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Abstract: Images captured from different viewpoints or devices have often exhibited significant
geometric and photometric differences due to factors such as environmental variations, camera
technology differences, and shooting conditions’ instability. To address this problem, homography
estimation has attracted much attention as a method to describe the geometric projection relationship
between images. Researchers have proposed numerous homography estimation methods for single-
source and multimodal images in the past decades. However, the comprehensive review and analysis
of homography estimation methods, from feature-based to deep learning-based, is still lacking.
Therefore, we provide a comprehensive overview of research advances in homography estimation
methods. First, we provide a detailed introduction to homography estimation’s core principles and
matrix representations. Then, we review homography estimation methods for single-source and
multimodal images, from feature-based to deep learning-based methods. Specifically, we analyze
traditional and learning-based methods for feature-based homography estimation methods in detail.
For deep learning-based homography estimation methods, we explore supervised, unsupervised,
and other methods in-depth. Subsequently, we specifically review several metrics used to evaluate
these methods. After that, we analyze the relevant applications of homography estimation and show
the broad application prospects of this technique. Finally, we discuss current challenges and future
research directions, providing a reference for computer vision researchers and engineers.

Keywords: homography estimation; single-source images; multimodal images; feature extraction;
deep learning

1. Introduction

Today, images captured from various viewpoints or equipment, including remote
sensing satellites, can display considerable geometric and photometric variances caused
by factors like fluctuating environmental conditions, dissimilarities in camera technol-
ogy, and unstable shooting scenarios. This difference makes combining or comparing
these images difficult, affecting many applications such as augmented reality [1–3], object
recognition [4,5], and panoramic stitching [6–8]. To solve this problem, researchers have
employed various image processing techniques such as image registration [9,10], color
correction [11,12], and homography estimation [13]. Among these techniques, homography
estimation has received considerable attention for its ability to describe the geometric
projection relationship between images.

Existing geometric projection transformation models mainly include projection trans-
formations, rigid body transformations, and affine transformations. Rigid and affine trans-
formations are only suitable for certain deformations and small perspective changes. In
contrast, the projective transformation is a more complex transformation model capable of
handling a broader range of viewpoint changes and perspective distortions. Homography
estimation focuses on determining a projective transformation between two images [14].
With this transformation, we can effectively understand and compensate for the geometric
differences between the images, leading to better image registration. The central of this
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method is the homography matrix, which can process geometric changes such as rotation,
translation, scaling, and projection [15,16]. With decades of research, numerous homog-
raphy estimation methods have been proposed for various applications, such as image
registration [17], image fusion [18,19], and object tracking [20].

Early research in homography estimation concentrated on single-source images from
the same sensor or modality. Differences between these images were often caused by camera
movement or rotation. So, early methods [21–23] used local features of the image, such
as corner points and edges, for estimation. These traditional methods become inadequate
when faced with large geometric variations, occlusions, or nonlinear photometric changes.
With the rise of deep learning techniques, researchers are beginning to apply their powerful
representation learning capabilities to capture critical information and structure from
images more effectively.

With time, technology and application requirements have changed. Researchers have
realized that only processing single-source images is not enough. In practical scenarios,
such as medical image fusion [24] or multimodal image registration [25], the images to
be processed are often from different sensors or modalities. This not only presents the
challenge of geometric variations but also introduces photometric differences resulting
from different sensors or modalities. Therefore, cross-sensor or cross-modality homography
estimation has become an important and challenging research direction, leading researchers
to turn to multimodal image homography estimation.

The overall structure of this survey is shown in Figure 1. Section 2 describes its central
principle and matrix representations in detail. In Section 3, we then discuss advances in
homography estimation methods, especially for single-source and multimodal images.
To enable a comprehensive evaluation of these methods, Section 4 provides a series of
evaluation metrics of homography estimation methods for researchers’ reference. Mean-
while, in Section 5, we discuss the applications of homography in various fields. Then,
Section 6 explores current research challenges and considers possible future research direc-
tions. Finally, in Section 7, we summarise this paper’s primary points and homography’s
development process.
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2. Homography Transformation of Images

In this section, we first introduce the homography principle and show a simple
procedure for calculating homography matrices. Secondly, we show two representations of
the homography matrix.

2.1. Homography Principle

Homography transformation of images is usually defined as the projection mapping
relationship between images of the same planar object taken from different positions by two
lens distortion-free cameras [26]. Specifically, it describes the transformation relationship
from one plane to another, as shown in Figure 2.
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The homography matrix is often used to represent the homographic transformation
relationship between two images. The homography matrix H is defined as follows:

H =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 (1)

where [h11, h12, h21, h22], [h13, h23] and [h31, h32] represent the affine transformation, the
translation transformation, and the perspective transformation between images, respec-
tively. Additionally, the coordinate transformation relationship between the corresponding
points of the two images can be expressed as:x′

y′

1

 = H

x
y
1

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

x
y
1

 (2)

where (x, y, 1) represents the homogeneous coordinates of a feature point in the first
image; (x′, y′, 1) denotes the homogeneous coordinates of the corresponding point in the
other image; and H stands for the homography matrix. Expand Equation (2), we can get:

x′ = h11x + h12y + h13
y′ = h21x + h22y + h23
1 = h31x + h32y + h33

(3)
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Then, put the third equation into the first two equations, and we can obtain the
following:

x′ = x′
1 = h11x+h12y+h13

h31x+h32y+h33

y′ = y′
1 = h21x+h22y+h23

h31x+h32y+h33

(4)

Further, by multiplying the denominator to the left, we can transform it into:

(h31x + h32y + h33)x′ = h11x + h12y + h13
(h31x + h32y + h33)y′ = h21x + h22y + h23

(5)

Moving the left-hand side of the equation over to the right-hand side, we can transform
this into:

0 = (h11x + h12y + h13)− (h31x′x + h32x′y + h33x′)
0 = (h21x + h22y + h23)− (h31y′x + h32y′y + h33y′)

(6)

We are rewriting Equation (6) using matrix notation as Ah = 0 results in the expression
for Equation (7).

0 = Ah =

[
x y 1 0 0 0 −x′x −x′y −x′

0 0 0 x y 1 −y′x −y′y −y′

]


h11
h12
h13
h21
h22
h23
h31
h32
h33


(7)

where h = [h11, h12, h13, h21, h22, h23, h31, h32, h33]
T, is a nine-dimensional column vector.

The homography matrix H is a 3× 3 homogeneous matrix. Its final element, h33, is
normalized to 1 so that H has only 8 degrees of freedom. To solve the homography matrix,
we need corresponding coordinate points. Two linear equations can be derived from each
pair of matched coordinate points. Therefore, we need at least four pairs of corresponding
points to compute the homography matrix between two images [27]. In practice, we usually
use more than four pairs of corresponding points because of the coordinate errors caused by
noise. Finally, Direct Linear Transformation (DLT) [28] and Singular Value Decomposition
(SVD) [29] are used to obtain the homography matrix.

2.2. Homography Matrix Representations

In homography estimation methods, the representation of the homography matrix can
be divided into two representations: the 4-point parameterization and the homography
flow. In this section, we will introduce them separately.

2.2.1. 4-Point Parameterization

The homography matrix has eight degrees of freedom, so finding four pairs of corre-
sponding matches between two images solves the homography matrix. In deep learning-
based homography estimation methods, it is not appropriate to use the parameter expan-
sion of the 3× 3 form of the homography matrix as the regression value predicted by the
deep learning method. This is because the parameters within the homography matrix are
mixed with different meanings. For instance, the rotation and scaling of the affine transform
is denoted by [h11, h12, h21, h22], and the translation is denoted by [h13, h33]. The rotation
terms usually have smaller values than the translation terms, and balancing both terms in
an optimization problem is challenging. Additionally, it is difficult to enforce non-singular
constraints on the predicted homography matrix H [30]. Therefore, a four-point parameter-
ized form is commonly used in deep learning-based homography estimation methods to
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tackle these concerns [31]. The 4-point parameterized homography matrix H4points can be
expressed as follows:

H4points =


∆x1 ∆y1
∆x2 ∆y2
∆x3 ∆y3
∆x4 ∆y4

 (8)

where (xi, yi) and
(

x′i , y′i
)

denote the corresponding points between the two images;
∆xi = x′i − xi and ∆ yi = y′i − yi represent the offsets of the horizontal and vertical
coordinates of the corresponding points, respectively. The four-point parameterized form
of the homography matrix H4points and the 3× 3 form of the homography matrix H are
equivalent. However, the four-point parameterized form of the matrix is more conducive
to network training and convergence [32]. Finally, it is converted into a homography matrix
by the DLT algorithm. This process is shown in Figure 3.
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2.2.2. Homography Flow

The homography flow presents a novel approach to solving homography matrices [33].
It is characterized as a specialized form of optical flow, with dimensions of H ×W × 2, and
subject to homography constraints. The central concept entails producing eight stream
bases by modifying the entries of one homography matrix at a time, thereby yielding eight
homography matrices. Each matrix is subsequently converted into a stream map in relation
to the image coordinates. This yields eight homography stream bases and reconstructs
homography streams Hab by learning to combine weights in the space spanned by said
stream bases. As it is constrained by homography, the flow that responds alone falls into
an 8-dimensional subspace within the 2HW − D space of the optical flow. Therefore, it can
be represented by the eight positive alternating current bases that span the subspace, as
demonstrated in:

∃{h i} s.t. hab = ∑
i

wihi (i = 1, 2, . . . , 8)

where hi ∈ R2HW , hT
i hj = 0

(9)

where hab is the tiled version of Hab and {wi} are the coefficients of the flow basis. To
obtain an orthogonal flow basis, eight homography matrices are generated by modifying
each entry hi of the unit homography matrix, except that the entry located at position (3, 3)
is always normalized to 1. Then, given the image coordinates, the homography matrices
can be converted to homography flow maps by transforming the image coordinates and
subtracting their original positions. Then, the eight homography streams are normalized
by their maximum stream amplitude and then QR decomposed. It can be described as:

M = Q · R
(

M, Q ∈ R2HW×8, R ∈ R8×8
)

(10)

where each column of the matrix M represents a tiling-normalized homography flow
Hi, following the method described above. Via QR decomposition, each column of Q
becomes orthogonal, forming flow bases that span the homography subspace, denoted as
Q = {h1, h2, . . . , h8}. This means that each flow base is associated with a tangent space
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at the origin of the homography group. The final predicted homography flow is then
achieved by accurately predicting the weights {wi} of each of the eight flow bases. Figure 4
illustrates the flow represented by the block diagram.
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3. Homography Estimation Methods

We present a summary and classification of these studies and propose a structural
block diagram illustrated in Figure 5. Numerous studies have advanced methods for
estimating image homography. Homography estimation is classified into two categories:
single-source image homography estimation methods and multi-source image homography
estimation methods based on image sources. Each category is further subdivided. We will
comprehensively review each method in detail.
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3.1. Single-Source Image Homography Estimation Methods

Single-source images are usually acquired by the same equipment from different
viewpoints or at different times. These images often show significant geometric variations
due to small camera positions or viewing angle changes. To accurately align these images,
homography estimation becomes a powerful tool. At this stage, homography estimation
algorithms for single-source images can be classified into feature-based and deep learning-
based methods.
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3.1.1. Feature-Based Methods

The feature-based homography estimation method first detects the feature points
in the image by a feature extraction algorithm and computes the similarity metric for
matching. Then, utilizing the mapping relationship of the matched feature points, the
parameters of the homography matrix are solved [34]. This procedure is illustrated in
Figure 6. Feature-based methods can be further divided into two categories: traditional
methods and learning-based methods.
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Traditional Methods. Traditional methods are divided into three main steps: feature
detection, feature matching, and homography matrix solving. Firstly, feature extraction
algorithms are used to detect feature points in the image and to extract descriptors around
these feature points, which are generally represented as vectors. Common methods for
extracting features include Scale Invariant Feature Transform (SIFT) [21], Speeded Up
Robust Features (SURF) [22], Oriented FAST and Rotated BRIEF (ORB) [23], etc. Similarity
measures like the Hamming or Euclidean distance are calculated to provide a criterion for
matching feature points. Finally, to improve the estimation’s robustness, e.g., RANSAC or
other robust estimation algorithms are usually used to find a consistent subset from these
matches and thus estimate the homography matrix.

