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Abstract: This paper proposes a new method for calculating the quaternion discrete Fourier transform
for one-dimensional data. Although the computational complexity of the proposed method still
belongs to the O(N log2 N) class, it allows us to reduce the total number of arithmetic operations
required to perform it compared to other known methods for computing this transform. Moreover,
compared to the method using symplectic decomposition, the presented method does not require
changing the basis in the subspace of pure quaternions and, consequently, calculating the new basis
vectors and change-of-basis matrix.

Keywords: one-dimensional quaternion discrete Fourier transform; symplectic decomposition; fast
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1. Introduction

The discrete Fourier transform (DFT) is a fundamental tool for data processing and
analysis in many fields of science and technology [1]. The DFT is especially used in digital
signal and image processing. If a one-dimensional discrete Fourier transform is used in
the processing and analysis of one-dimensional signals, such as speech and other audio
signals [2,3], then in the case of image processing and recognition, we are dealing with a
two-dimensional DFT [4–9].

The rapid development of signal and image processing technologies has led to ad-
vanced data processing techniques using data representation and processing in the hyper-
complex domain. This led to the proposal to represent each pixel of a color image as a
quaternion [10–14].

The old approach to using color channels to process color images was to use separate
channels for the primary colors red, green, and blue. This approach divided the color image
into three separate channels. In fact, three 2D matrices were formed, as a result of the
presence of three channels for color images, and the computations with each matrix were
carried out independently in grayscale. With this approach, due to channel separation, the
cross-correlation between channels was lost at the start of the process because the color
image was not considered as a whole [14,15].

In the quaternion-based method, a color image was considered as one matrix consisting
of pure quaternion numbers. Such a matrix is processed as a whole. In order to convert an
RGB image into a quaternion matrix, the RGB channels were simply inserted into the vector
part of the quaternion matrix. In addition, such a representation of the pixel matrix made it
possible to significantly reduce the computational complexity of color image processing
methods compared to three-channel processing.

A natural development of research within the framework of the quaternion-valued
representation of pixels in color images was the definition of a two-dimensional quaternion
discrete Fourier transform (2-D QDFT) and the development of fast algorithms for 2-D
QDFT implementation [12,16–19].
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As for the one-dimensional QDFT, this issue has not been studied in detail, since many
computer scientists simply did not see the use of such a transform. That is why there are
relatively few research studies on this topic [16,19–24]. In this article, we would like to fill
this gap and give a detailed definition of 1-D QDFT, as well as propose a fast method for its
implementation.

2. Quaternions

Quaternions were introduced by Hamilton in 1843 [25]. They fulfill the usual rules of
algebra, but their multiplication is not commutative. Quaternions have four components,
one real and three imaginary. In usual notation, which comes from complex numbers, the
quaternion q is written in the form

q = a + bi + cj + dk (1)

where a, b, c, and d are real numbers, and i, j, k are imaginary units that obey the following
rules of multiplication:

i2 = j2 = k2 = −1 (2)

ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j (3)

Quaternions are also called hypercomplex numbers (together with coquaternions,
biquaternions, tessarines, octonions, sedenions, etc.). A quaternion has a real part—a
in (1)—and an imaginary part, which has three components and is usually denoted by
V(q) = bi + cj + dk. The imaginary part V(q) of a quaternion may be associated with a
3-space vector [b, c, d]T , and it is often called the vector part of the quaternion. For this
reason, the real part is often called the scalar part of the quaternion q, and denoted by S(q).
The whole quaternion may be represented as q = S(q) + V(q), i.e., the sum of its scalar
and vector parts. A quaternion in which the real (or scalar) part is equal to zero is called a
pure quaternion.

The conjugate of a quaternion q is designed by q and obtained, as in complex numbers,
by negating the imaginary part, so

q = a− bi− cj− dk (4)

The modulus of a quaternion q follows the definition for complex numbers, so

|q| =
√

qq =
√

a2 + b2 + c2 + d2 (5)

A quaternion with a unit modulus is called a unit quaternion. The inverse of a
quaternion q, denoted by q−1, such that qq−1 = q−1q = 1 is given by

q−1 =
q
|q|2 (6)

Euler’s formula for the complex exponential is also true for quaternions, so

eµφ = cos φ + µ sin φ (7)

where µ is a unit pure quaternion and φ is a real number–angle. Any quaternion q may be
represented in the polar form as

q = |q|eµφ (8)

where µ is called the eigenaxis, and φ is called the eigenangle of the quaternion q.
A quaternion q may be also represented as a generalized complex number [26]

q = w + rj (9)
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where its real and imaginary parts are ordinary complex numbers

w = a + bi r = c + di (10)

The imaginary units i and j should be different and orthogonal (where the orthogonal-
ity of pure quaternions is understood as for vectors in R3 vector space). Definition (9) of a
quaternion is known as the Cayley–Dickson form. Using this form, the quaternion q may
be written as

q = (a + bi) + (c + di)j (11)

where it can be seen by multiplying out, using the rules (3), that the result is the same as
in the definition (1). The two parts w = a + bi and r = c + dj are called the simplex and
perplex parts of the quaternion q, respectively, and the decomposition of the quaternion
into these parts is known as symplectic decomposition [26]. Such a decomposition of a
quaternion can be used to calculate the QDFT, as will be shown in Section 4.

