If a test circuit is
irradiated by incident particles, the output values are changed. However, the other test
circuit is not impacted by incident particles; it can produce correct output values. The
XOR-gate instance produces a 1 due to the different output values. The soft error induced
by the incident particle is propagated to the SER counter circuit and satisfied.
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A test chip with three SER test structures was fabricated using commercial 65 nm
CMOS technology. The detailed test chip layout is shown in Figure 6. The test chip was
irradiated with heavy ions. Four heavy ions with different parameters were chosen, as
shown in Table 3. The heavy-ion dose rate was 1 × 104 ions/cm2/s, and the flux was
1 × 107 ions/cm2. Before the radiation experiment, the cover plate from the test chip
was removed. The front side of the chip was positioned within the range of the ion
beam’s influence. During radiation experiments, the ion beams randomly strike their
respective targets. Some ions strike the test chips and generate transient pulses. The test
system consisted of a test chip and other necessary chips, such as field-programmable gate
arrays (FPGAs) and serial communication chips [29,30]. FPGAs connected all signal ports
(input, output, and clock) of the test chip to provide input and clock signals. They were
also used to capture output signals when the test chip was irradiated. After conducting
heavy-ion experiments, the error counts were exported to the computer using the serial
communication interface.
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6.3.4  整个测试芯片

本节设计的整个测试芯片包括 8 条被测电路，包括了 3 种类型的测试电路，

每种测试电路均有若干个对照电路。这 8 条测试链通过 8 选 1 选择器连接在一起，

选择器的输出与片上脉冲测量电路的输入相连。

片上脉冲测量电路中反相器链为 80 级，一个反相器链的延时为 25 ps，该片上

脉冲测量电路的量程为 25 ps ~ 2 ns。 终的芯片版图布局如图 6.13 所示。

图 6.13 终测试芯片版图

6.4  试验结果与讨论

由于重粒子束流时间的限制，只对大规模组合电路软错误率测试结构进行了

重粒子试验，试验设备以及装置与第四章介绍的一致，重粒子试验过程中，粒子

通量为 2x107 ions/cm2。试验结果如图 6.14 所示，可以看到 终输出端的 SET 脉宽

分布范围比较广，甚至出现了 1 ns 的脉冲，这是由于输出端的多个 SET 汇聚到

OR 门时产生的叠加效果。

该大规模组合电路测试电路中被测电路的面积为 3290.265 μm2，基于粒子的通

量，总共轰击到被测电路上的粒子数为 658 个，总共产生了 44 个 SET 脉冲，比例

约为 6.7%。采用第五章介绍基于粒子入射位置的软错误率评估平台对测试芯片中

的 C1908 测试电路进行评估，参数设置与重粒子试验一致，评估结果发现评估结

果与试验结果的量级相当。

Basic SER test structure

Test result
output circuits

Circuit A
24,142 instances

a

Circuit C
21,684 instances

Circuit B
16,425 instances

Figure 6. The basic SER test structure layout and the detailed test chip layout.

Table 3. Heavy ions used in the experiment.

Ion Energy at the Effective LET Range
Silicon Surface (MeV) (MeV·cm2/mg) (um)

Cl 165 15.2 51.8
Ti 185 21.2 37.9
Ge 205 37.6 35.5
Kr 835.5 99.8 41.2

5.2. SER Evaluation Setup

The proposed evaluation approach and the SPICE-level evaluation approach were
used to investigate the SER of test circuits. The gate-level netlist of three test circuits serves
as an input file for the evaluation approaches. The number of transient pulse injections per
test circuit is determined by dividing the particle flux by the layout area of the test circuit.
The position and moment of transient pulse injection are random. This is due to the fact the
location and momentum of the incident particles are random during radiation experiments.
The width of transient pulses injected into the test circuit is set to 100 ps, 200 ps, 350 ps, and
500 ps, respectively. It represents the various pulse widths generated by different particles.
These data were determined through our previous transient pulse measurements [31–33].
For each test circuit, the number of soft errors can be obtained when the evaluation tool
completes the transient pulse width injection simulation. According to the number of soft
errors, the soft error cross-section can be calculated using the following equation:

SER =
Nerror

fions × Ninstances
(12)
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where Nerror represents the number of soft errors that is calculated by the evaluation
approaches. fions represents the flux of ions. Ninstances represents the total instance number
of test circuits.

5.3. SER Evaluation Results Comparison

The evaluation results of the proposed approach and the conventional SER evaluation
approach are compared first. The connection weight values were saved after training the
BPNN model. They are imported again into the BPNN model during the evaluation of test
circuits. The BPNN model is used to calculate the pulse propagation probabilities in circuits
A, B, and C. The calculated results are compared with the transient pulse propagation
probabilities simulated by the circuit-level simulation tool. The prediction accuracy is
calculated using Equation (10) and the results are shown in Table 4. The average prediction
accuracy of the three test circuits is approximately 0.8. Although the three circuits have
different circuit structures, the trained BPNN model can still accurately calculate the
probability of transient pulse propagation.