In recent years, feature point extraction algorithms have received attention and im-
provement from many researchers. In 2012, Chum et al. [35] proposed a novel homography
matrix estimation method. This method is based on the correspondence between two or
more local elliptic features and is estimated using a first-order Taylor expansion. Notable,
only one homography model was generated for each pair of elliptic features. This design
not only reduces computational costs but also enhances accuracy. In 2014, Liu et al. [36]
proposed BB-Homography, a joint binary feature and bipartite graph matching algorithm
for homography estimation. First, BB-Homography employs bipartite Graph Matching
(GM) to enhance the matching results of binary descriptors and ascertain the correlation
between preliminary keypoint correspondences and homography estimation. Next, GM is
iteratively executed to refine the results to obtain more accurate homography estimates.
Yan et al. [37] proposed a Homography Estimation method based on Appearance Similarity
and Keypoint correspondence (HEASK), combining the keypoint correspondence and
appearance similarity models. In the keypoint correspondence model, the Laplace distribu-
tion replaces the Gaussian distribution to represent the distribution of inlier location error.
In the appearance similarity model, the Enhanced Correlation Coefficient (ECC) is used to
describe image similarity. The combination of these two models makes the results of the
homography estimation more robust.

In 2016, Zhao et al. [38] proposed a feature-based homography estimation method to
enhance estimation accuracy and better handle positioning errors. The method introduces
the compensation, representation, and weighting methods for localization error based
on existing methods to alleviate the problem of degradation of estimation accuracy and
robustness caused by localization error. Specifically, it uses High-accurate localized features
for SIFT (HALF-SIFT) to compensate for localization errors caused by feature extraction
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and the covariance matrix to describe localization errors caused by image noise. However,
the running time of the method is long. In 2019, Barath et al. [39] proposed a geometric
interpretation of the angles and scales provided by orientation and scale-variant feature
detectors such as SIFT. They introduced two new generic constraints for scales and rotations
and designed a new solver capable of estimating the single homography matrix from at
least two correspondences. Suárez et al. [40] proposed Boosted Efficient Binary Local Image
Descriptor (BEBLID) in 2020. This method is similar to SIFT in accuracy but better in
computational efficiency than ORB.

After the SIFT algorithm was proposed, some traditional methods considered tradeoffs
in the balance between speed and accuracy. One Improving approach is HALF-SIFT, which
aims to improve accuracy. Other algorithms, such as ORB and BEBLID, are developed to
balance computation time and accuracy. Therefore, algorithms such as SIFT or HALF-SIFT
are better for images with complex scene changes. For cases requiring a higher response
speed, it is preferable to use algorithms such as SURF and BEBLID.

Furthermore, besides refining the feature extraction algorithms, some scholars fo-
cus on improving the RANSAC outlier suppression algorithm. Examples include FT-
RANSAC [41], MAGSAC++ [42]. In 2023, Rodríguez et al. [43] proposed several mod-
ifications to the RANSAC algorithm. The method combines affine approximation and
an inverse approach to improve the homography estimation between pairs of images.
This inverse approach defines estimation robustness and enables adaptive thresholding to
differentiate outliers, improving the success rate of image pair recognition.

Notable, most traditional homography estimation algorithms are based on calculating
the mapping relationship between feature points to solve the homography matrix, but
some scholars hold a different view. They believe that line feature-based homography esti-
mation methods outperform feature point-based methods in terms of performance, mainly
because line features are usually more noise-resistant than point features in detection. In
2008, Dubrofsky et al. [44] proposed an extended normalized direct linear transformation
algorithm. The approach integrates the correspondence of line features into the compu-
tation of the homography matrix by introducing line normalization equations that are
compatible with point normalization. However, Zeng et al. [45] pointed out that line-based
homography estimation can be highly unstable when the image line passes through or
near the origin. To tackle this issue, they proposed a novel line normalization method.
The approach first performs a normalization transformation on the corresponding line
segments of the two sets of images to make their distribution in the images more uniform.
Subsequently, the DLT algorithm is employed on this new set of line correspondences to
solve the homography matrix. In 2016, Huang et al. [46] proposed a homography estima-
tion method for ellipses using a common self-polar triangle of two ellipses. The method
obtained the correspondence of four lines using the quadratic curves and the self-polar
triangles, which provides sufficient computational conditions for homography estimation.

Based on this, some researchers began using the correspondences of point and line
features to solve the homography [47,48]. In other words, by effectively using all available
point and line correspondences, the accuracy of homography estimation can be significantly
improved under different measurement conditions. This brings a new direction for further
research. However, whether based on point features or line features, the performance of
traditional homography estimation methods is still not stable enough in highly noisy or
non-texture images. In addition, Table 1 provides a comprehensive analysis of homography
estimates from traditional models.

Learning-Based Methods. Learning-based methods for homography estimation use
neural networks to replace the feature extraction or feature matching in traditional algorithms
and then use traditional methods to estimate the homography transformation parameters at
other steps. Both learning-based and traditional methods involve feature detection, feature
matching, and homography matrix solving. The main difference is that traditional methods
usually rely on hand-designed feature extractors to detect and match local features, and
learning methods use convolutional neural networks to detect or match features.
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Table 1. Single-source image homography estimation algorithm based on traditional methods. The
table lists the year of publication, core ideas, advantages, and limitations of each method.

Method Refer. Year Core Idea Advantages Limitations

Traditional
Methods

Point
Feature

SIFT [21] 2004
A technique for extracting
distinct, invariant features

from images.

The descriptors are
invariant to image
scale and rotation
and are robust in

most scenes.

There is a substantial
computational

workload.

SURF [22] 2006

A new detector and
descriptor for interest
points are introduced,

with invariance to scale
and rotation.

It surpasses
preceding methods in
terms of repeatability,

uniqueness, and
robustness.

Runs slower than
ORB and is less

accurate than SIFT.

ORB [23] 2011
Presented aa rapid binary

descriptor founded on
BRIEF.

Rotation invariant
and resistant to noise.

Trade accuracy for
speed, less accurate

than SIFT.

Homography
estimation from

correspondences of
local elliptical features

[35] 2012

Estimating homography
from the correspondence

of two or more local
elliptic features.

Develop models with
comparable or greater
accuracy than at the

time, at lower
computational cost.

The quadratic
constraint arising

from the rotation is
ignored in the

estimation.

BB-Homography [36] 2014

A novel approach that
merges fast binary

descriptor matching and
bipartite graph for

homography estimation.

Attains high
homography

estimation accuracy
while maintaining

high computational
speed.

Dose not solve the
problem of 3D rigid
and non-rigid pose

estimation yet.

HEASK [37] 2014

Combine the probability
models of keypoint

correspondences and
appearance similarity in a

Maximum Likelihood
framework.

Consistently achieves
accurate homography

estimation under
different

transformation
degrees and different

inlier ratios.

Because of ECC
calculations, HEASK

methods are more
time-consuming than

others.

Accurate and robust
feature-based

homography estimation
using HALF-SIFT and

feature localization
error weighting

[38] 2016

Compensating and
representing localization

error with the HALF-SIFT
method and covariance

matrix.

More accurate and
robust under varying

noise levels and
inlier ratios.

Requires a longer
run time.

Homography from two
orientation-and

scale-covariant features
[39] 2019

Proposed the geometric
interpretation of feature

detectors regarding angle
and scale.

Robust calculators
require fewer

iterations and yield
stable numerical

results.

The performance
could be impacted by

severe variability
conditions.

BEBLID [40] 2020 A binary image descriptor
efficiently learned.

Produces improved
local descriptors and

resolves the
asymmetry issue in

matching and
retrieval.

Accuracy still slightly
lower than SIFT.

Robust homography
estimation from local

affine maps
[43] 2023

Applies affine
approximations and

a-contrario procedures to
improve homography

estimation.

Enhancing the
likelihood of

accurately identifying
image pairs within
difficult matching

databases.

The number of
internal iterations of

the RANSAC
algorithm does not

decrease.

Line
Feature

Combining line and
point correspondences

for homography
estimation

[44] 2008

The derivation of a line
normalization equation
compatible with point

normalization.

Will produce more
accurate results when
there are more point

correspondences than
line correspondences.

The correspondence
between point and

line could be
non-existent or

inconsistent.

A new normalized
method on line-based

homography estimation
[45] 2008

A new normalized
method designed for

line-based homography
estimation.

Removing the risk
cases and increasing

the accuracy and
robustness.

Normalization may
introduce noise and

impose limitations on
non-linear

transformations.

Homography
estimation from the
common self-polar
triangle of separate

ellipses

[46] 2016

Homography estimation
using four-line

correspondences obtained
from common self-polar

triangles.

No requirements on
the physical

information of the
patterns and the
camera and no

ambiguity on the
solution.

Does not apply to
other distributions of
two coplanar ellipses

or circles yet.
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In 2016, Yi et al. [49] proposed the Learned Invariant Feature Transform (LIFT) algo-
rithm, which combines local features for detection and description. It does so by integrating
three standard pipeline components into a differentiable network and training end-to-end
using backpropagation. In 2018, DeTone et al. [50] presented the Self-Supervised Interest
Point Detection and Description (SSIPD) algorithm, known as the SuperPoint algorithm.
The algorithm can simultaneously compute pixel-level interest point locations and cor-
responding descriptors in forward passes by running a fully convolutional model on a
full-size image. They further propose a multi-scale, multi-homography method to improve
the reproducibility of interest point detection and enable cross-domain adaptation (e.g.,
from synthetic to real). Notable, the SuperPoint algorithm can identify a wider range of
points of interest compared to both the original pre-adapted depth model and other tradi-
tional corner detectors. In 2019, Tian et al. [51] proposed the Similarity Regularization for
Local Descriptor Learning (SOS-Net) algorithm, which incorporates second-order similarity
into local descriptor learning to achieve more precise outcomes. Zhang et al. [52] proposed
the Order-Aware Networks (OANs) for probabilistic outlier detection and relative pose
regression encoded in the underlying matrix. OANs comprise three hierarchical operations.
Firstly, the correspondences of unordered inputs are clustered to capture the local context
of sparse correspondences by learning soft assignment matrices. These clusters have a
canonical order and are independent of input alignment. Second, these clusters relate
to each other spatially to form the global context of the correspondences. Finally, the
context-encoded clusters are restored to their original size using an upsampling operator.

As feature information extracted by neural networks gradually becomes complex,
researchers find that the traditional feature-matching methods have limitations. Thus, they
began to use neural networks to replace the feature-matching algorithms [53–55]. In 2020,
Sarlin et al. [56] proposed SuperGlue, a local feature-matching network based on Graph
Neural Networks (GNN). SuperGlue uses a flexible attention-based context aggregation
mechanism to jointly reason about the underlying 3D scene and feature assignments over
the complete graph. Moreover, it matches local features via the joint identification of
correspondences and rejection of non-matchable points. In 2022, Shi et al. [57] proposed
a Cluster-based Coarse-to-Fine Graph Neural Network (ClusterGNN). Compared to Su-
perGlue, ClusterGNN integrates a progressive clustering module to decrease redundant
connections in the whole graph computation, thus reducing the misclassification of images
and improving feature-matching accuracy. Wang et al. [58] proposed a hierarchical feature
extraction and matching transformer called MatchFormer. MatchFormer uses a lightweight
decoder similar to Feature Pyramid Network (FPN) to fuse multi-scale features and inte-
grates self-attention and cross-attention to perform feature extraction and feature similarity
learning to achieve the best feature matching. These methods show that neural networks
have equally powerful capabilities for feature matching.