The product of two quaternions q = a + bi + cj + dk = S(q) + V(q) and q̂ = â + b̂i +
ĉj + d̂k = S(q̂) + V(q̂) can be represented by the products of their scalar and vector parts

qq̂ = aâ− (bb̂ + cĉ + dd̂) + a(b̂i + ĉj + d̂k)+

â(bi + cj + dk) + (cd̂− dĉ)i + (db̂− bd̂)j + (bĉ− cb̂)k =

S(q)S(q̂)−V(q) ·V(q̂) + S(q)V(q̂) + S(q̂)V(q) + V(q)×V(q̂) (12)

where “·” denotes the scalar product and “×” denotes the cross product of vectors. Gener-
ally, quaternion multiplication is neither commutative nor anti-commutative because the
dot product is commutative and the cross product is anti-commutative. When q and q̂ are
pure quaternions, then S(q) = S(q̂) = 0, so qq̂ = V(q) · V(q̂) + V(q)× V(q̂). If, moreover,
V(q) · V(q̂) = 0, we say that pure quaternions q and q̂ are perpendicular (q⊥q̂). Then
qq̂ = V(q) × V(q̂) and qq̂ = −q̂q. In general, two quaternions whose vector parts are
parallel, in the usual vector sense, are called parallel quaternions. Likewise, if their vector
parts are perpendicular, they are called perpendicular quaternions [11].

3. Two Types of Quaternion Discrete Fourier Transform

Although the quaternion Fourier transform is mainly used for two-dimensional data,
i.e., images, it has been specified for one-dimensional data as well [19,21]. We will only
deal with the discrete version of the one-dimensional quaternion Fourier transform.

Let x(r)(n), x(i)(n), x(j)(n), and x(k)(n) be the components of a discrete quaternion
signal x(n) with the number of samples N. Then

x(n) = x(r)(n) + x(i)(n)i + x(j)(n)j + x(k)(n)k (13)

for n = 0, . . . , N − 1, where x(r)(n), x(i)(n), x(j)(n), and x(k)(n) are real numbers.
Let µ be a unit pure quaternion and µi, µj, µk be its coefficients associated with the

imaginary units i, j, k, respectively:

µ = µii + µj j + µkk (14)

where
|µ|2 = µµ = (µi)

2 + (µj)
2 + (µk)

2 = 1 (15)

The choice of µ is arbitrary, but it matters. In applications, the case µi = µj = µk is
often used; thus, taking into account (15), we obtain µ = (i + j + k)/

√
3.

Since quaternion multiplication is not commutative, two different 1-D quaternion
discrete Fourier transforms were defined, which are referred to as right-side and left-
side QDFTs.
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The right-side 1-D quaternion discrete Fourier transform is defined as follows:

y(m) =
N−1

∑
n=0

x(n)e−
µ2πmn

N (16)

for m = 0, . . . , N − 1, where the quaternion exponents are to the right of x(n), and µ is any
unit pure quaternion.

It should be noted that for any choice of µ, µ2 = −1, so this transform can be regarded
as a generalization of the standard complex discrete Fourier transform in which the imagi-
nary unit i has been generalized to a vector imaginary unit µ. This means that if µ = i and
the input signal is complex-valued, that is all samples have values (x(r)(n) + x(i)i), then
this transform is reduced to the usual complex-valued discrete Fourier transform.

According to (7), the quaternion exponent can be written in the form

e−
µ2πmn

N = cos
2πmn

N
− µ sin

2πmn
N

(17)

or, if we introduce the denotations

am,n = cos
2πmn

N
, bm,n = sin

2πmn
N

(18)

and take into account (14), the quaternion exponent can by written as

e−
µ2πmn

N = am,n − (µii + µj j + µkk)bm,n (19)

Putting expressions (13) and (19) into (16), the right-side quaternion discrete Fourier
transform can be written in the form

y(m) =
N−1

∑
n=0

[x(r)(n) + x(i)(n)i + x(j)(n)j + x(k)(n)][am,n − (µii + µj j + µkk)bm,n] (20)

After multiplying the expressions in square brackets, according to the rules (2) and (3)
of multiplication of imaginary units, we can write the result as

y(m) = y(r)(m) + y(i)(m)i + y(j)(m)j + y(k)(m)k (21)

where y(r)(m), y(i)(m), y(j)(m), and y(k)(m) are real numbers. It is easy to check that they
take the following forms:

y(r)(m) =
N−1

∑
n=0

{
x(r)(n)am,n + µix(i)(n)bm,n + µjx(j)(n)bm,n + µkx(k)(n)bm,n

}
(22)

y(i)(m) =
N−1

∑
n=0

{
x(i)(n)am,n − µix(r)(n)bm,n + µjx(k)(n)bm,n − µkx(j)(n)bm,n

}
(23)

y(j)(m) =
N−1

∑
n=0

{
x(j)(n)am,n − µix(k)(n)bm,n − µjx(r)(n)bm,n + µkx(i)(n)bm,n

}
(24)

y(k)(m) =
N−1

∑
n=0

{
x(k)(n)am,n + µix(j)(n)bm,n − µjx(i)(n)bm,n − µkx(r)(n)bm,n

}
(25)

The left-side 1-D quaternion discrete Fourier transform is defined as

z(m) =
N−1

∑
n=0

e−
µ2πmn

N x(n) (26)
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for m = 0, . . . , N− 1, where the quaternion exponents are on the left side in multiplications.
Taking into account (13) and (19), the right-side quaternion discrete Fourier transform (26)
can be written in the form

z(m) =
N−1

∑
n=0

[am,n − (µii + µj j + µkk)bm,n][x(r)(n) + x(i)(n)i + x(j)(n)j + x(k)(n)] (27)

