
Citation: Wang, J.; Hao, Y.; Yang, C.

The Current Progress and Future

Prospects of Path Loss Model for

Terrestrial Radio Propagation.

Electronics 2023, 12, 4959. https://

doi.org/10.3390/electronics12244959

Academic Editors: Muhammad

Usman Hadi and Muhammad

Ikram Ashraf

Received: 31 October 2023

Revised: 2 December 2023

Accepted: 7 December 2023

Published: 10 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Review

The Current Progress and Future Prospects of Path Loss Model
for Terrestrial Radio Propagation
Jian Wang 1,2,3,† , Yulong Hao 1,† and Cheng Yang 1,2,*

1 School of Microelectronics, Tianjin University, Tianjin 300072, China; wangjian16@tju.edu.cn (J.W.);
haoyulong98@tju.edu.cn (Y.H.)

2 Qingdao Institute for Ocean Technology, Tianjin University, Qingdao 266200, China
3 Shandong Engineering Technology Research Center of Ocean Information Awareness and Transmission,

Qingdao 266200, China
* Correspondence: ych2041@tju.edu.cn
† These authors contributed equally to this work.

Abstract: The radio channel model is a major factor supporting the whole life cycle of the terrestrial
radio system, including the demonstration, design, validation, operation, and so on. To improve the
spectrum sharing and spectral efficiency in terrestrial radio services, we analyze three types of path
loss models in detail: deterministic, empirical, and semi-empirical models, to meet the requirements
of path loss modeling for supporting traditional band expansion and reuse. Then, we conduct a
comparative analysis based on the characteristics of the current models. Furthermore, a preview of the
future terrestrial path loss modeling methods is provided, including intelligent modeling processes
and multi-model hybridization methods. Finally, we look forward to the potential technology that
can be used in future wireless communication, such as terahertz communication, reconfigurable
intelligent surface technology, and integrated communication and sensing technology. The above
research can provide a reference for the development of terrestrial radio channel modeling, promoting
the technologies of terrestrial channel modeling. We hope this paper will stimulate more interest in
modeling terrestrial radio channels.

Keywords: radio propagation; path loss; model; current progress; future prospect

1. Introduction

As the elaboration of transmission effects between the transmitter and receiver of
the radio system, the radio channel is subject to many factors [1]. For instance, terrain
and surface features, meteorological parameters of the troposphere and ionosphere, solar
activity, etc. [2–4]. The characteristic of the channel determines the performance of the
electronic information system, which is also very significant in the whole life cycle, such
as design, development, production, validation, operation, and maintenance [5]. The
electromagnetic spectrum is the strategic resource that all radio-electronic warfare relies on
and is a hub of cross-domain joint operations linking land, sea, air, and space networks.
Therefore, the security of spectrum management is directly related to national security
and radio system construction [6]. The rapid growth of radio systems deployment leads
to a shortage of electromagnetic spectrum resources. As a result, the possibility of radio
interference will increase, and the performance of radio systems will be reduced. The radio
channel is strongly related to the electromagnetic spectrum [7]. To avoid the frequency
utilization problem caused by the congestion of the electromagnetic spectrum, one of the
most effective and frequently used methods is the utilization of channel models in frequency
planning, assignment, coordination, and so on. New channel models are proposed to
increase the accuracy and robustness at the frequency bands in use, reduce the mutual
interference between radio systems, and supply further support for expanding and reusing
the existing spectrum.
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According to the modeling principle, the existing models can be categorized as de-
terministic, empirical, and semi-empirical. The deterministic models are derived from
the electromagnetic propagation formula, and Ray Tracing (RT) [8] and Parabolic Equa-
tions (PE) [9] are the typical deterministic models. The empirical models (also called the
statistical channel model) are based on statistical theory: the Okumura model [10], the
Okumura–Hata model [11], the ITU-R P.1546 (below referred to as P.1546) model [12], and
the COST-231 model [13] are the typical empirical models. The semi-empirical models
mix the features of deterministic and empirical channel models. The COST-259 model [14]
and the International Mobile Telecommunications (IMT)-Advanced model [15] are typical
semi-empirical models. Traditional modeling methods used the manual statistical analysis
of measured data under specific scenarios and radio wave propagation conditions. In addi-
tion, the development of computer and artificial intelligence, in which machine learning
(ML) is an important branch, provides an accurate and efficient modeling method with
self-learning and self-adaptive capabilities. ML is a predicted and classified method that
can mine hidden rules from a large number of data [16]. Theoretically, many problems in
radio channel modeling can be considered regression, clustering, and classification in ML.
The efficiency of radio channel modeling is consistent with the capabilities of ML. There-
fore, we can intelligently structure the channel model through ML to learn the propagation
characteristics and hidden rules with measured data [17,18]. In [19], using Artificial Neural
Networks (ANNs), the authors developed a new method for multiband heterogeneous
radio network scenarios. To predict path loss in the global mobile communication system
band, Eichie et al. developed a Multilayer Perceptron (MLP) neural model [20]. Sotiroudis
et al. proposed an urban environment model, and the research results show that as long
as the size of an ANN is correctly selected, the path loss model based on the ANN will
operate efficiently [21]. Wang et al. proposed a new method based on Backpropagation
(BP) ANN for radio wave propagation prediction. Thrane et al. proposed a comprehensive
model based on deep learning, supplemented by a random and RT [22].