The feature estimation method’s accuracy has been improved by replacing the feature
extraction or matching parts of the traditional method with neural networks. However,
since the other processes and outlier suppression still use traditional methods, they still
have some shortcomings when faced with challenging image scenarios. Nonetheless, the
learning-based methods also bring new insights that influence the development of deep
learning-based homography estimation methods. In addition, Table 2 presents a detailed
examination of learning-based homography estimation for single-source images.

3.1.2. Deep Learning-Based Methods

With the development of deep learning techniques, it has achieved excellent results in
the field of computer vision, especially in tasks such as image classification, target detection,
and semantic segmentation. Notable, more and more scholars have begun to apply deep
learning to the research of homography estimation, and significant progress has been
achieved. Compared to learning-based methods, deep learning-based methods transform
the traditional multi-step feature extraction and matching process into a unified, trainable
framework that novelty understands and handles complex image correspondences. This
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technique dramatically improves the efficiency and quality of feature extraction and opens
new ways to improve matching accuracy and robustness.

Table 2. Single-source image homography estimation algorithm based on traditional methods. The
table includes every approach’s publication year, core ideas, advantages, and limitations.

Method Refer. Year Core Idea Advantages Limitations

Learning Based
Methods

LIFT [42] 2016

Combines the pipelines for
local feature detection and

description into a single
differentiable network.

Implementing hard
negative mining

techniques across the
image to obtain more
precise descriptors.

Requires supervision from
classical

Structure-from-Motion
(SfM) system.

Super Point [43] 2018
A self-supervised framework

for training interest point
detectors and descriptors.

Capable of detecting a
more diverse range of

interest points compared to
other detectors.

Model performance
requires improvement in

semantic segmentation and
object detection and poor
results in outdoor scenes.

SOS-Net [44] 2019
Incorporate second-order

similarity regularization into
training.

Achieve outstanding
results in several standard

benchmark tests across
various tasks.

The localized patch dataset
used in paper does not

guarantee sufficient
intra-class samples to

accurately estimate the
parameters.

OANs [45] 2019

Propose an Order-Aware
Network and regress the

relative pose encoded by the
essential matrix.

The accuracy of the
two-view geometry and

correspondences is
improved compared to the

state of the art.

Re-train all models on the
same data. If training a

larger model, this model
drops on unknown scenes.

SuperGlue [56] 2020

Matches two groups of local
features by collectively

finding correspondences
whilst rejecting

non-matchable points.

Enabling highly accurate
relative pose estimation on

extreme wide-baseline
indoor and outdoor image

pairs.

Complete graph
representation results in
wasteful attention-based

message passing and
suffers from computational

and memory complexity.

Clustergnn [57] 2022

An attentional GNN
architecture that operates on

clusters to learn the
feature-matching task.

Significant decrease in both
runtime and memory

usage in the detection of
dense objects.

Unable to extract repeated
keypoints when dealing

with image pairs with large
variations in appearance.

MatchFormer [58] 2022

Interleave self-attention for
the extraction of features and
cross-attention for matching

features.

A multi-win solution in
efficiency, robustness, and

precision.

Work entirely in the 2D
image domain, ignoring

the underlying 3D
geometry of the scene.

These deep learning-based homography estimation methods can be mainly classi-
fied into two categories: supervised and unsupervised. They usually adopt two forms
of homography matrix representation: 4-point parameterization and homography flow.
Specifically, the 4-point parameterized form is commonly used in both supervised and
unsupervised methods, while the homography flow form is mainly used in unsupervised
methods.

Supervised Methods. Supervised homography estimation methods primarily utilize
synthetic examples with ground-truth labels to train the network. In 2016, DeTone et al. [31]
pioneered the introduction of deep learning into the field of homography estimation, pro-
pounding a 4-point parametric representation of the homography matrix for network
training and convergence. Figure 7 shows their network structure. This research utilizes
Convolutional Neural Networks (CNNs) to automatically learn and predict geometric
transformations between images from pixel-level data, demonstrating the potential of
deep learning in understanding and processing complex geometric relationships between
images. Additionally, regarding the importance of pixel analysis in homography estima-
tion, the study by Valjarević et al. [59] provides a valuable perspective. They conducted
a detailed pixel-level analysis of forest change using GIS and remote sensing techniques,
illustrating the extraction of useful information from complex environmental data. This
showed that pixel-level information can effectively understand and interpret complex spa-
tial relationships in unstructured environments. Incorporating the deep learning approach
of DeTone et al. with the pixel analyses of Valjarević et al. can provide a more compre-
hensive framework for understanding and improving homography estimation techniques.
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The interdisciplinary integration enriches our understanding of homography estimation
methods and highlights the importance and application value of pixel-level analysis when
dealing with complex visual data. It suggests potential improvements to current methods
and provides new directions for future research.
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In 2018, Wang et al. [60] proposed a ShuffleNet-style compressive neural network
for point group convolution and channel shuffling-based homography estimation. This
network is only 9.9 MB and achieves robust homography estimation with few parameters.
Following the same thought, Chen et al. [61] developed a scalable compression network
for homography estimation based on the ShuffleNetV2 compression unit. The network
diminishes the model size to under 9 MB and well balances the accuracy and inference
speed of homography estimation. In 2019, Kang et al. [62] proposed a hybrid framework,
HomoNetComb, for homography estimation. The framework first uses a lightweight CNN
model, HomoNetSim, to predict the initial homography and then minimizes the masked
pixel-level photometric discrepancy between the distorted image and the target image
by a gradient descent algorithm to iteratively refine the homography matrix. Due to the
small network size of HomoNetSim, the computational time for training and inference is
reduced extensively.

In 2020, Le et al. [63] designed a multi-scale neural network to handle large motion
scenes. They integrated a dynamics mask network into the multiscale network to adapt to
dynamic scenes, thus developing a dynamically aware homography estimation network
capable of both homography and dynamic estimation. This method can robustly estimate
homography when dealing with dynamic scenes, blurry artifacts, or challenging scenes
lacking texture. Mi et al. [64] proposed a recurrent convolutional regression network for
video homography estimation by combining a CNN with a Recurrent Neural Network
(RNN) [65] with Long Short-Term Memory (LSTM) units [66]. The network exploited
the temporal dynamics between frames in the video to accurately estimate homography
between non-adjacent frames. In 2021, Shao et al. [67] proposed LocalTrans, a local trans-
former network that embeds a multiscale structure specifically designed to explicitly learn
the correspondence between multimodal input images with different resolutions. This
network provides a local attention map for each position in the feature. The network can ef-
ficiently capture short- and long-range correspondences by combining the local transformer
with the multi-scale structure. It accurately aligns images even with a 10× resolution gap
and performs excellently on challenging cross-resolution datasets.

In 2022, Cao et al. [68] proposed the Iterative Homography Network (IHN) based on
the iterative concept. Unlike previous methods that utilize network cascades or untrainable
iterators for iterative refinement, IHN’s iterators possess tied weights and are entirely
trainable. To better address dynamic scenes with moving objects, they designed the
IHN-mov. IHN-mov improves the estimation accuracy in moving object scenarios by
generating an outlier mask. The iterative structure of IHN can reduce the error by 95%
and significantly reduce the number of network parameters. In the following year, Cao
et al. [69] proposed a framework for recurrent homography estimation called RHWF. This
framework combines homography-guided image warping and the Focus Transformer
(FocusFormer). Image warping improves feature consistency, while FocusFormer employs
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the attention-focusing mechanism to aggregate the intra-inter correspondence in global,
non-local, and local. Compared to previous methods, RHWF has significantly fewer
parameters, but homography-guided image warping and attentional manipulation increase
the computational cost. Jiang et al. [70] proposed a supervised training of a homography
network using generated realistic data. Initially, they label the unlabeled image data using
the pre-estimated principal plane mask, homography, and another ground truth sampled
homography. Then, the generated data are used to train the supervised homography
network, and the data generation and training are iteratively performed to obtain a highly
accurate homography estimation network. This method reduces the effect of moving
objects that cannot be aligned by homography. It greatly aligns the central plane objects,
making the supervised homography estimation method better adapted to real scenes.

To address the problem of degraded prediction accuracy of overly simple convo-
lutional neural networks when performing homography regression due to ignoring re-
dundant information in the feature map, Li et al. [71] proposed a deep learning method
based on a multi-scale transformer. The method extracts feature maps from different scales
using a hierarchical design. It handles the prediction of the matrices separately by using a
DFA-T module and a context-sensitive correlation module, which allows the estimation of
homography matrices from coarse to fine. DFA-T processes the semantic information of
high-level features to achieve coarse-grained alignment, while context-dependent modules
are used to achieve more accurate alignment. To address the issue of the limited receptive
field in extracting dense features using convolutional networks, Zhou et al. [14] proposed a
staged strategy. They first estimate the projection transformation between the reference
image and the target image at a coarse level and then refine it at a finer level. To enhance
the features’ relevance and the estimation’s accuracy, they introduced self-attention and
cross-attention schemes into the transformer structure. This method shows significant
performance advantages in large baseline scenarios.

Specifically, integrating the Transformer into neural networks inspired subsequent
researchers, making deep learning-based homography estimation methods no longer
limited to CNNs. Whether supervised or unsupervised, the network structures such
as Transformer [72], GAN [73,74], and GNN [75] have been extensively utilized in this
technical field. This has led to the discovering of new possibilities for further deep learning-
based homography estimation algorithm research. However, while supervised methods
have achieved more apparent advantages in terms of performance and accuracy of feature
extraction than feature-based methods, a challenge they face is the difficulty in obtaining
large training datasets with real labels to train the network. Although synthetic datasets
can be utilized in training, the lack of depth differences in realistic scenes in synthetic
training data reduce the network’s generalization ability. Therefore, research on deep
learning-based homography estimation algorithms gradually turns towards unsupervised
methods. Furthermore, Table 3 presents a thorough examination of supervised deep-
learning techniques for image homography estimation.

Unsupervised methods. Unsupervised methods generally acquire the homography
matrix by reducing the loss between two images. This is accomplished by training on
actual image pairs and transforming the source image to the target image using the Spatial
Transform Network (STN) [76].

In 2021, Ye et al. [33] proposed a new unsupervised deep homography framework
in 2021. They first introduced the idea of a homography flow representation, estimated
by a weighted sum of eight predefined homography flow bases. Since homography
contains only 8 degrees of freedom, which is far from the rank of the network features,
they introduced a Low-Rank Representation (LRR) block. This design retains features
related to the dominant motion while excluding irrelevant features. A Feature Identity
Loss (FIL) was introduced to improve the model’s efficacy further, which ensured that
the learned image features remained unchanged after distortion. In other words, the
results should be consistent whether the warping operation or the feature extraction
is done first. However, the method may fail in large baseline scenarios, and a single
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homography output may not be sufficient in real-world scenarios. In 2022, Hong et al. [77]
proposed a new method called HomoGAN, which focuses homography estimation more
on the principal plane. HomoGAN first constructs a multi-scale transformer network that
predicts the homography from a pyramid of features in the input image in a coarse-to-fine
manner. To impose coplanarity constraints, they introduce an unsupervised Generative
Adversarial Network (GAN). The generator predicts the masks of the aligned regions,
while the discriminator verifies that the two mask feature maps are induced by a single
homography. The homography flow form provides a novel solution to homography
matrices, which can handle the feature information brought by the dominant motion or
related to the principal plane and opens up a new avenue for future research. Otherwise,
except for the above two methods that used the homography flow representation of the
homography matrix, the other methods used the 4-point parameterization form.