After multiplying the expressions in square brackets, according to the rules (2) and (3)
of multiplication of imaginary units, we can write the result as

z(m) = z(r)(m) + z(i)(m)i + z(j)(m)j + z(k)(m)k (28)

where z(r)(m), z(i)(m), z(j)(m), and z(k)(m) are real numbers. It is easy to check that they
take the following forms:

z(r)(m) =
N−1

∑
n=0

{
x(r)(n)am,n + µix(i)(n)bm,n + µjx(j)(n)bm,n + µkx(k)(n)bm,n

}
(29)

z(i)(m) =
N−1

∑
n=0

{
x(i)(n)am,n − µix(r)(n)bm,n − µjx(k)(n)bm,n + µkx(j)(n)bm,n

}
(30)

z(j)(m) =
N−1

∑
n=0

{
x(j)(n)am,n + µix(k)(n)bm,n − µjx(r)(n)bm,n − µkx(i)(n)bm,n

}
(31)

z(k)(m) =
N−1

∑
n=0

{
x(k)(n)am,n − µix(j)(n)bm,n + µjx(i)(n)bm,n − µkx(r)(n)bm,n

}
(32)

Unlike the complex-valued DFT, the left-side and right-side QDFTs are slightly differ-
ent transforms. From (22) and (29), we can see that the real parts of both transforms are
the same but the imaginary parts differ from each other in the signs of some components
of the sums (compare (23) with (30), (24) with (31), and (25) with (32)). Obviously, this
follows from the non-commutative nature of quaternions multiplication. However, if we
choose µ = i (i.e., µi = 1 and µj = µk = 0) and the complex-valued input signal x(n)
(i.e., x(j)(n) = x(k)(n) = 0), then both of these transforms will be reduced to the usual
complex-valued DFT.

Moreover, by analyzing (22)–(25) and (29)–(32), it is easy to see that all components
of both QDFTs are linear combinations of the real and imaginary parts of four ordinary
Fourier transforms for the real signals x(r)(n), x(i)(n), x(j)(n), and x(k)(n)—components
of the quaternion signal x(n). This will be further explained in Section 5. Therefore,
for determining the right-side or left-side QDFT, the calculation of four discrete Fourier
transforms for the four real-valued components of the quaternion signal is needed.

Figure 1 shows graphical representations of four components of the right-side and
the left-side QDFTs for the quaternion signal x(n) = x(r)(n) + x(i)(n)i + x(j)(n)j + x(k)(n)k
with N = 16 samples, where

x(r)(n) = sin
nπ

N
− n (33)

x(i)(n) = −4 + n (34)

x(j)(n) = 10 + sin
2nπ

N
(35)

x(k)(n) = 5 + 2 cos
nπ

N
(36)
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Figure 1. Four components of the quaternion input signal x(n) (the left column), their right−side
QDFT y(n) (the middle column), and left−side QDFT z(n) (the right column).

4. Calculation of QDFTs by Symplectic Decomposition

The use of the symplectic decomposition method allows both QDFTs to be computed
by performing only two complex-valued discrete Fourier transforms instead of four. This
approach was used in [26] to calculate the two-dimensional left-side QDFT. In this work,
we will show how to also use the symplectic decomposition method to reduce the compu-
tational complexity of calculating one-dimensional right-side and left-side QDFTs.
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If we take arbitrary two unit pure quaternions µ1 and µ2, such that µ1⊥µ2 (pure
quaternions are perpendicular when their dot product is equal to zero), and the third unit
pure quaternion µ3 = µ1µ2, we can represent the quaternion signal

x(n) = x(r)(n) + x(i)(n)i + x(j)(n)j + x(k)(n)k (37)

as
x(n) = x(r)(n) + x(µ1)(n)µ1 + x(µ2)(n)µ2 + x(µ3)(n)µ3 (38)

The change of the imaginary units from i, j, k to µ1, µ2, µ3 corresponds to the change
of the basis in R3 vector space from [1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T to another basis of three
mutually orthogonal unit vectors; so for each sample, we obtain the new coordinates by
multiplying the matrix inverse to the change-of-basis matrix by the old coordinates vector

x(µ1)(n)

x(µ2)(n)

x(µ3)(n)

 = S−1
3


x(i)(n)

x(j)(n)

x(k)(n)

 (39)

The change-of-basis matrix S3 depends on the choice of new imaginary units. For
example, if we take the imaginary units µ1, µ2, µ3, as in [26]

µ1 =
1√
3

i +
1√
3

j +
1√
3

k (40)

µ2 =
1√
2

j− 1√
2

k (41)

µ3 = − 2√
6

i +
1√
6

j +
1√
6

k (42)

then the change-of-basis matrix has the form

S3 =


1√
3

0 − 2√
6

1√
3

1√
2

1√
6

1√
3
− 1√

2
2√
6

 (43)

In Cayley–Dickson form (38) has the form

x(n)= [x(r)(n)+x(µ1)(n)µ1]+[x(µ2)(n)+x(µ3)(n)µ1]µ2 (44)