Therefore, this paper aims to put forward the research prospect of future radio channel
methods based on summarizing the research results of terrestrial radio channel models
and combining the challenges faced in developing radio communication. For the above
purposes, the following arrangement is made: Section 2 overviews the category of existing
models based on the modeling methods, including the deterministic, empirical, and semi-
empirical models. At the same time, we compare and summarize the features of the three
modeling methods. Then, the outlook of the future challenge and modeling methods with
the development trend of new techniques, applications, and scenarios is given in Section 3.
Finally, we summarize the development of terrestrial channel modeling.

2. Current Progress of Channel Model

Ultra-short wave, microwave, and millimeter wave are the primary communication
frequency bands for terrestrial radio communication. The propagation of these frequency
bands works together through various propagation mechanisms. Terrestrial radio commu-
nication modes include single-input single-output (SISO) and multi-input multi-output
(MIMO); MIMO includes single-input multi-output (SIMO), multi-input single output
(MISO), and multi-input multi-output (MIMO). The communication scenes cover large-
scale and small-scale scenes. Among them, the large-scale scenarios include land, sea, and
mixed scenes, and the small-scale scenarios include indoor and street scenes. Figure 1
shows the knowledge graph of terrestrial wireless communication.
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to models in the future. 

Figure 1. Knowledge graph of terrestrial wireless communication channels.

Next, we will analyze and compare the three modeling methods according to their
typical channel models. In addition, the current status of channel models, which are mostly
based on the references published in the IEEE, IET, and Hindawi between 2012 and 2022,
are also described. To conclude, each modeling method will be discussed in terms of its
advantages and disadvantages.

It should be noted that there are three types of radio channel models based on different
modeling principles: the deterministic model, the empirical model, and the semi-empirical
model, respectively. The development history is shown in Figure 2. From the figure, we can
observe that models proposed based on empirical methods are the most abundant, while
those derived from deterministic methods are the least prevalent. The majority of models
proposed in the early and middle stages are based on empirical methods, with recent years
witnessing a surge in models based on semi-empirical methods. Deterministic models still
in use today include ray tracing and parabolic equation methods. It can be inferred that
semi-empirical modeling methods will be the predominant approach in future modeling.
Empirical methods, given their simplicity and acceptable accuracy, are likely to continue
being widely employed in small-area modeling or localized adjustments to models in
the future.



Electronics 2023, 12, 4959 4 of 31Electronics 2023, 12, x FOR PEER REVIEW 4 of 32 
 

 

 
Figure 2. The history of typical channel models. 

2.1. Deterministic Model 
2.1.1. The Typical Model 

The deterministic channel modeling method, which analyzes the radio channel prop-
agation characteristics by solving Maxwell equations or using geometric approximation 
numerical methods, is derived from the radio wave propagation mechanism [23]. Figure 
3 shows the typical deterministic models. 

RT is the most widely used deterministic channel model method [24–26]. According 
to the modeling principle, RT can be classified into forward RT, backward RT, and mixed 
RT. Shooting and Bouncing Ray (SBR), first proposed in 1986, is the widely used forward 
RT [27]. Forward RT traces every ray from transmitting to receiving equipment after the 
initial ray is emitted. The RT process of the current ray is terminated when the ray has 
experienced a number of reflections and diffraction, or the ray hits the receiving model. 
However, the computation of forward RT will increase with time. Because of the simple 
principle, this method is widely used in various fields to develop RT acceleration technol-
ogy and hardware computing efficiency. The core logic of backward RT and forward RT 
is entirely different. Backward RT is used to find the propagation path of direct, reflection, 
diffraction, or other combined forms by using the mirror method to traverse the basic units 
of triangles or other structures in the scene when the locations of transmitters and receiv-
ers are known [28]. The principle of backward RT is relatively simple, but it needs the 
locations of transmitters and receivers to be known. Mixed RT was first proposed to pre-
dict street radio wave propagation [29]. It is an RT method that combines the characteris-
tics of forward RT and backward RT. The method first uses forward RT to obtain the ap-
proximate propagation path and then uses backward RT to modify and verify the ob-
tained propagation path further. 

Figure 2. The history of typical channel models.

2.1. Deterministic Model
2.1.1. The Typical Model

The deterministic channel modeling method, which analyzes the radio channel prop-
agation characteristics by solving Maxwell equations or using geometric approximation
numerical methods, is derived from the radio wave propagation mechanism [23]. Figure 3
shows the typical deterministic models.

RT is the most widely used deterministic channel model method [24–26]. According
to the modeling principle, RT can be classified into forward RT, backward RT, and mixed
RT. Shooting and Bouncing Ray (SBR), first proposed in 1986, is the widely used forward
RT [27]. Forward RT traces every ray from transmitting to receiving equipment after the
initial ray is emitted. The RT process of the current ray is terminated when the ray has
experienced a number of reflections and diffraction, or the ray hits the receiving model.
However, the computation of forward RT will increase with time. Because of the simple
principle, this method is widely used in various fields to develop RT acceleration technology
and hardware computing efficiency. The core logic of backward RT and forward RT is
entirely different. Backward RT is used to find the propagation path of direct, reflection,
diffraction, or other combined forms by using the mirror method to traverse the basic
units of triangles or other structures in the scene when the locations of transmitters and
receivers are known [28]. The principle of backward RT is relatively simple, but it needs
the locations of transmitters and receivers to be known. Mixed RT was first proposed
to predict street radio wave propagation [29]. It is an RT method that combines the
characteristics of forward RT and backward RT. The method first uses forward RT to obtain
the approximate propagation path and then uses backward RT to modify and verify the
obtained propagation path further.