Table 3. Supervised homography estimation methods. This table displays the year of publication,
core idea, advantages, and limitations of each method.

Method Refer. Year Core Idea Advantages Limitations

Supervised

Deep Homography
Estimation [31] 2016

Present a deep
convolutional neural

network for estimating the
relative homography.

The system is fast and
relatively lightweight.

Input data of fixed size
128× 128× 2.

Efficient and robust
homography estimation

using compressed
convolutional neural

network

[60] 2018
Design a ShuffleNet-style
network for homography

estimation.

The model is only 9.9 MB, yet
maintaining accuracy and

suitable for running on
mobile devices.

The compressed network has
too few parameters to overfit.

ShuffleHomoNet [61] 2021
Introduce ShuffleNetV2

compressed units to build
basic network.

Good balance of inference
speed and accuracy with
models less than 9 MB.

Performance not as good as
SIFT in some scenarios.

HomoNetComb [62] 2019
Combining deep learning
and energy minimization
in a hybrid framework.

The computation time for
both training and inference
can be reduced significantly.

Unsuitable for time-critical
video applications.

Deep Homography
Estimation for Dynamic

Scenes
[63] 2020

Design and train a deep
neural network to process

dynamic scenes.

Homography estimation for
dynamic scenes, blur

artifacts, or lack of texture is
robust.

Simply applying the
multiscale strategy is

insufficient to solve the issue
of cross-resolution.

Homography estimation
along short videos by

recurrent convolutional
regression network

[64] 2020

Homography estimation
along videos by exploiting
temporal dynamics across

frames.

Does not need feature
matching or tracking, and

alleviates high accumulative
errors in computing

homographies between
non-adjacent frames.

Increasing the number of
LSTM cells may lead to

overfitting.

LocalTrans [67] 2021

Propose a multiscale
structure embedded in a

local transformer network
to explicitly learn
correspondences.

The capability to precisely
align images with a

resolution gap of 10×.

Since there is no ground truth
for qualitative evaluation,

only demonstrate the visual
comparison on relevant

datasets.

IHN [68] 2022
IHN’s iterators have tied

weights and are fully
trainable.

IHN’s iterative framework
cuts errors by 95% while

dramatically saving network
parameters.

The demand for GPU
increases. Additionally, the
feature map size limits the

resolution of the inlier mask.

RHWF [69] 2023

Propose the Recurrent
homography estimation
framework using image

warping and Focusformer.

Obtain more accurate results
than LocalTrans and IHN

with reduced computational
cost.

The homography-guided
image warping and attention

operation increase the
computation complexity.

Supervised
Homography Learning
with Realistic Dataset

Generation

[70] 2023

An iterative framework
with two phases to

generate realistic training
data and build a

supervised network.

Turn any unlabeled image
into a training sample,

solving the problem of lack of
qualified datasets in
supervised learning.

There is a limit to this
method, which converges
after a few iterations, and

more iterations do not lead to
significant performance

improvements.

Multi-scale homography
estimation based on dual

feature aggregation
transformer

[71] 2023
Proposed a multi-scale

structure to obtain feature
maps at three scales.

More accurate alignment
results than state-of-the-art

DNN-based methods.

Not extended to non-linear
model with multiple

homography predictions.

Deep Homography
Estimation With Feature
Correlation Transformer

[14] 2023

In the transformer
structure, self-attention

and cross-attention
schemes were introduced.

Has performance advantages
in large baseline scenarios.

Excessive number of
iterations may cause the

accuracy to decline.
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In 2017, Erlik et al. [78] presented a hierarchy of twin convolutional regression net-
works to estimate the homography between two images. The networks are stacked sequen-
tially in this framework to reduce the estimation error progressively. Every convolutional
network module autonomously extracts features from both images and then fuses these
features to estimate the homography. Because of its iterative nature, the method does not
require complex models, and a hierarchical arrangement of simple models can achieve
high-performance homography estimation, which shows new paths to optimize the balance
between complexity and performance. In 2018, Nguyen et al. [79] trained a neural network
using pixel-wise photometric loss, which measures the pixel error between a warped input
image and another image. This method allows unsupervised training without real labels.
Compared to traditional methods, it is not only faster but also equal or better in accuracy
and robustness to light variations. However, it does not fully account for the complexity
of dealing with depth differences and moving objects in real-world applications. In 2019,
Zhou et al. [80] proposed a neural network named STN-Homography based on a spatial
transform network. The method aims to estimate the normalized homography matrix of
image pairs directly. They designed hierarchical STN-homography and sequential STN-
homography models with end-to-end training to reduce estimation error. This approach
yielded dramatic improvements in accuracy and efficiency, providing new inspiration for
unsupervised methods for researchers.

In 2020, Zhang et al. [81] designed a content-aware, unsupervised homography es-
timation method for image pairs with small baselines; its network structure is shown
in Figure 8. For robust homography optimization, the method implicitly learns deep
alignment features and a content-aware mask that helps the network select only reliable
regions for homography estimation. Furthermore, learned features are used to compute
the loss, while content-aware masks allow the network to focus on the regions that are
important and representable. To optimize this network, they introduced a new triplet loss
for unsupervised learning to optimize this network. Specifically, introducing content-aware
masks has guided the design of future deep homography estimation networks. Numerous
scholars have begun to realize that image masks can improve the performance of networks
effectively and have begun to incorporate various types of attentional mechanisms into
networks for robust homography estimation [82–84].

In 2020, Kharismawati et al. [85] proposed an unsupervised deep homography esti-
mation method for agricultural aerial imagery. They improved the unsupervised CNN
network of Nguyen et al. and used the video of maize nurseries imaged with a freely
flown consumer-grade vehicle to train the network. This method can estimate the sequence
of planar homography matrices of our corn fields from imagery without using metadata
to correct estimation errors. It performs faster than the gold standard ASIFT algorithm
while maintaining accuracy comparable to ASIFT. In 2021, Koguciuk et al. [86] proposed a
bidirectional implicit Homography Estimation (biHomE) loss for unsupervised homogra-
phy estimation. This method distinguishes homography estimation from representation
learning for image comparison and enhances the robustness of homography estimation
results to variations in illumination by minimizing the distance in feature space between
the distorted image and the corresponding image. To combat the lack of robustness of tradi-
tional methods in low texture scenarios and the poor performance of deep learning-based
methods in low overlap rate scenarios, Nie et al. [87] proposed a depth-aware multi-grid
deep homography estimation network in 2021. This network achieves global to local paral-
lax image alignment, overcoming the limitations of existing deep homography estimation
methods. The method also designed a Contextual Correlation Layer (CCL) to extract the
matching relationship, making the network better than the cost volume regarding perfor-
mance, number of parameters, and speed. The method successfully overcomes the lack of
robustness of traditional methods in low-texture scenes and the poor performance of deep
learning-based methods in low-overlap scenes. However, the network structure and data
size may limit the number of meshes for this network.
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In 2022, Wu et al. [88] presented an unsupervised homography estimation algorithm
incorporating a correction function. It employs a two-level network cascade structure,
an idea similar to iteration. Each level of the network comprises an equivalent number
of layers and parameters. The output homography matrix of the next network level is
the residual of the true matrix and the sum of the previous output homography matrix.
The method compensates the inputs of the next level network with the outputs of the
previous level network, leading to the correction of the homography estimate. To tackle
mis-correspondence due to appearance changes, relative motion between camera and
object, and occlusion challenges, Zhang et al. [89] proposed a unified convolutional neural
network model, HVC-Net. The model combines homography, visibility, and confidence
and embeds them all into a Lucas-Kanade tracking pipeline to achieve accurate and robust
planar object tracking of planar objects. This method can deal well with mismatches
caused by such issues as changes in appearance, relative motion of camera and object, and
occlusion, making homography estimation more widely applicable to object recognition
and tracking. Nevertheless, due to the limitations of the LK-based method, the method
sometimes suffers from the interference of similar occluding object factors.

In 2023, Hou et al. [30] proposed an unsupervised homography estimation method.
Firstly, they constructed an unsupervised homography estimation method based on cas-
caded CNNs to solve the problem of low accuracy of existing unsupervised homography
estimation methods. This method uses a two-stage cascade network structure and predicts
the residuals of the overall homography at each stage. It can minimize the pixel intensity
error between the two images and implements an unsupervised coarse-to-fine homography
estimation. To address the issue of image homography under large parallax, Hou et al. [90]
designed an unsupervised Multiscale Multi-stage based Content-Aware Homography Es-
timation method (MS2CA-HENet). This method uses images of different sizes as inputs
in different stages to deal with different scales of homography transformations between
images. Notably, they account for local and global features at each stage via a Self-attention
Augmented Convolutional Network (SAC) and minimize the error residual at each stage
to estimate the homography of large-displacement image pairs from coarse to fine.

Unlike supervised methods, unsupervised methods do not require labeled data but
are more difficult to train and optimize. In particular, they face challenges in optimizing
complex network structures and balancing performance. However, unsupervised learning
still opens new research directions for deep learning-based homography estimation meth-
ods. In addition, a comprehensive analysis of unsupervised deep-learning homography
estimation algorithms for single-source images is presented in Table 4.
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Table 4. Unsupervised homography estimation methods. The table provides details of the year of
publication, core idea, advantages, and limitations for each method.

Method Refer. Year Core Idea Advantages Limitations

Unsupervised

Homography
Flow

Motion Basis
Learning for

Unsupervised Deep
Homography

Estimation with
Subspace Projection

[33] 2021 Propose a homography
flow representation.

Effectively achieved
unsupervised

optimization and more
stable features are learned.

It is possible that it
could lead to

inaccuracies when
applied to cases with

large baselines.

HomoGAN [77] 2022

Propose a new
approach for directing

homography estimation
towards the dominant

plane.

Matching error is 22%
lower than the previous
state-of-the-art method.

Image pairs with
large grayscale and
contrast differences

will cause the
homography flow to

become unstable.

4-point
Parameteri-

zation

Homography
estimation from
image pairs with

hierarchical
convolutional

networks

[78] 2017
Introduce a hierarchy of

twin convolutional
regression networks.

High performance
through the arrangement

of simple models.

Sequential learning
models must be used

to handle the error
propagation.

Unsupervised deep
homography: A fast

and robust
homography

estimation model

[79] 2018
Neural networks are

trained using
photometric loss.

Achieve faster inference
speed with better accuracy

and robustness.

The robustness of
occlusion was not

studied.

STN-Homography [80] 2019

STN-homography was
used to estimate the

normalized
homography directly.

The model meets real-time
processing requirements.

Loss calculated
directly on the
intensity and

uniformly on the
image plane.

Content-Aware
Unsupervised Deep

Homography
Estimation

[81] 2020

Propose an
unsupervised deep

homography method
with a new architecture

design.

Designed for image pairs
with small baselines,
robustly optimizes

homography.

Poor performance
with large baseline

images.

Cornet [85] 2020

Used the video of maize
nurseries captured by a

freely flown
consumer-grade vehicle

to train the network.

Faster than the gold
standard ASIFT algorithm

while maintaining
accuracy.

Requires extra
training data.

Perceptual loss for
robust unsupervised

homography
estimation

[86] 2021 Introduce a novel
perceptual loss.

biHomE loss is beneficial
for performance

degradation from smaller
to bigger viewpoint shifts.

The loss is only
effective on scenes

with small baselines
and is prone to failure

when there is a low
overlap rate.