This is a symplectic decomposition of each sample x(n) into a simplex part

x(s)(n) = x(r)(n) + x(µ1)(n)µ1 (45)

and a perplex part
x(p)(n) = x(µ2)(n) + x(µ3)(n)µ1 (46)

both isomorphic to the standard complex number. The result is a pair of complex signals.
They may be stored using the same space as the quaternion signal x(n). The symplectic
decomposition splits a quaternion into two perpendicular planes. These planes intersect
only at the origin (in 4-space). Each of these planes may be regarded as an Argand plane.
The first is the Argand plane of the simplex part; its real axis is identical to the scalar axis
of quaternion space and its imaginary axis is µ1. The second is the Argand plane of the
perplex part; this plane is perpendicular to both axes of the Argand plane of the simplex
part. The real axis of this plane is identical to µ2 and its imaginary axis is µ3.
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Let the axis of transform kernel of the right-side QDFT in (16) be chosen as µ1, i.e.,
µ = µ1. Then (16), can be rewritten as

y(m) =
N−1

∑
n=0

[x(s)(n) + x(p)(n)µ2]e−
µ12πmn

N (47)

The sum in (47) can be written as the sum of two terms. The first term, which is the
simplex part of y(m), has the form

y(s)(m) =
N−1

∑
n=0

x(s)(n)e−
µ12πmn

N =
N−1

∑
n=0

[x(r)(n) + x(µ1)(n)µ1]e−
µ12πmn

N (48)

This is isomorphic to the discrete Fourier transform for a complex input. The only
difference is that the imaginary unit is called µ1 instead of i. Hence, calculation of y(s)(m) =
y(r)(n) + y(µ1)(n)µ1 comes down to the computation of a complex DFT for the simplex part
x(s)(n) of x(n). This can be performed using the FFT algorithm. The second term

y(p)(m)µ2 =
N−1

∑
n=0

x(p)(n)µ2e−
µ12πmn

N =
N−1

∑
n=0

x(p)(n)µ2

(
cos

2πmn
N
− µ1 sin

2πmn
N

)
=

N−1

∑
n=0

x(p)(n)
(

cos
2πmn

N
+ µ1 sin

2πmn
N

)
µ2 =

(
N−1

∑
n=0

[x(µ2)(n) + x(µ3)(n)µ1]e
µ12πmn

N

)
µ2 (49)

where, during the transformation, we used the equality µ2µ1 = −µ1µ2, which is true for
pure, perpendicular quaternions. It is easy to see that y(p)(n) = y(µ2)(n) + y(µ3)(n)µ1 is the
perplex part of y(n). So, the calculation of y(p)(m) comes down to the computation of a
complex inverse discrete Fourier transform (IDFT) for the perplex part x(p)(n) of x(n), but
without multiplying the result by 1/N. This can be performed using the IFFT algorithm.

After calculating the simplex and perplex parts of the output signal y(m) = y(r)(n) +
y(µ1)(n)µ1 + y(µ2)(n)µ3 + y(µ3)(n)µ3, we want to write y(m) using the imaginary units i, j,
and k instead of µ1, µ2, and µ3, i.e.,

y(m) = y(r)(m) + y(i)(m)i + y(j)(m)j + y(k)(m)k (50)

In the associated R3 vector space, this corresponds to returning to the old base [1, 0, 0]T ,
[0, 1, 0]T , [0, 0, 1]T , so it can be done by the operation inverse to (39), i.e.,

y(i)(m)

y(j)(m)

y(k)(m)

 = S3


y(µ1)(m)

y(µ2)(m)

y(µ3)(m)

 (51)

Summarizing the above considerations, in order to calculate the right-side QDFT using
symplectic decomposition, the input signal should be represented by new imaginary units
such that the first becomes the axis of the transform kernel. This corresponds to a change of
the basis in the associated R3 vector space (for each sample of the quaternion-valued input
signal). Then, a single complex DFT and a single complex IDFT should be calculated for
the simplex and perplex parts of the quaternion-valued input signal, respectively. Finally,
we have to return to the standard imaginary units i, j, and k, which corresponds to a return
to the old basis in the associated R3 vector space.

A similar, and even simpler, consideration may be given to the left-side QDFT. As-
suming that the axis of the transform kernel of the left-side QDFT in (26) is chosen as µ1,
and using the symplectic decomposition of the quaternion input signal x(n), (26), can be
rewritten as

z(m) =
N−1

∑
n=0

e−
µ12πmn

N [x(s)(n) + x(p)(n)µ2] (52)
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The sum in (52) can be written as the sum of two terms. The first term, which is the
simplex part of z(m) has the form

z(s)(m) =
N−1

∑
n=0

e−
µ12πmn

N x(s)(n) =
N−1

∑
n=0

e−
µ12πmn

N [x(r)(n) + x(µ1)(n)µ1] =

N−1

∑
n=0

[x(r)(n) + x(µ1)(n)µ1]e−
µ12πmn

N (53)

Calculation of z(s)(m) comes down to the computation of complex-valued DFTs for the
simplex part x(s)(n) of x(n). This can be performed using the FFT algorithm. In addition,
z(s)(n) = y(s)(n).