Electronics 2023, 12, 4959 5 of 31
Electronics 2023, 12, x FOR PEER REVIEW 5 of 32 
 

 

 
Figure 3. Typical deterministic channel mode. 

In 1946, Lenontovich and Fock proposed PE to solve the problem of radio wave dif-
fraction. In 1977, Tappert solved PE in acoustic waves by using the Split-Step Fourier 
transform (SSFT) method, which attracted people’s attention and research [30]. In 1991, 
Kuttler and Dockery systematically deduced the PE of radio wave propagation in the trop-
osphere for the first time. Currently, the leading solution methods of PE are the SSFT and 
Finite Difference (FD) methods, both of which are step algorithms. The step size is almost 
not limited by the wavelength of the radio wave when using SSFT to solve PE. Therefore, 
the result can be obtained quickly when solving large-scale problems. However, it is not 
easy to deal with complex boundary conditions. The calculation process of the FD method 
involves many matrix operations. It has significant advantages in dealing with complex 
boundary conditions. However, its step size is limited by the radio wave wavelength, so 
it is unsuitable for solving large-scale problems. It is mainly used to calculate the electro-
magnetic scattering characteristics of targets and radio propagation prediction in small-
scale areas. 

The electromagnetic calculation methods are mainly used to solve the radio wave 
propagation problem by calculating the Maxwell equations strictly [31]. However, these 
methods have not been used on a large scale due to the shortcomings of a large amount 
of computation and high requirements for hardware platforms. 

2.1.2. Other Models 
Figure 4 shows the principle and the scenario of the deterministic models in the ref-

erences. Afsharinejad et al. proposed a log-distance path loss model based on Monte Carlo 
simulations. Shadow fading of air and leaves is considered in the model, and path loss 
variations are defined. Since the latter model only considers transmission distance, it can 
be interpreted as a simplified version of the theoretical model [32]. In [33], the authors 
proposed a theoretical model based on the Fresnel zone theory to solve the very near-
ground path loss problem. In [34], a model based on Green’s theorem is proposed. The 
model is for the blending scenario. In addition, the authors propose channel models based 
on the standard models and propagation theories. For example, a ground reflection model 
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In 1946, Lenontovich and Fock proposed PE to solve the problem of radio wave
diffraction. In 1977, Tappert solved PE in acoustic waves by using the Split-Step Fourier
transform (SSFT) method, which attracted people’s attention and research [30]. In 1991,
Kuttler and Dockery systematically deduced the PE of radio wave propagation in the
troposphere for the first time. Currently, the leading solution methods of PE are the SSFT
and Finite Difference (FD) methods, both of which are step algorithms. The step size is
almost not limited by the wavelength of the radio wave when using SSFT to solve PE.
Therefore, the result can be obtained quickly when solving large-scale problems. However,
it is not easy to deal with complex boundary conditions. The calculation process of the
FD method involves many matrix operations. It has significant advantages in dealing
with complex boundary conditions. However, its step size is limited by the radio wave
wavelength, so it is unsuitable for solving large-scale problems. It is mainly used to calculate
the electromagnetic scattering characteristics of targets and radio propagation prediction in
small-scale areas.

The electromagnetic calculation methods are mainly used to solve the radio wave
propagation problem by calculating the Maxwell equations strictly [31]. However, these
methods have not been used on a large scale due to the shortcomings of a large amount of
computation and high requirements for hardware platforms.

2.1.2. Other Models

Figure 4 shows the principle and the scenario of the deterministic models in the
references. Afsharinejad et al. proposed a log-distance path loss model based on Monte
Carlo simulations. Shadow fading of air and leaves is considered in the model, and path
loss variations are defined. Since the latter model only considers transmission distance,
it can be interpreted as a simplified version of the theoretical model [32]. In [33], the
authors proposed a theoretical model based on the Fresnel zone theory to solve the very
near-ground path loss problem. In [34], a model based on Green’s theorem is proposed.
The model is for the blending scenario. In addition, the authors propose channel models
based on the standard models and propagation theories. For example, a ground reflection
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model based on double rays, along with other propagation mechanisms, is proposed in [35].
In [36], they use the RT and edge peak diffraction theory to propose a model.
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From the above references, it is evident that deterministic models are primarily ap-
plicable to small-scale scenarios within a prediction range of 200 m. This limitation arises
because achieving precise predictions with deterministic models requires a substantial
amount of environmental parameters and computational resources [37–39]. The expansion
of the prediction range imposes higher demands on data collection and computing power,
which is a key reason why deterministic methods are not as widely employed as the other
two methods.