Depth-aware
multi-grid deep

homography
estimation with

contextual correlation

[87] 2021

Design of a contextual
correlation layer and

introduction of a novel
depth-aware

shape-preserving loss.

Is better than the cost
volume regarding

performance, number of
parameters, and speed.

Network structure
and data size may

limit the number of
meshes.

Sub-pixel
Homography Matrix
Estimation Based on

Unsupervised
Cascade

[88] 2022

An unsupervised
homography estimation

algorithm with
correction function.

Has more accurate
estimation capabilities.

During training and
testing, local motion
is used rather than

global motion.
Attention mechanism

not introduced.

HVC-Net [89] 2022

Present a unified CNN
model that considers

homography, visibility,
and confidence jointly.

Achieved excellent planar
tracking performance on

the public dataset,
providing visibility masks.

The approach
sometimes disturbed

by the factor of
occluded objects.

Unsupervised
Homography

Estimation Based on
Cascaded CNN

[30] 2023

Coarse-to-fine
homography estimation

of images using a
two-stage cascade
network structure.

It is robust and maintains
good performance even

when there is little overlap
between the input images.

Difficulty in fully
aligning image pairs

with depth
differences and

parallax variations.

MS2CA-HENet [90] 2023

Use multi-scale input
images for different
stages to cope with
different scales of
transformations.

Lower error can be
achieved when there are

large displacement
changes between

corresponding points.

Need to introduce
additional neural

network structures to
extract multi-scale

feature maps.
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Other methods. Besides the supervised and unsupervised methods discussed above,
researchers have used other methods (e.g., self-supervised and semi-supervised) to tackle
the task of homography estimation. Self-supervised algorithms can self-generate super-
vised signals for training, i.e., labels are automatically generated from unlabeled input
data and used for training iterations. Compared to supervised and unsupervised meth-
ods, self-supervised methods effectively reduce the dependence on labeled data while
increasing the use of unlabeled data, thus improving the robustness of the model. In 2019,
Wang et al. [91] proposed the Self-Supervised Regression Network (SSR-Net). This method
reduces the dependence on actual image annotations and uses a spatial pyramid pooling
module to use contextual information to improve the quality of extracted features in each
image. Furthermore, they chose the homography matrix representation rather than the
4-point parametrization to exploit reversibility constraints. In 2022, Li et al. [92] proposed
the Self-Supervised Outlier Removal Network (SSORN), which incorporates a novel self-
supervised loss function to remove noise in the image, mimicking the traditional outlier
removal process. In 2023, Liu [13] et al. proposed a novel detector-free feature-matching
method called Geometrized Transformer (GeoFormer). This method integrates GeoFormer
into the LoFTR framework and trains end-to-end in a fully self-supervised manner. It can
compute cross-attention diffusion regions in a focused manner and enhance local feature
information through the Transformer.

Compared to self-supervised methods, which can automatically generate labeled data,
semi-supervised learning requires training with both limited amounts of labeled data and
large amounts of unlabeled data and attempts to use structural information in the unlabeled
data to augment the learning process. Semi-supervised learning combines the advantages
of both supervised and unsupervised methods and is more efficient on large-scale datasets.
As a result, network models trained using semi-supervised methods have better generaliza-
tion ability. In 2023, Jiang et al. [93] proposed a progressive estimation strategy. The strategy
reconstructs the original homography by converting the large baseline homography into
multiple intermediate homography terms and cumulatively multiplying these intermedi-
ate terms. Meanwhile, the method uses supervised and unsupervised losses to optimize
intermediate homography and estimate large baseline homography without photometric
losses. The approach effectively copes with the errors in homography estimation for large
baselines, especially in the context of low image coverage and limited sensory field. Addi-
tionally, a comprehensive analysis of self-supervised and semi-supervised deep-learning
homography estimation algorithms for single-source images is presented in Table 5.

Table 5. Self-supervised and semi-supervised homography estimation methods. The table provides
details of the year of publication, core idea, advantages, and limitations for each method.

Method Refer. Year Core Idea Advantages Limitations

Other
methods

Self-
Supervised

SSR-Net [91] 2019

Employ spatial pyramid
pooling modules to

enhance the quality of
extracted features.

Relaxing the need for
ground truth
annotations.

The method cannot be
directly using a 4-point

parameterization.

SSORN [92] 2022

Develop a deep learning
model that simulates all

four phases in the
traditional homography

estimation.

Better performance in
image pairs with a lot

of noise.

Equipped with an outlier
removal module that does

not train well with
supervised loss in paper.

GeoFormer [13] 2023 Integrate GeoFormer into
the LoFTR framework.

Excellent
performance on

multiple real-world
datasets.

If the coarse matches fail
in the first place,

GeoFormer shall fail.

Semi-
Supervised

Semi-supervised deep
large-baseline

homography estimation
with progressive

equivalence constraint

[93] 2023

Propose a progressive
estimation strategy by

converting large baseline
homography.

Achieves
state-of-the-art

performance in large
baseline scenarios.

Has limitations in the
multi-plane sense.
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3.2. Multimodel Image Homography Estimation Methods

Multi-source images, also known as multimodal images, typically refer to image data
acquired using sensors with two or more different types of imaging mechanisms for the
same scene or object. Such images comprise visible images, infrared images [94], hyperspec-
tral images [95], optical Synthetic Aperture Radar (SAR) images [96], and Light Detection
and Ranging (LiDAR) [97]. These different modality images can provide diverse and
complementary feature information for the same scene or object [98]. However, traditional
homography estimation methods based on features, such as SIFT and SURF, frequently lead
to mismatching feature points when working with multimodal images due to significant
modal differences between the images, resulting in poor performance or even failure of the
algorithms. Recent studies have proposed applying deep learning techniques to tackle this
issue. Deep learning-based methods for estimating homography in multi-source images
follow three main ideas.

The first idea is to extract the features of different modal images using convolutional
neural networks and further compute the homography matrix. In detail, a 4-point pa-
rameterization of the homography matrix is usually used as a regression value to achieve
end-to-end multimodal image homography estimation. In 2022, Luo et al. [99] introduced
a detail-aware deep homography estimation network to retain more detailed information
in images. This method uses a shallow feature extraction network to select meaningful
features from multilevel, multidimensional features that estimate the homography matrix.
They additionally introduce a Detail Feature Loss (DFL) to better preserve detailed infor-
mation and reduce the impact of unimportant features. This loss is calculated based on the
refined features, which enables effective unsupervised learning.

The second idea is to transform the multimodal homography estimation problem into
an approximate single-source one by transforming a given modal image into another one
via a Generative Adversarial Network. To address modal and significant feature disparities
between images, in 2022, Pouplin et al. [100] proposed a two-step approach designed for
infrared and visible. They trained a GAN to learn a domain transfer function between
the infrared and visible domains to reduce visual differences between images. Then, they
applied a deep Siamese network to perform homography estimation in an unsupervised
environment. This scheme effectively reduces the significant differences between different
modal images, allowing common features to be robustly extracted and valid homography
estimation. However, the training process of this method is cumbersome, and the GAN
network may produce artifacts when transforming the images, affecting the final results.

The third idea combines the advantages of the two previous approaches: firstly, a
convolutional neural network extracts shallow features. Secondly, it uses the GAN to
optimize the homography matrix further. Considering the significant grey scale difference
between infrared and visible and the low alignment accuracy, Luo et al. [73] proposed a
GAN-based homography estimation method for infrared and visible. The method uses
the Residual Dense Block (RDB) to construct the shallow feature extraction network that
captures the deep features of the image. Then, the method introduces GAN to predict the
homography matrix directly. The generator employs ResNet-34 as a backbone structure
to predict the homography matrix. The discriminator is responsible for discriminating
between the warped image and the target image. By generating an adversarial game
between the generator and discriminator, the features between the warped image and the
target image become closer, improving the homography estimation performance. Moreover,
Luo et al. [74] improved on this basis. They have developed a simpler feature extractor
network, which does not share weights, to extract detailed feature maps for infrared and
visible. Furthermore, they designed a new generator. It uses an encoder-decoder structure
to capture meaningful features at different scales and predict the homography matrix.
Additionally, Wang et al. [101] proposed a Feature Correlation Transformer (FCTrans)
method to explicitly guide feature matching, enabling homography estimation for infrared
and visible. Its network structure is shown in Figure 9. The method first proposes a feature
patch as the basic unit of correlation calculation, effectively mitigating the modal differences
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between infrared and visible. Then, a novel cross-image attention mechanism identifies
the correlation between different modal images, thus achieving the source-to-target image
mapping in the feature dimension and transforming the multi-source images homography
estimation problem into a single-source images problem. Finally, they developed a Feature
Correlation Loss (FCL) to encourage the network to learn a differentiated target feature
map for better mapping source-to-target images. This approach successfully reduced the
homography estimation errors caused by imaging differences in the multi-source images
and substantially boosted the accuracy of homography estimation for multi-source images.
Then, Wang et al. [102] proposed a new coarse-to-fine strategy for homography estimation.
This strategy obtains multi-scale feature maps by different stages in the regression network,
avoiding the need to introduce additional neural networks in the traditional coarse-to-fine
strategy. Furthermore, they developed a Local Correlation Transformer (LCTrans) that
captures the intrinsic connections between features for better progressive refinement of the
homography matrix.
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FCTrans [101] 2023 
Propose a feature correlation trans-

former method to guide feature 
matching. 

Homography estimation per-
formance dramatically en-

hanced. 

It might need further optimiza-
tion and adjustment when pro-
cessing images in large-baseline 

scenarios. 

Figure 9. The feature correlation converter-based homography estimation network for infrared and
visible images proposed by Wang et al. The network architecture consists of four modules: an
infrared shallow feature extraction network fr(·), a visible shallow feature extraction network fv(·),
an FCTrans generator, and a discriminator.

The study of multimodal image homography estimation algorithm enables this tech-
nique to obtain more robust and accurate results in various complex image environments,
which can better satisfy the increasingly complex needs of different application areas in
reality. Moreover, these thoughts provide essential guidance for developing multimodal
image processing techniques in other areas of computer vision. Table 6 comprehensively
analyzes multimodel Image homography estimation algorithms. The table lists the year of
publication, core idea, advantages, and limitations of each method.
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Table 6. Deep learning-based methods for multimodal homography estimation. The table lists the
year of publication, core idea, advantages, and limitations of each method.

Method Refer. Year Core Idea Advantages Limitations

Deep Learning

Detail-Aware Deep
Homography Estimation
for Infrared and Visible

Image

[99] 2022

Proposed a detail-aware
deep homography

estimation network to
obtain detailed

information.

Dramatically improved
performance of PME and

AFFR metrics on real
datasets.

Shallow feature
extraction methods in

multi-source images still
need improvement.

Multimodal Deep
Homography Estimation

Using a Domain
Adaptation Generative
Adversarial Network

[100] 2022
Propose a two-stage
approach targeting

infrared and visible.

Outperforms some
baselines and deep

homography methods of
the time.

GAN may produce
artifacts such as blurring
or hallucinations, which
may lead to inaccuracy
in feature localization.

Infrared and Visible
Homography Estimation
Method Based on GAN

[73] 2023
A GAN-based method for
estimating homography in

infrared and visible.

Effectively improve
homography estimation

performance.

Black borders may be
produced when images

are warped.

HomoMGAN [74] 2023

Developed an infrared and
visible homography

estimation method based
on multiscale GAN.

Outperforms current
state-of-the-art methods
both qualitatively and

quantitatively.

Limited performance of
homography estimation
in low-light scenarios.

FCTrans [101] 2023

Propose a feature
correlation transformer
method to guide feature

matching.

Homography estimation
performance dramatically

enhanced.

It might need further
optimization and
adjustment when

processing images in
large-baseline scenarios.