Table 4. The prediction accuracy of three test circuits.

Transient Pulse Circuit A Circuit B Circuit C
Propagation Prediction Prediction Prediction

Probability Range Precision Value Precision Value Precision Value

0.1 0.832 0.807 0.821
0.2 0.829 0.811 0.825
0.3 0.813 0.824 0.817
0.4 0.824 0.803 0.813
0.5 0.809 0.795 0.808
0.6 0.805 0.792 0.811
0.7 0.789 0.801 0.804
0.8 0.775 0.789 0.796
0.9 0.764 0.773 0.792
1 0.765 0.768 0.788

Figure 7 shows the comparison between the evaluation results and experimental
results. The evaluation results obtained by the proposed approach show good consistency
in both trend and order of magnitude. The difference between the results obtained using
the proposed approach and the experimental results is calculated. The average value is
23.5%, which is 7.5% higher than that between the conventional evaluation approach and
the experimental results. When the LET value is 15.2 MeV·cm2/mg, there is a greater
discrepancy between the simulation results and the experimental results. With the increase
in LET value, the simulation results are in good agreement with the experimental results.
Some reasons may cause this difference. The first reason is that the proposed approach does
not consider the transient pulse reshaping and reconvergence. Transient pulse reshaping or
reconvergence results in a change in the width of the transient pulse, which in turn change
the data value of Twidth in Equation (11). Circuit-level simulations are used to investigate
the difference in circuit A at low LET values. When particles strike most instances, it only
generates a transient pulse that propagates to the input of the flip-flop. However, when
a particle strikes a specific instance with a large fanout, although it only produces one
transient pulse, more than one transient pulse is propagated to the input of the flip-flop
due to pulse reconvergence, as shown in Figure 8. For the proposed approach, it is still
evaluated based on the pulses that propagate independently on different data paths. As a
result, the evaluation results may not accurately reflect soft errors and may differ from the
experimental results. When the LET value increases, the transient pulse width generated by
the ions also increases. It reduces the change in the width and number of transient pulses
caused by the pulse reconvergence. The evaluation results obtained using the proposed
evaluation method are closer to the experimental results.
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（待补充） 
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（待补充）

Figure 7. The simulated SER results with different evaluation approaches.

The other reason for this difference is the evaluation accuracy of the transient pulse
propagation. The transient pulse propagation is evaluated using the BPNN. The training
accuracy of connection weight values is the key factor that affect the evaluation accuracy.
In our previous works, we observed a significant decrease in the prediction precision
value when the probability of transient pulse propagation exceeded 0.7. It indicates that
the propagation probability obtained by the BPNN are significantly different from the
conventional transient pulse simulation results [34]. Because fewer combinational logic
cells with large circuit stages have a high probability of transient pulse propagation, the
training set does not include enough data, and the connection weight values are not
effectively trained for this situation. Increasing the train set data can improve the training
accuracy of connection weight values. It may be an effective way to solve this difference.
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Figure 8. The width and number variation of transient pulses due to pulse reconvergence.

Figure 9 shows the average simulation runtime of the proposed approach and the
conventional SER evaluation approach. For the conventional evaluation approach, the
circuit-level simulation tool is used to simulate the propagation of transient pulses. This
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simulation helps determine if the flip-flops can capture the transient pulses. Although the
size of the test circuit is only 10,000 instances, it results in a significant increase in time cost
for a single circuit-level simulation. The significant time cost greatly reduces the evaluation
performance of the conventional evaluation approach. For the proposed approach, a ma-
chine learning model (Equations (4)–(6)) is utilized to calculate the probability of transient
pulse propagation. Subsequently, the transient pulse is captured using the transient pulse
probability equation (Equation (11)). The proposed method can determine the soft error
of the circuit solely through equation calculations. Therefore, the proposed method can
significantly reduce the time required and enhance the performance of soft error evaluation.

In addition, Circuit C has only 5000 more instances than Circuit B. However, the
simulation time for the conventional evaluation methods is nearly doubled. When the
circuit size increases further, the evaluation time of traditional evaluation methods becomes
unacceptable, limiting the size of the circuit that can be supported by this approach. For
the proposed approach, as the circuit size increases, the evaluation time only shows a slight
improvement. The proposed approach can support larger scale circuits, which improves
the performance of the soft error evaluation method.
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Figure 9. The average simulation runtime of two SER evaluation approaches.

6. Conclusions

This paper has presented an approach to evaluate the SER of integrated circuits. A
machine learning model (BPNN) is implemented in the proposed approach. It helps
to evaluate the transient pulse propagation and capture. Some commercial integrated
circuits are designed and fabricated to validate the capability of the proposed approach.
Compared to experimental data and the conventional SER evaluation results, the proposed
approach also demonstrates a strong correlation in terms of trend and magnitude with
the improvement in simulation runtime. The proposed evaluation tool has been used to
evaluate the SER of circuits with more than 10,000 gates, which demonstrates that the
proposed model can be applied to evaluate logic circuits with more than 10,000 gates. It is
useful for circuit design and radiation hardening.
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