2.2. Empirical Model

The empirical modeling method is a channel parameters modeling method that uses
mathematical statistics. The empirical model uses standardized propagation characteristics,
testing cumulative data or statistical curves to interpolate or extrapolate according to
equipment frequency parameters, and completes prediction analysis through a series of
corrections [40]. Table 1 shows the typical empirical model parameter information.

Table 1. Parameter Information of Typical Empirical Channel Model.

Model Scenarios Distance/
km

Frequency/
MHz

Transmitting
Height/m

Receiving
Height/m Author Proposed

Time

Okumura Quasi-smooth
urban area 1–20 150–1500 30–200 1–10 Okumura et al. 1962

Carey Flat ground <130 35–460 30–1500 Average 1.8 FCC 1964

Longley-Rice Ground, sea 1–2000 20–40,000 1–1500 1–9 Longley and Rice 1968

Lee Urban, suburb, rural >20 450–2000 30 3 W. C. Y. Lee 1982

Okumura-Hata Urban, suburb, rural 1–20 150–1500 30–200 1–10 Hata et al. 1980

COST-231-Hata Urban, suburb, rural 1–20 1500–2000 30–200 1–10 EURO-COST 1991

COST-231-WI Urban, dense urban 0.02–5 800–2000 4–50 1–3 EURO-COST 1991

ITU-R P.370 Multi-scenario <1000 30–1000 <1200 Average 10 ITU 1991

ITU-R P.1546 Multi-scenario 1–1000 30–4000 <3000 Average 10 ITU 2001

2.2.1. The Typical Model

The Okumura model is one of the earliest empirical models based on field intensity
measurement. Okumura was committed to studying the relationship between power
density and distance in Tokyo [10]. Because the model is entirely based on statistics, its
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result is a fitting curve rather than a specific formula. The Longley–Rice and Okumura
models were proposed at the same time. The Longley–Rice model already has a general
computer program to calculate path loss. For a given transmission, the computer calculates
path loss according to frequency, path distance, polarization direction, antenna height,
surface diffraction, ground radius, and ground conductivity [41]. In order to extend
Okumura’s research result to areas other than Tokyo, Hata proposed the Okumura–Hata
model by formulating Okumura’s fitting curve. The Okumura–Hata model is very suitable
for large-scale scenes where the transmitter is higher than the receivers and surrounding
buildings. The arguments of the LEE model are easily available, so it is very popular. The
LEE model can be broken down into the macro and microcell sub-models. The macrocell
sub-model firstly considers terrain as flat, only considers the impact of buildings, and
after this, adds the effects of terrain and landform. The microcell model assumes that the
attenuation of signals is highly correlated with the length of buildings on the propagation
path. The LEE model also divides terrain and geomorphology influence into three situations
for calculation: non-blocking situation, blocking situation, and water surface reflection
situation [42]. COST-231 models were proposed by EURO-COST in 1991. Compared with
the Okumura–Hata model, COST-231 models are more often used. The Okumura–Hata
model is the basis of the COST-231–Hata model. The range of its frequency is extended
from 1500 MHz to 2000 MHz. The COST-231–WI model combines the result of the urban
environment calculated by the Walfisch–Bertoni model [43] and the corrected function
of the street trend of the Ikegami model and the experimental correction. Therefore, this
model is very suitable for predicting path loss of the street scene. However, this model
also has some defects; when the transmitting antenna height changes slightly, the path loss
jumps steeply.

Therefore, when using this model, the transmitter’s antenna should be installed at
a height several meters higher than the street building. The Carely model was extended
from the CCIR curve. It was included as one of the standard models by the Federal
Communications Commission (FCC) of the US. This model provides the field strength–
distance curve when the average height of the mobile station antenna is 1.8 m, the height of
the base station antenna is 30–1500 m, and the coverage is less than 130 km on flat ground.
Moreover, the ITU-R P.370 (below referred to as P.370) and P.1546 models proposed by
ITU are also mainstream empirical models. The P.370 proposal is intended to forecast
the radio wave propagation field strength of meter wave and decimeter wave bands
under various climatic conditions for broadcast service planning engineers in various
countries [44]. P.1546 is proposed based on the P.370 proposal. Although the prediction
accuracy and application range are significantly improved compared with the P.370 model,
both recommendations are revised based on data statistics according to empirical values,
and the diffraction effect of obstacles is not strictly considered. Therefore, when diffraction
is the main factor affecting propagation in mountainous areas, the prediction error of these
two propagation models increases significantly [12].

Most empirical models are large-scale propagation and prediction models. The Rice
and the Rayleigh models are small-scale propagation models. These two models apply
to indoor or other object-intensive areas. The difference is that the Rice model applies to
a situation where there is a direct path, and when there is no direct path, the Rayleigh
model applies.

2.2.2. Other Models

The empirical methods can be divided into three main types. The first is based on
traditional linear regression, the second is based on ML, and the last is the mixed approach.
To evaluate the accuracy and improvement of these models, we introduced evaluating
standards of the mean absolute error (MAE), mean relative error (MRE), root-mean-square
error (RMSE), and relative root-mean-square error (RRMSE) to reflect the deviation from
the measurements and the stability and robustness of the prediction model. The definitions
and characteristics of these indexes are listed in Table 2.
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Table 2. Equation and characteristics of the performance criteria.