LCTrans [102] 2023

Design a novel
coarse-to-fine strategy to
obtain multi-scale feature

maps and enable the
progressive refinement of
the homography matrix.

No need to introduce
additional neural networks

to obtain multi-scale
feature maps, and avoids

complex matrix fusion
operations.

Does not perform as well
as some comparative

methods in some
challenging scenarios.

4. Evaluation Metrics

Homography estimation is a critical task in computer vision, focusing on finding
the geometric relationship between two images. Real-world data often deviate from
the theoretical model due to internal and external camera parameters, image noise, and
other confounding factors, making homography estimation challenging. To validate the
performance of different algorithms on this task, it is necessary to have a set of precise
and reliable evaluation metrics. Such metrics not only offer researchers an assessment
of algorithm accuracy but also help them understand the potential weaknesses of the
algorithms and provide direction for future research. This section will discuss the usual
evaluation metrics for homography estimation.

4.1. Relative Measurement Error

The Relative Measurement Error (RME) [45] is a metric defined by Zeng et al. in 2008
for evaluating homography estimation models based on line features. Firstly, generate a
reference template and select 100 points equally spaced on each side of the template. These
100 image points on each side are fitted to a line using a least-squares algorithm. Then,
estimate the homography from the reference plane to the image plane and map these image
points to Euclidean space. Finally, the distance between the two sets of spatial points can
be determined. To obtain statistically significant results, randomly select 100 pairs of such
spatial points in each test and estimate the distance between them from their corresponding
image points. The relative measurement error can be defined as:

RME =

(
|Dt − De|

Dt
× 100

)
% (11)

where Dt is the true distance and De is the predicted distance.

4.2. Average Corner Error

The Average Corner Error (ACE) [31] is acquired by calculating the l2 distance be-
tween the ground truth and estimated corner locations. It is mainly used to evaluate the
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performance of supervised homography estimation methods. A lower ACE value means
better homography estimation performance. ACE is defined as:

ACE =
∑4

i=1||xi − yi||2
4

(12)

where xi and yi represent the corners obtained by converting the corner corners i through
the ground-truth homography and estimated homography transformations, respectively.

4.3. Point Matching Error

Point Matching Errors (PME) [99] are calculated by averaging the l2 distance between
warped source points and target points, primarily used to evaluate the performance of
unsupervised homography estimation methods. The smaller the value of PME, the better
the homography estimation performance. PME can be expressed as:

PME =
∑N

i=1||xi − yi||2
N

(13)

where xi denotes point i transformed by the homography matrix; yi represents the manual
annotation match point corresponding to point i; N is the number of manual annotation
match points.

4.4. Root Mean Square Error

Root Means Square Error (RMSE) [103] is used to measure the difference between the
predicted value and the true value. In homography estimation, the RMSE is often used
to quantify the reprojection error. This is the error between the positions of the mapped
points and the actual points after mapping the points in one image to another using an
estimated homography matrix. The lower the RMSE, the closer the estimated homography
matrix is to the true homography matrix, while the higher the RMSE, the greater the error.
The RMSE can be written as:

RMSE =

√√√√ 1
N

N

∑
i=1

∥∥∥X′i − HestXi

∥∥∥2

2
(14)

where
(

Xi, X′i
)

denotes the true corresponding point; N is the number of corresponding
points; Hest represents the estimated homography matrix.

4.5. Alignment Error

Alignment Error (AE) [104] is a metric used to measure the error between the predicted
position and the real position. The error is calculated by employing four reference points,
which are comprised of the target’s four corner points. AE is defined as the root-mean-
square (RMS) distance between the estimated positions of these corner points and its true
position, as shown:

AE =

√
∑4

i=1
(
xi − x∗i

)2

4
(15)

where xi is the estimated position of the point and x∗i is the ground-truth position.

4.6. Homography Discrepancy

The Homography Discrepancy (HD) [104] measures the difference between the true
homography matrix H∗ and the predicted homography matrix H, which can be expressed
as shown:

HD(H∗, H) =
∑4

i=1
∣∣|ci − (H∗H−1)(ci)|

∣∣
2

4
(16)
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where ci denotes the corners of the square, and the value of HD is 0 when H and H∗

are equal.

4.7. Mutual Information

Mutual Information (MI) [99] reflects the correlation degree by calculating the entropy
and joint entropy of the warped and ground-truth images. MI determines the accuracy of
homography estimation by measuring the similarity between the two images in terms of
grey-scale distribution. The greater the MI value, the more similar the two images are, and
the homography estimation is more accurate. It can be expressed as:

MI(x, y) = H(x) + H(y)− H(x, y) (17)

where x and y represent warped and ground-truth images; H(·) and H(x, y) are the
calculation functions of entropy and joint entropy, respectively.

4.8. Structural Similarity

Structural Similarity (SSIM) [74] is a metric to measure the similarity between two
images. It has a range of values ranging from 0 to 1. When applied to homography
estimation, SSIM helps us evaluate the similarity between a target image and a source
image after homography transformation. The higher the SSIM value, the higher the
similarity and the more accurate the homography estimation. It is calculated as shown:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (18)

where x and y represent the warped and ground-truth images; µx and µy are the average
of all pixels in x and y; σx and σy stand for the standard deviations of x and y, respec-
tively; σxy denotes the covariance between two images; c1 and c2 represent constants to
maintain stability.

4.9. Peak Signal-to-Noise Ratio

Peak Signal-to-Noise Ratio (PSNR) [99] is a metric that reflects the overall greyscale
difference between two images. A higher PSNR value indicates that the greyscale difference
between two images is smaller, and the image pair is more similar. The calculation of PSNR
can be expressed as shown:

PSNR(x, y) = 10log10

MN
(

2k − 1
)2

∑M
i=1 ∑N

j=1(x(i, j)− y(i, j))2 (19)

where x and y denote the warped image and the real image, respectively; i and j represent
the pixel positions in the rows and columns of the image; and k is the number of bits in
each sample value.

4.10. Adaptive Feature Registration Rate

Adaptive Feature Registration Rate (AFRR) [99] uses SIFT to extract image feature
points adaptively, avoiding manual annotation of many feature match pairs. The metric
first takes the Euclidean distance di between matched feature points as a judgment quantity
and sets a threshold ε as the criterion for mismatching. Only if di is less than ε will it be
included in the next step of the judgment and recorded as d′i. Then, set another threshold
µ, and the feature match is considered accurate only if d′i is less than µ. Otherwise, it
is considered inaccurate. Finally, the AFRR is obtained by calculating the proportion of
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feature matches that are considered accurate across all judgment ranges. Its calculation
formula is given:

AFRR =
1
N

N

∑
i=1

µ
(
d′i
)

(20)

where µ
(
d′i
)

stand for the number of matches judged to be accurate under the threshold µ;
N is the number of matching corresponding feature points satisfying the threshold ε. In the
experiment, the threshold ε was set to 10, and µ was set to 6.

Table 7 lists the significance of the evaluation metrics for the estimation of homogra-
phies, the evaluation criteria, the calculation formulae, and the cited literature.

Table 7. Evaluation indicators and meaning. This table lists the evaluation metrics for homography
estimates, the calculation formulae, the evaluation criteria, and the cited literature.

Evaluation Metric Calculate Criteria Cited

RME Relative Measurement Error RME =
(
|Dt−De |

Dt
× 100

)
% The smaller, the better. [45]

ACE Average Corner Error ACE =
∑4

i=1||xi−yi ||2
4

The smaller, the better. [31,63,68,69,71,73,74,77,99,101]

PME Point Matching Errors PME =
∑N

i=1

∣∣∣|xj−yj |
∣∣∣
2

N
The smaller, the better. [33,81,93,99,101]

RMSE Root Mean Square Error RMSE =

√
1
N

N
∑

i=1

∥∥∥X′i − Hest Xi

∥∥∥2

2

The smaller, the better. [14,71,79,85,87,103]

AE Alignment Error AE =

√
∑4

i=1(XTi−XGTi)
2

4
The smaller, the better. [89]

HD Homography Discrepancy HD(H∗ , H) =
∑4

i=1

∣∣∣|ci−(H∗H−1)(ci)|
∣∣∣
2

4
The smaller, the better. [89]

MI Mutual Information MI(x, y) = H(x) + H(y)− H(x, y)

It is necessary to determine
whether the degree of

similarity meets the threshold
requirements.

[99]

SSIM Structural Similarity SSIM(x, y) = (2µx µy+c1)(2σxy+c2)(
µ2

x+µ2
y+c1

)(
σ2

x+σ2
y+c2

) The closer it is to 1, the more
accurate it is. [67,73,99]

PSNR Peak Signal-to-Noise Ratio PSNR(x, y) = 10log10
MN

(
2k−1

)2

∑M
i=1 ∑N

j=1(x(i,j)−y(i,j))2
The larger, the better. [67,99]

AFRR Adaptive Feature
Registration Rate AFRR = 1

N

N
∑

i=1
d′i

The higher, the better. [99]

5. Applications Fields

In computer vision, the homography estimation technique is indispensable for han-
dling complex visual tasks efficiently and accurately. This technique proves its unique
application value in image stitching, augmented reality, object recognition, and tracking.

In image stitching [105–111], homography estimation enables seamless fusion by
accurately estimating the geometric transformation relationships between images from
different viewpoints. This technique allows for synthesizing images from multiple views,
providing a more comprehensive perspective and deeper analysis, with important implica-
tions for work such as landscape photography and 3D digital reconstruction of cultural
heritage. In Virtual Reality (VR) [112] and Augmented Reality (AR) [113–115], homography
estimation is also crucial. It provides strong support for creating realistic and immersive
virtual environments and enhancing the realism and immersion of AR experiences, es-
pecially in complex and dynamic environments such as education, entertainment, and
personnel training.

In the medical imaging domain [116–118], homography estimation applications have
expanded, including tumor motion tracking [116], iterative matching of X-ray images [117],
and multimodal medical image alignment (e.g., MRI and CT images) [118]. These applica-
tions are vital for improving the accuracy of medical diagnosis and treatment. In object
recognition and tracking [4,119–122], homography estimation helps to accurately recognize
and track objects in dynamic environments, facilitating the development of self-driving cars
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and security surveillance systems. In-camera calibration [123–125] and perspective correc-
tion [126,127], homography estimation can effectively correct the visual aberration caused
by different photography angles, thus dramatically improving the accuracy and reliability
of the recognition system. In gesture recognition [128], the application of homography esti-
mation offers technical support for developing more intuitively operable human–computer
interaction interfaces, making the process of human–computer interaction more natural
and compatible with human behavior.

Furthermore, homography estimation has shown irreplaceable importance in devel-
oping Simultaneous Localization and Mapping (SLAM) [129,130] techniques, especially
in indoor environments without GPS support. It plays a central role in environmental
mapping and path planning and provides critical visual information for automatic naviga-
tion systems. In video stabilization [131–133], homography estimation reduces image jitter
caused by device motion, improving video quality.

Homography estimation is an advanced computer vision technique demonstrating
its unique value and widely applicable potential in several fields. Even facing image
pairs with large displacements and illumination variations, the homography estimation
system handles this challenge well [134]. It plays an essential role in solving complex
vision problems and opens up new directions for future technological development. With
continuing research, homography estimation will become more critical in future com-
puter vision research and practice. Table 8 lists the fields of application of homography
estimation techniques.

Table 8. Fields of application of homography estimation and related articles.

Application Fields Refer.

image stitching [105–111]
virtual reality and augmented reality [112–115]
medical imaging domain [116–118]
object recognition and tracking [4,119–122]
camera calibration [123–125]
perspective correction [126,127]
gesture recognition [128]
SLAM [129,130]
video stabilization [131–133]

6. Challenges and Perspectives

Homography estimation plays a significant role in many application scenarios but
also brings many problems and challenges. This section will explore the challenges and
prospects of homography estimation in single-source and multimodal images.