The second term has the form

z(p)(m)µ2 =
N−1

∑
n=0

e−
µ12πmn

N x(p)(n)µ2 =

(
N−1

∑
n=0

[x(µ2)(n) + x(µ3)(n)µ1]e−
µ12πmn

N

)
µ2 (54)

It is easy to see that z(p)(n) is the perplex part of z(n). Calculation of z(p)(m) also comes
down to the computation of complex-valued DFTs for the perplex part x(p)(n) of x(n). This
can be performed using the FFT algorithm. Summarizing the above considerations, it can
be argued that in order to calculate the left-side QDFT using a symplectic decomposition,
the input signal should be represented by new imaginary units, the first of which will be
equal to the axis of the transform kernel. This step is the same as in calculating the right-side
QDFT. Then two complex DFTs should be calculated—for the simplex and perplex parts of
the quaternion-valued input signal. In the end, as with the right-side QDFT calculation, the
return to the standard imaginary units i, j, and k is needed.

5. The Simplest Method of QDFT Calculation

We will use the matrix notation to describe the QDFTs. Let xN = [x0, x1, . . . , xN−1]
T be

a vector of samples of the quaternion input signal, where xn = x(n) for n = 0, 1, . . . , N − 1,
so it can be written in the form

xN =


x(r)0

x(r)1
...

x(r)N−1

+


x(i)0

x(i)1
...

x(i)N−1

i +


x(j)

0

x(j)
1
...

x(j)
N−1

j +


x(k)0

x(k)1
...

x(k)N−1

k (55)

Similarly yN = [y0, y1, . . . , yN−1]
T and zN = [z0, z1, . . . , zN−1]

T are the quaternion
output vectors of the right-side and left-side QDFTs, respectively, where yn = y(n) and
zn = z(n), so they can be written as

yN =


y(r)0

y(r)1
...

y(r)N−1

+


y(i)0

y(i)1
...

y(i)N−1

i +


y(j)

0

y(j)
1
...

y(j)
N−1

j +


y(k)0

y(k)1
...

y(k)N−1

k (56)
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zN =


z(r)0

z(r)1
...

z(r)N−1

+


z(i)0

z(i)1
...

z(i)N−1

i +


z(j)

0

z(j)
1
...

z(j)
N−1

j +


z(k)0

z(k)1
...

z(k)N−1

k (57)

Let square matrices of cosine and sine coefficients be denoted by AN and BN , respec-
tively, so

AN =


a0,0 a0,1 . . . a0,N−1
a1,0 a1,1 . . . a1,N−1

...
...

. . .
...

aN−1,0 aN−1,1 . . . aN−1,N−1

 (58)

BN =


b0,0 b0,1 . . . b0,N−1
b1,0 a1,1 . . . b1,N−1

...
...

. . .
...

bN−1,0 bN−1,1 . . . bN−1,N−1

 (59)

where the entries am,n and bm,n of the matrices AN and BN , respectively, are defined in (18).
Note that the matrix (AN − BN i) = FN , where FN is the DFT matrix.

In matrix notation, we can write (22)–(25), which describe the right-side QDFT, in
the forms

y(r)
N = ANx(r)N + µiBNx(i)N + µjBNx(j)

N + µkBNx(k)N (60)

y(i)
N = ANx(i)N − µiBNx(r)N + µjBNx(k)N − µkBNx(j)

N (61)

y(j)
N = ANx(j)

N − µiBNx(k)N − µjBNx(r)N + µkBNx(i)N (62)

y(k)
N = ANx(k)N + µiBNx(j)

N − µjBNx(i)N − µkBNx(r)N (63)

Figure 2 shows a data flow diagram for calculating the right-side QDFT. The straight
lines in the figures indicate the data transmission buses, so that each bus simultaneously
transmits all elements of a real-valued vector. By default, we assume that data flows from
left to right. Therefore, we do not use arrows, so as not to clutter up the drawings. The
points at which the lines converge denote the element-wise summation of the input vectors.
The rectangles show the operation of multiplying a vector by a matrix, the designation of
which is inscribed inside the rectangle, and the circles show the operation of multiplying
all elements of the input vector by a constant inscribed in the circle.

Now, we will develop a similar algorithm for the left-side QDFT. In matrix notation,
the equivalents of (29)–(32), which describe the left-side QDFT, are as follows:

z(r)N = ANx(r)N + µiBNx(i)N + µjBNx(j)
N + µkBNx(k)N (64)

z(i)N = ANx(i)N − µiBNx(r)N − µjBNx(k)N + µkBNx(j)
N (65)

z(j)
N = ANx(j)

N + µiBNx(k)N − µjBNx(r)N − µkBNx(i)N (66)
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z(k)N = ANx(k)N − µiBNx(j)
N + µjBNx(i)N − µkBNx(r)N (67)

��
���

��
���

��
�� �

��
���

 

	�
���

	�
���

	�
�� �

	�
���

 


�

��


�

��

 


�

��


�

��

 

µ
�

µ
�

µ
�

 

µ
�

µ
�

µ
�

 

µ
�

µ
�

µ
�

 

µ
�

µ
�

µ
�

 

Figure 2. Data flow diagrams for calculation of the right-side QDFT.

Figure 3 shows the data flow diagram for calculation of the left-side QDFT.
To calculate both QDFTs—the right-side and the left-side—you need to multiply the

matrices AN and BN by each of the four components of the quaternion-valued input vector
xN . Since the components of the input vectors are real values, these operations can be
performed by computing the DFT for each component of the input vector and dividing the
real and imaginary parts of the result, i.e.,

ANx(r)N = Re(FNx(r)N ), BNx(r)N = −Im(FNx(r)N ) (68)

ANx(i)N = Re(FNx(i)N ), BNx(i)N = −Im(FNx(i)N ) (69)

ANx(j)
N = Re(FNx(j)

N ), BNx(j)
N = −Im(FNx(j)

N ) (70)

ANx(k)N = Re(FNx(k)N ), BNx(k)N = −Im(FNx(k)N ) (71)
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Figure 3. Data flow diagrams for calculation of the left-side QDFT.