Index Definition Characteristic

MAE 1
n

n
∑

i=1

∣∣∣yi − yp
i

∣∣∣ Evaluate the absolute deviation between the
predicted value (yp

i ) and measured value (yi), where
n is the number of samples.

MRE 1
n

n
∑

i=1

|yi−yp
i |

yi

Evaluate the relative deviation between the
predicted value and measured value.

RMSE

√
1
n

n
∑

i=1

(
yi − yp

i

)2 Evaluate the root-mean-square error between the
predicted value and the measured value.

RRMSE

√
1
n

n
∑

i=1

(
yi−yp

i
yi

)2 Evaluate the relative root-mean-square error
between the predicted value and measured value.

Figure 5 shows the principle and the scenario of the empirical models in the references.
From Figure 5, we can see that almost half of the studies are based on traditional linear
regression. On the one hand, some are directly modeled using linear regression based on
measured data for street [45], bleeding [46–48], indoor [49–54], urban [55–57], vegetation
shielding [58–60], vehicle-to-vehicle channels (V2V) [61], and station scenarios [62]. At the
same time, some researchers have used linear regression to fit the standard models. For
example, He et al. used linear fitting to assist the Hata model based on the measurement
data for the GSM railway [63]. Nossire et al. used linear fitting to correct the Okumura
model based on the measurements for an urban indoor scenario [64]. In [65], a standard
Macrocell model was proposed with the rectification of measurements to predict the path
loss of the blending scenario.
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As an artificial intelligence method, ML has been widely used in modeling. These
methods include Statistic Machine Learning (SML), Intelligent Computation (IC), ANN, etc.
The most commonly used algorithms are the GMM, SVM, and random decision forests of
SML. In [66], The GMM solves the problem of clustering in wireless propagation channels.
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In [67–69], new methods based on SVM are proposed for blending and cabin scenarios.
In [70,71], the authors established channel models in UAV scenarios using the random
forest and KNN algorithms, and the comparative results are presented in Table 3. From
the table, it can be concluded that in UAV scenarios, the predictive accuracy of the channel
model established with the random forest outperforms that of the KNN algorithm.

Table 3. The result of Refs. [70,71].

Reference Scenario Evaluation Parameters Conclusion

[70] UAV MAE, RMSE Random forest algorithm is better
than KNN in channel modeling[71] UAV RMSE

Moreover, the IC is also widely used in channel modeling. Cavalcanti et al. proposed
a GA-based optimization method to tune constants present in empirical path loss models
for urban areas at 879 MHz [72]. In [73,74], the GA was used to find the best coefficients
and functions to fit the antenna measurements lower than the building and blending
scenarios. In [75], a new model using PSO to tune a modified COST-231–WI propagation
model was proposed in a 3G network scenario. After modification and verification, the
average error gap of the PSO-based model at the test point is −1.96 dBm. In [76], using the
PSO to tune the parameters of the COST-231 model improved its ability. From the above
references, we can see that IC is typically employed in conjunction with other models for
optimizing constants within a model. Table 4 shows the comparison of characteristics for
IC. Intelligent computing can be broadly categorized into two types: global search and local
search. Genetic algorithms (GA) represent a typical global search algorithm that generates
values within a specified range without directionality through “genetic” and “mutation”.
Global search algorithms are suitable for scenarios with a small optimization range, but
they exhibit slower optimization speeds, requiring a greater number of iterations to reach
the optimal solution. Particle swarm optimization (PSO) is a typical local search algorithm.
After defining the “population size” and “optimization range” for local search, at each
iteration, the particle will update its position in the direction of the optimal position. Local
optimization algorithms are directional and fast, making them suitable for scenarios with
large optimization ranges, but they are prone to getting trapped in local optima. In [77],
a comparison was conducted between the GA and PSO algorithms for optimizing the
constants of the Hata model in a typical urban scenario. The results indicate that the PSO
algorithm outperforms the GA algorithm in terms of prediction accuracy and convergence
speed, with an RMSE difference of approximately 1 dB.

Table 4. Comparison of characteristics for IC.

Type Directionality Speed Range Features

Global search Yes Slow Small The optimal parameters can be found with enough iterations

Local search No Quick Large Easy to fall into local optimum

ANNs are widely used in the field of channel modeling due to their excellent self-
learning and adaptive capabilities. In [74,78], the authors provided that the model based
on ANFIS is more efficient, faster, and more accurate than the physical and empirical meth-
ods. In [79], the authors provided that the proposed ANFIS-based model offers desirable
advantages in terms of simplicity, high prediction accuracy, and good generalization ability.
As long as there are enough measurements, ANNs can be used for modeling any scenario,
such as blending [80–82], indoor [83], suburban [84,85], and street scenarios [86]. The Back
Propagation NN (BPNN) is used to model the blending [19,87] and cabin scenarios [88]. In
particular, Ojo et al. developed two models based on the radial basis function NN (RBFNN)
and the multilayer perception NN (MLPNN) by using the measured data as input variables
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for blending scenarios [89]. In [90], a pre-trained network called VGG-16 is proposed for
modeling. They make the necessary modifications and fine-tune it with their training set.
In [91], Popoola et al. use an extreme learning machine-LEM algorithm, which can reduce
the training time on the premise of ensuring the accuracy of the trained model outdoors. In
addition to direct modeling with ANN, it can also be used for auxiliary modeling. In [22,92],
CNN extracts environmental information from satellite images to fit the path loss formula
for blending and suburb scenarios for blending and suburb.