6.1. Challenges and Prospects of Single-Source Image Homography Estimation

Homography estimation is an important research task in computer vision. Single-
source images refer to image transformations from the same sensor but are caused by
changes in viewpoint due to different times or locations. In this instance, Homography
estimation is concerned with estimating the geometric transformation between two views
of the same image. Although this task may be simple in theory, in practice, it is difficult
due to various factors such as illumination, occlusion, and noise. With time, homography
estimation methods have gradually shifted from traditional feature-based strategies to deep
learning-based methods. To understand the strengths and weaknesses of these methods in
estimating the homography of single-source images, we will explore the challenges and
possible prospects of these methods.

Feature-based methods are mainly based on the extraction and matching of image
features. These methods have achieved good results in many practical applications but face
challenges in some specific scenarios. Firstly, extracting and matching feature points may
encounter challenges in complex and dynamically changing backgrounds. Specifically, the
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accuracy and robustness of feature matching can be challenged when the image changes
in scale, rotation, illumination, and viewpoint. Additionally, selecting suitable feature
descriptors for augmenting the robustness of matching presents a difficulty.

Despite the significant advancements achieved by deep learning methods in estimating
homography, challenges remain. Supervised methods require synthetic examples with
ground-truth labels to train the network, but large amounts of training data with ground-
truth labels are difficult to obtain in practice. Meanwhile, the training data of supervised
methods lacks real depth differences, leading to a limited ability to generalize to real
images and reducing the accuracy of homography estimation. Unlike supervised learning,
unsupervised learning does not require labeled data, but its training and optimization
process is much more complex. Choosing the suitable loss function, ensuring the stability
of the model, and dealing with unbalanced data distributions are all problems that need to
be addressed using such methods. Researchers are trying to find more effective and robust
solutions to these challenges, both feature-based and deep learning-based approaches.

As technology progresses, feature-based methods have great potential for develop-
ment. The performance of such methods can be improved by new feature descriptors, more
efficient matching algorithms, and global information strategies. Furthermore, combin-
ing deep learning and traditional methods is a promising research direction, which may
provide more accurate and robust results for homography estimation.

As deep learning techniques continue to evolve, the structure of the model and the
training strategy will be optimized, and we can expect supervised methods to achieve better
performance in homography estimation. Techniques such as data augmentation, transfer
learning, and semi-supervised learning are expected to solve the problem of insufficient
data and overfitting, thus improving the performance of such methods. Unsupervised
learning provides new research directions for homography estimation. Using new network
structures and loss functions, combined with traditional methods and strategies, can
improve the performance of such methods. With more unsupervised learning algorithms
and techniques being proposed, we can expect even greater future breakthroughs in this
type of approach.

Homography estimation is a field full of challenges and opportunities. With research
and technological advances, we expect to achieve more accurate, faster, and robust homog-
raphy estimation methods.

6.2. Challenges and Prospects of Multimodal Image Homography Estimation

Multimodal images generally refer to image data acquired by sensors with two or more
different types of imaging mechanisms. This data acquisition method is common in remote
sensing, medical imaging, and robotic perception domains. Multimodal image homography
estimation is concerned with estimating the geometric transformations between different
modalities of images to achieve alignment between Multimodal images. This estimation
task becomes increasingly complex as the differences between different modalities increase.
In this section, we will discuss the challenges and perspectives of this problem.

Significant differences in appearance and structure between multimodal images could
make it difficult for feature-based methods to extract and match features. For instance,
infrared and visible features may differ significantly. Therefore, extracting common and
robust features from these images and performing effective matching are challenging
problems [135].

Deep learning brings new challenges to multimodal image homography estimation.
Firstly, designing network structures that can effectively handle different modal images is
an important issue. Secondly, training a model that can differentiate and adapt to various
modalities is challenging due to the significant differences between modalities. Otherwise,
acquiring sufficient labeled data to train deep learning models is still a problem that needs
to be overcome.

While facing these challenges, homography estimation for multimodal images has
excellent potential for future development as technology advances and research intensifies.
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With the advancement of computer vision and image processing techniques, further
progress is expected in feature-based homography estimation methods for multimodal
images. In the case of multimodal images, it is necessary to reconsider the feature extraction
and matching strategy to ensure that robust matches can be found in all modal differences.
Future research may focus on developing new feature descriptors that capture common
features across different modalities and align them. Moreover, combining deep learning
with traditional feature extraction methods can be an effective strategy, using deep networks
to improve the performance of traditional features. Meanwhile, new algorithms and
frameworks will be proposed to integrate information from different modalities better to
address the feature fusion problem in multimodality.

Deep learning provides new opportunities for multimodal image homography es-
timation. For this particular problem, deep learning methods must cleverly fuse data
from different sensors. Future research may explore how to fuse information from differ-
ent modalities better to improve the accuracy of homography estimates. Adaptive and
modality-invariant feature extraction will be emphasized to capture cross-modal common-
alities and exclude modality-specific differences. In addition, considering the complexity of
multimodal data, using multi-task learning and knowledge distillation techniques to utilize
the complementary information between modalities fully will become a research hotspot.

In summary, although there are numerous challenges when estimating homography
for multimodal images, it still has a promising future, driven by continuous research
and technological advances. We expect more accurate and robust multimodal image
homography estimation methods to be achieved.

7. Conclusions

In this paper, we comprehensively review the development history of homography
estimation techniques and systematically analyze and evaluate different types of methods,
covering the advantages and limitations of the methods and their related evaluation metrics.
First, we explore the basic principles and matrix representation of homography estimation
and then discuss feature-based and deep learning-based methods for single-source and
multi-source images, respectively. Early studies focus on feature-based methods such as
SIFT, SURF, and ORB. These methods perform well in specified scenarios, but in complex
or changing environments, hand-crafted feature descriptors are insufficient in efficiency
and accuracy in identifying and extracting features. Consequently, scholars have begun to
employ neural networks to implement the feature extraction or matching steps in traditional
methods to overcome these limitations.

Currently, homography estimation research relies on end-to-end deep learning meth-
ods, which include supervised, unsupervised, self-supervised, and semi-supervised meth-
ods. These methods can automatically learn and extract image features, providing greater
accuracy and robustness when dealing with complex and varied images. Finally, we pro-
vide an in-depth discussion of the applications of homography estimation techniques and
their challenges. Moreover, we look forward to their application prospects. While existing
homography estimation techniques have achieved excellent results, there are still many
challenges in practical use, such as the parallax problem in real scenes and the limitations
of a single homography matrix in aligning the whole image.
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Abbreviations
The following abbreviations are used in this manuscript:

DLT Direct Linear Transformation
SVD Singular Value Decomposition
SIFT Scale Invariant Feature Transform
SURF Speeded Up Robust Features
ORB Oriented FAST and Rotated BRIEF
GM Graph Matching

HEASK
Homography Estimation Based on Appearance Similarity and Keypoint
Correspondence

ECC Enhanced Correlation Coefficient
HALF-SIFT High-accurate localized features for SIFT
BEBLID Boosted Efficient Binary Local Image Descriptor
CNNs Convolutional Neural Networks
LIFT Learned Invariant Feature Transform
SSIPD Self-Supervised Interest Point Detection and Description
SOS-Net Second-Order Similarity Network
OANs Order-Aware Networks
GNN Graph Neural Networks
ClusterGNN Cluster-based Coarse-to-Fine Graph Neural Network
MatchFormer Matching Transformer
FPN Feature Pyramid Network
SfM Structure-from-Motion
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
LocalTrans Local Transformer
biHomE Bidirectional Implicit Homography Estimation
LCTrans Local Correlation Transformer
MS2CA-HENet Multiscale Multi-stage Based Content-Aware Homography Estimation Network
SAC Self-attention Augmented Convolutional Network
LRR Low-Rank Representation
FIL Feature Identification Loss
VGG Visual Geometry Group
SSR-Net Self-Supervised Regression Network
SSORN Self-Supervised Outlier Removal Network
GeoFormer Geometrized Transformer
IHN Iterative Homography Network

RHWF
Recurrent Homography Estimation Using Homography-Guided Image Warping
and Focus Transformer

FocusFormer Focus Transformer
STN Spatial Transform Network
SAR Synthetic Aperture Radar
LiDAR Light Detection and Ranging
GAN Generative Adversarial Network
RDB Residual Dense Block
DFL Detail Feature Loss
FCL Feature Correlation Loss
6G-SAGIN 6G Sky-Ground Integrated Network
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FCTrans Feature Correlation Transformer
LCTrans Local Correlation Transformer
APE Average Pixel Error
RME Relative Measurement Error
REP Repeatability
mAP Mean Average Precision
ACE Average Corner Error
PME Point Matching Errors
MSE Mean Square Error
RMSE Root Mean Square Error
AE Alignment Error
RMS Root Mean Square
HD Homography Discrepancy
MI Mutual Information
SSIM Structural Similarity
PSNR Peak Signal Noise Ratio
AFRR Adaptive Feature Registration Rate
RANSAC Random Sample Consensus
GIS Geographic Information Systems
GPS Global Positioning System
VR Virtual Reality
AR Augmented Reality
MRI Magnetic Resonance Imaging
CT Computed Tomography
SLAM Simultaneous Localization and Mapping
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in the Toplica region for the period of 1953–2013. Appl. Geogr. 2018, 92, 131–139. [CrossRef]

60. Wang, G.; You, Z.; An, P.; Yu, J.; Chen, Y. Efficient and robust homography estimation using compressed convolutional neural
network. In Proceedings of the Digital TV and Multimedia Communication: 15th International Forum, IFTC 2018, Shanghai,
China, September 20–21 2018; pp. 156–168.

61. Chen, Y.; Wang, G.; An, P.; You, Z.; Huang, X. Fast and Accurate Homography Estimation Using Extendable Compression
Network. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22
September 2021; pp. 1024–1028.

62. Kang, L.; Wei, Y.; Xie, Y.; Jiang, J.; Guo, Y. Combining convolutional neural network and photometric refinement for accurate
homography estimation. IEEE Access 2019, 7, 109460–109473. [CrossRef]

63. Le, H.; Liu, F.; Zhang, S.; Agarwala, A. Deep Homography Estimation for Dynamic Scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 7652–7661.

64. Mi, Y.; Zheng, K.; Wang, S. Homography estimation along short videos by recurrent convolutional regression network. Math.
Found. Comuput. 2020, 3, 125–140. [CrossRef]

65. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput.
2019, 31, 1235–1270. [CrossRef]

66. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
67. Shao, R.; Wu, G.; Zhou, Y.; Fu, Y.; Fang, L.; Liu, Y. Localtrans: A Multiscale Local Transformer Network for Cross-Resolution

Homography Estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada,
10–17 October 2021; pp. 14890–14899.

68. Cao, S.Y.; Hu, J.; Sheng, Z.; Shen, H.L. Iterative deep homography estimation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 1879–1888.

69. Cao, S.Y.; Zhang, R.; Luo, L.; Yu, B.; Sheng, Z.; Li, J.; Shen, H.L. Recurrent Homography Estimation Using Homography-Guided
Image Warping and Focus Transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Vancouver, BC, Canada, 18–22 June 2023; pp. 9833–9842.

https://doi.org/10.1111/mice.12788
https://doi.org/10.1016/j.apgeog.2018.01.016
https://doi.org/10.1109/ACCESS.2019.2933635
https://doi.org/10.3934/mfc.2020014
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco.1997.9.8.1735


Electronics 2023, 12, 4977 32 of 34

70. Jiang, H.; Li, H.; Han, S.; Fan, H.; Zeng, B.; Liu, S. Supervised Homography Learning with Realistic Dataset Generation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 9806–9815.