6. 1-D QDFT Proposal

By computing both QDFTs, the main computational cost is related to multiplying the
four components of the quaternion-valued input vector by the matrices AN and BN . This is
equivalent to calculating the DFTs for each of the four components and separating the real
and imaginary parts, as was described in Section 5. It seems that in order to calculate any
QDFT, it is necessary to compute four DFTs. However, it is known that the same operation
can be done by performing only two Fourier transforms for two complex-valued input
vectors, since each of the two DFTs for real-valued input vectors can be computed with one
DFT for the complex-valued input vector. To explain this, let us introduce two real-valued
vectors x(1)N and x(2)N formed from the complex-valued vector xN = x(1)N + ix(2)N . Let c(1)N be

the DFT output for input x(1)N , c(2)N —the DFT output for input x(2)N , and cN—the DFT output
for complex-valued input xN . Although the DFTs outputs for the real-valued inputs are
complex-valued, their real and imaginary parts have special symmetries, namely

Re(c(1)n ) = Re(c(1)N−n), Im(c(1)n ) = −Im(c(1)N−n) (72)

Re(c(2)n ) = Re(c(2)N−n), Im(c(2)n ) = −Im(c(2)N−n) (73)

for n = 0, 1, . . . , N − 1. It is said that for a real-valued input signal, the real part of its DFT
is symmetric and the imaginary part is antisymmetric.
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For each coefficient cn of DFT output for complex-valued signal xN = x(1)N + ix(2)N , we
can write

cn = Re(cn) + Im(cn)i (74)

However, the DFT is a linear transform, so it can be also written as

cn = c(1)n + ic(2)n = Re(c(1)n ) + iIm(c(1)n ) + i[Re(c(2)n ) + iIm(c(2)n )] (75)

Thus,
Re(cn) = Re(c(1)n )− Im(c(2)n ) (76)

and
Im(cn) = Im(c(1)n ) + Re(c(2)n ) (77)

Analogously,
Re(cN−n) = Re(c(1)N−n)− Im(c(2)N−n) (78)

and
Im(cN−n) = Im(c(1)N−n) + Re(c(2)N−n) (79)

Taking into account properties (72) and (73), (78) can be written in the form

Re(cN−n) = Re(c(1)n ) + Im(c(2)n ) (80)

and (79) as
Im(cN−n) = −Im(c(1)n ) + Re(c(2)n ) (81)

By adding and subtracting the sides of (80) and (76), we obtain, respectively

Re(c(1)n ) =
Re(cn) + Re(cN−n)

2
(82)

and

Im(c(2)n ) =
Re(cN−n)− Re(cn)

2
(83)

Similarly, by adding and subtracting the sides of (77) and (81) we obtain, respectively

Re(c(2)n ) =
Im(cn) + Im(cN−n)

2
(84)

and

Im(c(1)n ) =
Im(cn)− Im(cN−n)

2
(85)

We introduce the denotation ↑, which means the signal reversed in time. So, for
cN = [c0, c1, . . . , cN−1]

T , we have

c↑N =


c0

cN−1
...

c1

 = PNcN (86)

where the matrix PN , which is responsible for reversing signal in time, has the form

PN =


1 0 . . . 0 0
0 0 . . . 0 1
0 0 . . . 1 0
...

...
...

...
...

0 1 . . . 0 0

 (87)
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Then, (82) written in vector notation has the form

Re(c(1)N ) =
1
2
[Re(cN) + Re(c↑N)] (88)

Analogously, (85) written in vector notation has the form

Im(c(1)N ) =
1
2
[Im(cN)− Im(c↑N)] (89)

Similarly, (84) written in vector notation has the form

Re(c(2)N ) =
1
2
[Im(cN) + Im(c↑N)] (90)

In the end, (83) written in vector notation has the form

Im(c(2)N ) =
1
2
[Re(c↑N)− Re(cN)] (91)

Going back to QDFT transforms, the quaternion-valud input vector xN has four real-
valued component x(r)N , x(i)N , x(j)

N , x(k)N . Let us denote their complex Fourier transforms by

c(r)N , c(i)N , c(j)
N , c(k)N . They are all complex-valued, and

ANx(r)N = Re(c(r)N ), BNx(r)N = −Im(c(r)N ) (92)

ANx(i)N = Re(c(i)N ), BNx(i)N = −Im(c(i)N ) (93)

ANx(j)
N = Re(c(j)

N ), BNx(j)
N = −Im(c(j)

N ) (94)

ANx(k)N = Re(c(k)N ), BNx(k)N = −Im(c(k)N ) (95)

From the components of the quaternion input vector xN , we can create two complex
inputs vectors x̃N = x(r)N + x(i)N i and x̂N = x(j)

N + x(k)N i. Then, we calculate the complex
discrete Fourier transforms for these, i.e., c̃N and ĉN , using the fast algorithm, and separate
their real and imaginary parts. Then, according to (88)–(91), for the first complex vector x̃N ,
we obtain

Re(c(r)N ) =
1
2
[Re(c̃N) + Re(c̃↑N)] (96)