The above reference indicates that neural networks can achieve modeling tasks in
various scenarios as long as there are sufficient training data and appropriate training
strategies are selected. Figure 6 shows the steps to establish a channel model using neural
networks. The modeling process can be divided into two stages: preparation and modeling.
In the preparation stage, an analysis of the modeling scenario is required, as different
neural networks exhibit varying performances in different scenarios. In [89], modeling
was built using RBFNN and MLPNN in multi-antenna scenarios. Then, the models were
compared with generic models such as COST-231, Free Space, Ericson, ITU, and ECC33.
The comparison results indicated that the model based on RBFNN exhibited slightly better
predictive accuracy than the one based on MLPNN. Both models significantly outper-
formed generic models in terms of prediction consistency and accuracy, with an average
absolute prediction error improvement of over 10 dB. In [93], the modeling performance
of ANFIS and GRNN neural networks was compared in a tropical urban scenario. The
result shows that the model based on GRNN had a reduced RMSE of 0.59 compared to the
one based on ANFIS. Both models achieved approximately a 4.71 dB improvement over a
linear regression method composed of COST-231–Hata and COST-231–Walfisch–Ikegami
models. The choice of neural network type depends on the modeling scenario. Once the
model is determined, the next steps involve analyzing the application scenario, collecting,
and preprocessing the feature data. The data collection principle involves selecting dif-
ferentiating data strongly correlated with radio wave propagation. For example, in flat
terrain areas with minimal topographical variations, the influence of terrain factors may
not be a significant consideration during model training. Data preprocessing includes
removing erroneous data and normalizing data. The aim of normalizing data is to ensure
consistent measurement of various feature parameters. Finally, hyperparameters of the
neural network are set using optimization algorithms such as the IC algorithm, as detailed
above. In the modeling phase, the collected data are proportionally divided into training
and testing sets. The training set is used to train the model, while the testing set is used
to evaluate the trained model’s performance. If the trained model does not meet the re-
quirements, adjustments are made by tuning hyperparameters, changing the model, or
modifying feature data.

In addition, there are mixed methods used for modeling. For instance, Sotiroudis
et al. proposed a path loss propagation model based on ANN for urban scenes and
used the Differential Evolution (DE) algorithm to lay out an optimal ANN for path loss
prediction [21]. In [94], a model is proposed based on a fuzzy method and curve-fitting for a
suburban scene. Fuzzy sets are used to distinguish between the transmission discontinuities
encountered during propagation. Then, the fuzzy sets are used to fit the curve. As another
example, Jo et al. first used Principal Component Analysis (PCA), which can reduce the
number of features of the dataset and simplify the learning model to assist feature selection.
They then built the path-loss model using ANN for the suburb scenario [95]. In [96], PCA
extracted relevant features from some selected path profile attributes for NLoS cases. Then,
the path-loss based on the polynomial regression method model for urban is built.
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2.3. Semi-Empirical Model

The semi-empirical model combines the advantages of the deterministic and the
empirical models. This type of model replaces some complex electromagnetic calcula-
tions with statistical laws to reduce computational complexity [97–99]. This model’s
accuracy and calculation complexity are between the two models. Figure 7 shows typical
semi-empirical models.
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2.3.1. The Typical Model

The random geometric method (RGM), which does not need detailed environmen-
tal parameters, is one of the most popular semi-empirical modeling methods. Both the
COST-259 and the IMT-Advanced models are the standard models of radio communication
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based on this method. The COST-259 model is suitable for macrocell radio communication.
In order to research the diversity and adaptive antenna system, the directional charac-
teristic modeling of the channel is particularly emphasized during the development of
this model [14]. The IMT-Advanced model is the beyond third-generation (B3G) mobile
communication system proposed by ITU. Depending on the environment, this model can
support low-mobility to high-mobility applications and a variety of data rates. The IMT-
Advanced system can also provide high-quality multimedia applications that significantly
improve the quality of service under a wide range of services and platforms [15]. The
ITU-R P.1812 (below referred to as P.1812) and the ITU-R P.2001 (below referred to as P.2001)
models proposed by ITU are also widely used as semi-empirical channel models. The
P.1812 model supplements the P.1546 model. It is a propagation prediction method suitable
for terrestrial point-to-surface traffic. The height of the antennas of the transmitter and
receiver is up to 3000 m above the ground [100]. However, this model is unsuitable for
propagation prediction of air–ground or space–ground communication. The model obtains
terrain profile information through the digital map. This model considers the end feature,
location variability, and building entrance loss. This model also considers the effect of
LoS propagation, diffraction, tropospheric scattering, and ducting on path loss [101]. The
P.2001 model is a widely used model for terrestrial propagation. It can predict the terrestrial
propagation path loss caused by signal enhancement and fading in the effective range of 0%
to 100% beyond the annual average. The model’s predicted value is obtained by combining
the predicted values of four independent sub-models according to the statistical correlation,
and the model is particularly suitable for the Monte Carlo method [102].