71. Li, Y.; Chen, K.; Sun, S.; He, C. Multi-scale homography estimation based on dual feature aggregation transformer. IET Image
Process. 2023, 17, 1403–1416. [CrossRef]

72. Jiang, T.; Fang, Q.; Zhu, Q.; Wang, Y.; Zhou, Z.; Chen, L.; Zhou, J.; Luo, Y.; Wu, C. Unsupervised Deep Homography Estimation
based on Transformer. In Proceedings of the 2023 International Conference on Advanced Robotics and Mechatronics (ICARM),
Sanya, China, 8–10 July 2023; pp. 273–278.

73. Luo, Y.H.; Wang, X.Y.; Wu, Y.Z.; Wei, S.J. Infrared and Visible Homography Estimation Method Based on GAN. Radio Eng. 2023,
53, 519–526. (In Chinese)

74. Luo, Y.; Wang, X.; Wu, Y.; Shu, C. Infrared and Visible Image Homography Estimation Using Multiscale Generative Adversarial
Network. Electronics 2023, 12, 788. [CrossRef]

75. D’Amicantonio, G.; Bondarev, E.; De With, P.H. Automated Camera Calibration via Homography Estimation with GNNs. arXiv
2023, arXiv:2311.02598.

76. Jaderberg, M.; Simonyan, K.; Zisserman, A.; Kavukcuoglu, K. Spatial Transformer Networks. In Proceedings of the Advances in
Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 2017–2025.

77. Hong, M.; Lu, Y.; Ye, N.; Lin, C.; Zhao, Q.; Liu, S. Unsupervised Homography Estimation with Coplanarity-Aware GAN. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022;
pp. 17663–17672.

78. Erlik Nowruzi, F.; Laganiere, R.; Japkowicz, N. Homography estimation from image pairs with hierarchical convolutional
networks. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017;
pp. 913–920.

79. Nguyen, T.; Chen, S.W.; Shivakumar, S.S.; Taylor, C.J.; Kumar, V. Unsupervised deep homography: A fast and robust homography
estimation model. IEEE Robot. Autom. Lett. 2018, 3, 2346–2353. [CrossRef]

80. Zhou, Q.; Li, X. STN-Homography: Direct Estimation of Homography Parameters for Image Pairs. Appl. Sci. 2019, 9, 5187.
[CrossRef]

81. Zhang, J.; Wang, C.; Liu, S.; Jia, L.; Ye, N.; Wang, J.; Zhou, J.; Sun, J. Content-Aware Unsupervised Deep Homography Estima-tion.
In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 653–669.

82. Wang, S.; Yuan, F.; Chen, B.; Jiang, H.; Chen, W.; Wang, Y. Deep Homography Estimation based on Attention Mechanism. In
Proceedings of the 2021 7th International Conference on Systems and Informatics (ICSAI), Chongqing, China, 13–15 November
2021; pp. 1–6.

83. Hu, W.; He, C.; Lin, M.; Zhou, H. Unsupervised deep homography with multi-scale global attention. IET Image Process. 2023, 17,
2937–2948. [CrossRef]

84. Huo, M.; Zhang, Z.; Yang, X. AbHE: All Attention-based Homography Estimation. arXiv 2022, arXiv:2212.03029.
85. Kharismawati, D.E.; Akbarpour, H.A.; Aktar, R.; Bunyak, F.; Palaniappan, K.; Kazic, T. Cornet: Unsupervised deep homography

estimation for agricultural aerial imagery. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28
August 2020; pp. 400–417.

86. Koguciuk, D.; Arani, E.; Zonooz, B. Perceptual loss for robust unsupervised homography estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 4274–4283.

87. Nie, L.; Lin, C.; Liao, K.; Liu, S.; Zhao, Y. Depth-aware multi-grid deep homography estimation with contextual correlation. IEEE
Trans. Circuits Syst. Video Technol. 2021, 32, 4460–4472. [CrossRef]

88. Wu, R.W.; Xu, Z.Y.; Zhang, J.L. Sub-pixel Homography Matrix Estimation Based on Unsupervised Cascade. Semicond. Optoelectron.
2022, 43, 158–163. (In Chinese)

89. Zhang, H.; Ling, Y. Hvc-net: Unifying homography, visibility, and confidence learning for planar object tracking. In Proceedings
of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 701–718.

90. Hou, B.; Ren, J.; Yan, W. Unsupervised Multi-Scale-Stage Content-Aware Homography Estimation. Electronics 2023, 12, 1976.
[CrossRef]

91. Wang, C.; Wang, X.; Bai, X.; Liu, Y.; Zhou, J. Self-supervised deep homography estimation with invertibility constraints. Pattern
Recognit. Lett. 2019, 128, 355–360. [CrossRef]

92. Li, Y.; Pei, W.; He, Z. SSORN: Self-Supervised Outlier Removal Network for Robust Homography Estimation. arXiv 2022,
arXiv:2208.14093.

93. Jiang, H.; Li, H.; Lu, Y.; Han, S.; Liu, S. Semi-supervised deep large-baseline homography estimation with progressive equivalence
constraint. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023;
pp. 1024–1032.

94. Ma, J.; Liang, P.; Yu, W.; Chen, C.; Guo, X.; Wu, J.; Jiang, J. Infrared and visible image fusion via detail preserving adversarial
learning. Inf. Fusion 2020, 54, 85–98. [CrossRef]

95. Hao, S.; Wang, W.; Ye, Y.; Nie, T.; Bruzzone, L. Two-stream deep architecture for hyperspectral image classification. IEEE Trans.
Geosci. Remote Sens. 2017, 56, 2349–2361. [CrossRef]

96. Kulkarni, S.C.; Rege, P.P. Pixel level fusion techniques for SAR and optical images: A review. Inf. Fusion 2020, 59, 13–29. [CrossRef]

https://doi.org/10.1049/ipr2.12722
https://doi.org/10.3390/electronics12040788
https://doi.org/10.1109/LRA.2018.2809549
https://doi.org/10.3390/app9235187
https://doi.org/10.1049/ipr2.12842
https://doi.org/10.1109/TCSVT.2021.3125736
https://doi.org/10.3390/electronics12091976
https://doi.org/10.1016/j.patrec.2019.09.021
https://doi.org/10.1016/j.inffus.2019.07.005
https://doi.org/10.1109/TGRS.2017.2778343
https://doi.org/10.1016/j.inffus.2020.01.003


Electronics 2023, 12, 4977 33 of 34

97. Zhu, B.; Ye, Y.; Zhou, L.; Li, Z.; Yin, G. Robust registration of aerial images and LiDAR data using spatial constraints and Gabor
structural features. ISPRS-J. Photogramm. Remote Sens. 2021, 181, 129–147. [CrossRef]

98. Zhu, B.; Zhou, L.; Pu, S.; Fan, J.; Ye, Y. Advances and challenges in multimodal remote sensing image registration. IEEE J.
Miniaturization Air Space Syst. 2023, 4, 165–174. [CrossRef]

99. Luo, Y.; Wang, X.; Wu, Y.; Shu, C. Detail-Aware Deep Homography Estimation for Infrared and Visible Image. Electronics 2022, 11,
4185. [CrossRef]

100. Pouplin, T.; Perreault, H.; Debaque, B.; Drouin, M.A.; Duclos-Hindie, N.; Roy, S. Multimodal Deep Homography Estimation
Using a Domain Adaptation Generative Adversarial Network. In Proceedings of the 2022 IEEE International Conference on Big
Data (Big Data), Osaka, Japan, 17–20 December 2022; pp. 3635–3641.

101. Wang, X.; Luo, Y.; Fu, Q.; Rui, Y.; Shu, C.; Wu, Y.; He, Z.; He, Y. Infrared and Visible Image Homography Estimation Based on
Feature Correlation Transformers for Enhanced 6G Space–Air–Ground Integrated Network Perception. Remote Sens. 2023, 15,
3535. [CrossRef]

102. Wang, X.; Luo, Y.; Fu, Q.; He, Y.; Shu, C.; Wu, Y.; Liao, Y. Coarse-to-Fine Homography Estimation for Infrared and Visible Images.
Electronics 2023, 12, 4441. [CrossRef]

103. Mao, L.; Zhu, H.; Duan, F. Homography Estimation Based on Error Elliptical Distribution. In Proceedings of the ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019;
pp. 2302–2306.

104. Liang, P.; Wu, Y.; Lu, H.; Wang, L.; Liao, C.; Ling, H. Planar object tracking in the wild: A benchmark. In Proceedings of the 2018
IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 651–658.

105. Tengfeng, W. Seamless stitching of panoramic image based on multiple homography matrix. In Proceedings of the 2018 2nd IEEE
Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China,
25–27 May 2018; pp. 2403–2407.

106. Yoon, J.; Lee, D. Real-time video stitching using camera path estimation and homography refinement. Symmetry 2018, 10, 4.
[CrossRef]

107. Park, K.W.; Shim, Y.J.; Lee, M.J.; Ahn, H. Multi-frame based homography estimation for video stitching in static camera
environments. Sensors 2020, 20, 92. [CrossRef] [PubMed]

108. Nie, L.; Lin, C.; Liao, K.; Liu, M.; Zhao, Y. A view-free image stitching network based on global homography. J. Vis. Commun.
Image Represent 2020, 73, 102950. [CrossRef]

109. Zhao, Q.; Ma, Y.; Zhu, C.; Yao, C.; Feng, B.; Dai, F. Image stitching via deep homography estimation. Neurocomputing 2021, 450,
219–229. [CrossRef]

110. Song, D.Y.; Um, G.M.; Lee, H.K.; Cho, D. End-to-end image stitching network via multi-homography estimation. IEEE Signal
Process. Lett. 2021, 28, 763–767. [CrossRef]

111. Nie, L.; Lin, C.; Liao, K.; Zhao, Y. Learning edge-preserved image stitching from multi-scale deep homography. Neurocomputing
2022, 491, 533–543. [CrossRef]

112. Shah, K.; Pandey, M.; Patki, S.; Shankarmani, R. A Virtual Trial Room using Pose Estimation and Homography. In Proceedings of
the 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 13–15 May 2020;
pp. 685–691.

113. Paz, A.; Guenaga, M.L.; Eguíluz, A. Augmented Reality for maintenance operator training using SURF points and homography.
In Proceedings of the 2012 9th International Conference on Remote Engineering and Virtual Instrumentation (REV), Bilbao, Spain,
4–6 July 2012; pp. 1–4.

114. Valognes, J.; Dastjerdi, N.S.; Amer, M. Augmenting reality of tracked video objects using homography and keypoints. In
Proceedings of the Image Analysis and Recognition: 16th International Conference (ICIAR 2019), Waterloo, ON, Canada, 27–29
August 2019; pp. 237–245.

115. Prince, S.J.; Xu, K.; Cheok, A.D. Augmented reality camera tracking with homographies. IEEE Comput. Graph. Appl. 2022, 22,
39–45. [CrossRef]

116. Zhang, X.; Homma, N.; Ichiji, K.; Sugita, N.; Takai, Y.; Yoshizawa, M. A real-time homography-based tracking method for tracking
deformable tumor motion in fluoroscopy. In Proceedings of the 2016 55th Annual Conference of the Society of Instrument and
Control Engineers of Japan (SICE), Tsukuba, Japan, 20–23 September 2016; pp. 1673–1677.

117. Song, L.; Zou, H.; Ji, Z.; Xie, X.; Li, W. A novel iterative matching scheme based on homography method for X-ray image. J. Mech.
Med. Biol. 2020, 20, 2050038. [CrossRef]
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