Im(c(r)N ) =
1
2
[Im(c̃N)− Im(c̃↑N)] (97)

Re(c(i)N ) =
1
2
[Im(c̃N) + Im(c̃↑N)] (98)

Im(c(i)N ) =
1
2
[Re(c̃↑N)− Re(c̃N)] (99)

and, similarly, for the second complex-valued vector x̂N , we obtain

Re(c(j)
N ) =

1
2
[Re(ĉN) + Re(ĉ↑N)] (100)

Im(c(j)
N ) =

1
2
[Im(ĉN)− Im(ĉ↑N)] (101)
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Re(c(k)N ) =
1
2
[Im(ĉN) + Im(ĉ↑N)] (102)

Im(c(k)N ) =
1
2
[Re(ĉ↑N)− Re(ĉN)] (103)

The data flow diagrams for our method of QDFT calculation are shown in Figure 4 for
the right-side QDFT and in Figure 5 for the left-side QDFT.

It should be noted that the proposed method, unlike the method using symplectic
decomposition, does not require changing the basis in the pure quaternions subspace and,
consequently, calculating the new basis vectors and change-of-basis matrix.
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Figure 4. Data flow diagram for our method of calculation of the right-side QDFT.



Electronics 2023, 12, 4974 16 of 20

𝐱𝑁
(𝑟)

𝐱𝑁
(𝑖)

𝐱𝑁
(𝑗 )

𝐱𝑁
(𝑘)

 

𝐳𝑁
(𝑟)

𝐳𝑁
(𝑖)

𝐳𝑁
(𝑗 )

𝐳𝑁
(𝑘)

 

𝜇𝑖

𝜇𝑗

𝜇𝑘

 

𝜇𝑖

𝜇𝑗

𝜇𝑘

 

𝜇𝑖

𝜇𝑗

𝜇𝑘

 

𝜇𝑖

𝜇𝑗

𝜇𝑘

 

𝐅𝑁

𝐅𝑁

 

𝐅𝑁  

𝐅𝑁  𝐏𝑁  

𝐏𝑁  

𝐏𝑁  

𝐏𝑁  

𝑅𝑒 𝐱 𝑁  

𝐼𝑚 𝐱 𝑁  

 

𝑅𝑒 𝐱 𝑁  

𝐼𝑚 𝐱 𝑁  

 

𝑅𝑒 𝐜 𝑁  

𝐼𝑚 𝐜 𝑁  

 

𝑅𝑒 𝐜 𝑁  

𝐼𝑚 𝐜 𝑁  

 

1

2
 

−
1

2
 

1

2
 

−
1

2
 

1

2
 

−
1

2
 

1

2
 

−
1

2
 

Figure 5. Data flow diagram for our method of calculation of the left-side QDFT.

7. Computational Complexity Discussion

We will now compare the computational complexity of the different ways to calculate
a QDFT, taking into account the number of multiplications and additions of real numbers
needed to compute this transform (these numbers are the same for the right-side and
left-side transforms). Since, in each case, the ordinary FFT algorithm is used, we denote
by mFFT(N) the number of real multiplications necessary to compute the DFT for a com-
plex/real signal with N samples. Similarly, let aFFT(N) denote the number of additions of
real numbers needed to determine the FFT of such a signal. In this comparison, we will
omit the method of calculating QDFTs resulting directly from the definitions (16) or (26)
because its computational complexity is much higher.

Let us start with the most basic calculation method resulting from (60)–(63) or (64)–(67),
respectively. Since, according to (68), calculating the products of ANx(r)N and BNx(r)N is

equivalent to finding the FFT for the x(r)N part of the quaternion vector xN , and similarly,

for the other x(i)N , x(j)
N , x(k)N parts of the quaternion input vector, we need to calculate four

FFTs, which requires 4mFFT(N) multiplications and 4aFFT(N) additions of real numbers.
Then, each of the products BNx(r)N , BNx(i)N , BNx(j)

N , BNx(k)N has to be multiplied by three
real coefficients µi, µj, and µk, which gives 3 · 4 · N = 12N multiplications of real numbers.
The last step is to add the four components of the sum. Since each sum consists of four
vectors, it takes 3 · N additions to calculate the sum. There are four such sums, so we
have 4 · 3 · N = 12N additions of real numbers. Summarizing the above considerations, in
order to calculate the DQFT according to this method, m1(N) multiplications and a1(N)
additions of real numbers should be performed, where

m1(N) = 4mFFT(N) + 12N (104)
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and
a1(N) = 4aFFT(N) + 12N (105)

The next method in the comparison is the method based on symplectic decomposition.
First, all samples of the quaternion signal should be expressed using the new imaginary
units µ1, µ2, µ3, which corresponds to the multiplication of the matrix inverse to the change-
of-basis matrix by the vector containing the imaginary components of the sample according
to (39). Such an operation for one sample requires nine multiplications and six additions of
real numbers. For N samples of the quaternion signal, we get 9N multiplications and 6N
additions of real numbers. Then, a single ordinary complex FFT and a single IFFT (without
dividing the result by N), or two complex FFTs, should be calculated, according to (48),
(49) or (53), (54), which require 2mFFT(N) multiplications and 2aFFT(N) additions of real
numbers. The resulting quaternion output signal is expressed using the new imaginary
units µ1, µ2, µ3, and we want it to be represented by standard imaginary units i, j, k. This
corresponds to the multiplication of the change-of-basis matrix by the vector containing
the imaginary components of the resulting vector according to (51). To do this for N
samples of the quaternion output signal, 9N multiplications and 6N additions of real
numbers is needed. To recap the method based on symplectic decomposition, calculating
the QDFT according to this method requires m2(N) multiplications and a2(N) additions of
real numbers, where

m2(N) = 2mFFT(N) + 18N (106)

and
a2(N) = 2aFFT(N) + 12N (107)