In addition, with the deployment of 5G and 6G communication systems, many cor-
responding models emerged one after another. The most important are IMT-2020, 3GPP
TR 36.873, and 3GPP TR 38.901. The IMT-2020 model is the new version of the IMT model,
which includes the new capabilities of the IMT that go beyond those of the IMT-Advanced.
Specifically, the ITM-2020 supports frequencies up to 100 GHz and large bandwidth, three-
dimensional (3D) modeling, large antenna array, blockage modeling, spatial consistency,
etc. The scenarios of IMT-2020 include enhanced mobile broadband, ultra-reliable and
low-latency communications, and massive machine-type communications. It can support
low- to high-mobility applications and enhance data rates according to the number of
users or the service requirements. IMT-2020 can not only be mobile telecommunication
but also a tool for enabling massive connections for a wide range of services. It is a typical
model for 5G [103]. The 3GPP TR 36.873 (study on 3D channel model for LTE) is also an
important reference. This technical report is suitable for the situation of 3D beamforming
and FD-MIMO. The path-loss model in this technical report can be applied in the frequency
range of 2–6 GHz and for different antenna heights. The usage scenarios include the LOS
and NLOS of urban micro/macro, rural macro, and indoor hotspot cells. Among them,
the coverage of the base station can reach at least 3 m and up to 10,000 m [104]. The
new channel model proposed in the 3GPP TR 38.901 has, to a large degree, been aligned
with earlier channel models for <6 GHz, such as 3GPP TR 36.873 or IMT-Advanced. The
frequency range of this model defined in this technical report is about 0.5–100 GHz. The
supported scenarios are urban microcell street canyon, urban microcell, indoor office, rural
microcell, and indoor factory. The bandwidth of this model is supported up to 10% of the
center frequency but no larger than 2 GHz. The base station height is 10–150 m, and the
mobile station height is 1–22.5 m [105].

2.3.2. Other Models

Figure 8 shows the principle and the scenario of the semi-empirical models in the
references. As mentioned earlier, the semi-empirical method is a method that combines
the advantages of empirical and deterministic methods. Specifically, using actual mea-
surements to fit the parameters that are not easy to determine in the deterministic method.
Several non-empirical path loss models have been built for a small-scale scenario, such as
the one/two-slope, COST-231 multi-wall, RT, floating intercept (FI), and close-in free space
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reference distance (CI) model. For example, the indoor models were proposed based on the
CI and the FI model, with compensation factor fit by the measurement [106,107]. Khatun
et al. proposed a model based on the above for indoor and outdoor airports [108]. Zhou
et al. proposed a model based on ML and the deterministic model [109]. A model based
on the CI and FI was proposed after clustering using the space-alternating generalized
expectation-maximization algorithm. The proposed model considers the different cluster
characteristics, and it also units the directional and omnidirectional path loss model into the
same framework, improving the 5G mmWave channel model to some extent. In [110,111],
indoor models were proposed based on the two-slope model with compensation factor fit
by the measurements. At the same time, a series of models were proposed based on the
COST-231 multi-wall model for indoor [112,113] and home [114]. A log-distance path loss
model is the extension of the Friis model and includes the random shadow effect caused by
the signal being blocked by hills, trees, buildings, etc. Therefore, it is often used to predict
the obstructed scene between the receiver and transmitter, such as smart homes [115],
offices [116], and subway tunnels [117]. On the other hand, Bhuvaneshwari et al. proposed
a model based on the RT for indoor [118]. The model was built by modifying Fresnel’s
reflection coefficient with measurement data. Heereman et al. proposed a model based on
the one-slope model for a large meeting room. Through measurement, it was found that the
single-slope model with a PL index varying between 1.2 and 1.7 can accurately describe PL,
and in the case of human existence, the PL index increases to 2 [119]. Diago–Mosquera et al.
proposed a model based on Kriging for I2O using 3.5 GHz measurement analysis [120].
This model uses Kriging-aided design to provide a modeling method to reduce cost or
limit measurement activities. What is more, it can also model without measured data. In
addition, Zhang et al. proposed a model integrating the ML, RT, and COST-231–WI for
UAVs [70]. This model used the RT to produce data for training and testing. Random forest
and KNN are used to correct the COST-231–WI model. Similarly, the RT is also used to
generate data for training and testing purposes [121], and ANN is used to build a model.
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In large-scale scenes, the Friis, ITU-R, and 3GPP models are the most used models.
Most semi-empirical models are based on these models. For example, Casillas–Perez et al.
proposed the WABG model based on the 3GPP ABG model for blending scenarios [122].
This model can use different available datasets for path loss calculation. It overcomes the
problem related to unbalanced data described in the literature regarding using weighting
policies. Aldossari et al. proposed a path loss model based on the ABG model using ML for
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blending scenarios [123]. They first used regression techniques to fit the measurement data,
which reduces the required number of measurements and the complexity. Then, this model
was built using these processed data. Al-Samman et al. use the same method to propose a
path loss model for an outdoor LoS environment [124]. In [125,126], path loss models are
proposed based on the Friis model and measurement data for street scenarios and high-
speed railroad communication. In [127,128], path loss models were developed based on the
Uniform Geometrical Theory of Diffraction. In addition, Lee et al. also extended the ITU-R
P.1411 (below referred to as P.1411) model to include NLOS, which reasonably explains
propagation along street roads where low-height antennas are located [127]. Moreover,
Inomata et al. used the measured data to add a correction factor to the P.1411 model to
make it suitable for a street scenario [129].