Finally, we evaluate the numbers of arithmetic operations needed for our method of
QDFT calculation. Our method is also based on (60)–(63) for the right-side QDFT or (64)–
(67) for the left-side QDFT, but taking into account relations (92)–(95), the products ANx(r)N ,

BNx(r)N , ANx(i)N , BNx(i)N , ANx(j)
N , BNx(j)

N and ANx(k)N , BNx(k)N are calculated from (96)–(103).
This method requires the calculation of two FFTs, hence 2mFFT(N) multiplications and
2aFFT(N) additions of real numbers is needed. Then, the real/imaginary parts of the FFT
results are added/subtracted (some after reordering their elements, which corresponds
to multiplying the matrix PN by these elements, as was shown in Figures 3 and 4—this
does not require any arithmetic operations) and divided by 2. This may seem to require
8N additions and 8N multiplications of real numbers. In fact, c(r)N , c(i)N , c(j)

N , c(k)N are Fourier
transforms of real-valued vectors, so they have symmetry, as in (72)–(73), and only half
of their entries have to be calculated. Thus, the number of real additions reduces to 4N.
Multiplying by the factor 1/2 in (96)–(103) does not require any multiplication operation. It
is just a simple bit shift to the right. Then, as in the first method, each of the products BNx(r)N ,

BNx(i)N , BNx(j)
N , BNx(k)N has to be multiplied by three real coefficients µi, µj, and µk, which

gives 12N multiplications of real numbers. The last step is to add the four components
of each sum in (60)–(63) for the right-side QDFT or (64)–(67) for the left-side QDFT, as in
the first method. This requires 12N additions of real numbers. Summarizing the above
considerations, in order to calculate any of the QDFT according to our method m3(N)
multiplications and a3(N) additions of real numbers have to be performed, where

m3(N) = 2mFFT(N) + 12N (108)

and
a3(N) = 2aFFT(N) + 16N (109)

Table 1 presents estimates for the numbers of multiplications and additions of real
numbers necessary to determine any of the QDFTs in the three presented methods of QDFT
calculation. It is easy to see that although our method has more additions than method 2, it
requires fewer multiplications. Furthermore, the total number of arithmetic operations in
our method is the smallest among the three compared methods for calculating the QDFT.
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Table 1. Number of multiplications and additions of real numbers needed to calculate any 1-D QDFT
for a quaternion signal of N samples.

Type of Operation Simplest Method Symplectic Method Proposed Method

× 4mFFT(N)+12N 2mFFT(N)+18N 2mFFT(N)+12N
+ 4aFFT(N)+12N 2aFFT(N)+12N 2aFFT(N)+16N

In terms of the number of arithmetic operations, our method is very similar to the
symplectic decomposition method. To compare the 1-D QDFT computation times of these
two methods, we implemented them in Matlab R2022b on a computer with an Intel(R)
Core(TM) i5-7400 CPU and 8 GB RAM. For quaternion signals of different lengths N, which
are powers of 2, and 100,000 repetitions of transform calculation, we obtained the times, in
seconds, presented in Table 2.

Table 2. Calculation times of 1-D QDFTs for signals of length N for the method using symplectic
decomposition and the proposed method, for 100,000 repetitions.

N Time for Simplectic Method [s] Time for Proposed Method [s]

128 1.43 1.19
256 2.32 1.87
512 3.33 2.60
1024 5.40 4.49
2048 9.14 7.64
4096 19.36 14.90
8192 35.63 28.38

The dependencies in Table 2 are not an exact reflection of the dependencies in Table 1,
because the calculation time also includes the time needed to transfer data from and to
memory, which Table 1 does not take into account. Despite this, it can be observed from
Table 2 that the times needed to calculate the 1-D QDFT with the proposed method are
shorter than for the method using symplectic decomposition. However, it should be
remembered that the time of computation depends very much on the way the code was
written and on the implementation platform.

8. Conclusions

The article presents a new method of 1-D QDFT calculation. The proposed method
allows a reduction in the number of multiplications in the calculation of the QDFT. Reducing
the number of multipliers is especially important when designing dedicated on-board
VLSI processors, since minimizing the number of multipliers required also reduces power
dissipation and lowers the cost of implementing the entire system.

Furthermore, although the number of additions of real numbers in our method in-
creases, the total number of arithmetic operations is still lower than in other ways of
calculating this transform. This leads to a reduction in computational costs, which makes
the proposed solution also preferable for its implementation on a general-purpose com-
puter.

It should be added that the newly proposed method can be used to compute both the
left-side and right-side QDFTs.
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Abbreviations
The following abbreviations are used in this manuscript:

DFT Discrete Fourier transform
IDFT Inverse discrete Fourier Transform
FFT Fast Fourier transform
IFFT Inverse fast Fourier Transform
QDFT Quaternion Fourier Transform
1-D QDFT One-dimensional quaternion discrete Fourier transform
2-D QDFT Two-dimensional quaternion discrete Fourier transform
VLSI Very Large-Scale Integration
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