Through analyzing the typical ABG and CI models, Karttunen et al. found that the
estimated shadowing variance can be significantly overestimated if the “true” shadowing,
the offset variations, and the slope of the straight-line fit between different street canyons
are not adequately distinguished [130]. Based on the above analysis, a path loss model
was proposed for the street scenario. This model overcomes the disadvantages of the
traditional models. The result shows that the proposed model works well in terms of
spatial consistency and is better than the existing deterministic and empirical models.
Yu et al. proposed a model that uses the Okumura–Hata model to take the place of the
equation transformed from the Friis in the Round Earth Loss (REL) model. The model
also takes diffraction loss caused by obstacles into account. The result shows that the
performance of the proposed model is better than the Okumura–Hata and RLE [131].
Moreover, Bhuvaneshwari et al. used RT to improve the path loss prediction of the COST
231–WI model [132]. In the revised model, RT and the statistically determined empirical
measurements are combined. A loss term is computed using the method of images for
multiple reflections. As a result, the error is considerably lowered for the proposed hybrid
model. In [133], a hybrid model based on k-means and fuzzy logic is presented. The model
can choose the best model for prediction from the Friis, Walfisch–Ikegami, Hata, ECC-33,
Stanford University Interim, and ERICSSON models.

2.4. Model Comparison and Analysis

The channel model is generally measured by accuracy, complexity, and universal-
ity [134,135]. Accuracy reflects the difference between the measurement and the prediction;
complexity reflects the calculation quantity and operation time of a model; universality
reflects the usability of a model in different scenarios and environments. A perfect model
should be the best compromise between accuracy, complexity, and universality. Table 5 is a
comparison of three typical models. From Table 5, we can see that:

(1) The principles of deterministic models are intricate, empirical models are straightfor-
ward, and semi-empirical models lie in between.

(2) Correspondingly, deterministic models exhibit the lowest execution efficiency, while
empirical models demonstrate the highest effectiveness.

(3) The advantage of deterministic models lies in their higher precision, whereas empirical
models have the lowest precision, and semi-empirical models fall in between.

(4) Empirical and semi-empirical models have limited application scenarios, and their
suitability is relatively constrained by distance and frequency range. In contrast,
deterministic models are generally more versatile. However, there are exceptions with
some empirical and semi-empirical models, such as ITU-R P.370, P.1546, P.1812, and
P.2001, which have broad applicability, cover a wide frequency range, and offer good
prediction accuracy. However, their computational complexity is relatively high.
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Table 5. Comparison of Typical Models.

Models Key Performance Indicators

Type Name Principle Scenarios Distance/km Frequency/
MHz Efficiency Accuracy

Deterministic
RT Complex Multi-scenario Short and long >30 Low High

PE Complex Multi-scenario Short and long full-band Low High

Semi-empirical

COST-259 Median Urban, suburb, rural <20 150–2000 Median Median

IMT-Advanced Median Indoor, microcellular, high
speed, base coverage urban 0.003–5 450–6000 Median Median

IMT-2020 Median Multi-scenario 1185–2200 Median Median

3GPP TR 36.873 Median Urban, suburb, rural, indoor 0.01–5 2000–6000 Median Median

3GPP TR 38.901 Median Urban, suburb, rural, indoor 0.001–10 500–100,000 Median Median

ITU-R P.1812 Median Multi-scenario 0.25–3000 30~6000 Median Median

ITU-R P.2001 Median Multi-scenario 3–1000 30–50,000 Median Median

Empirical

Okumura Simple Quasi-smooth urban area 1–20 150–1500 High Low

Carey Simple Flat ground <130 35–460 High Low

Longley–Rice Median Ground, sea 1–2000 20–40,000 High Median

Lee Simple Urban, suburb, rural >20 450–2000 High Low

Okumura–Hata Simple Urban, suburb, rural 1–20 150–1500 High Low

COST-231–Hata Simple Urban, suburb, rural 1–20 1500–2000 High Low

COST-231–WI Simple Urban, dense urban 0.02–5 800–2000 High Low

ITU-R P.370 Median Multi-scenario <1000 30–1000 High Median

ITU-R P.1546 Median Multi-scenario 1–1000 30–4000 High Median

In conclusion, we can see that the empirical model has good complexity but bad
accuracy and universality; the deterministic model has good accuracy, high complexity,
and high university; the accuracy, complexity, and universality of the semi-empirical model
are relatively balanced. Figure 9 shows the radar charts of these three channel models in
accuracy, complexity, and universality.
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Figure 10 shows the percentage distribution of modeling methods in the surveyed
literature. From the figure, it is evident that empirical methods and semi-empirical methods
are currently the predominant modeling approaches, accounting for 62.00% and 32.00%
of the surveyed references, respectively. Within empirical methods, the most commonly
employed strategy is linear fitting, representing a substantial share of 37.50%. Artificial
intelligence algorithms such as ANN, IC, and SML also hold significant proportions, at
28.57%, 14.29%, and 10.71%, respectively. Among semi-empirical methods, modeling based
on the IC model, FI model, and RT method occupy the top three positions.
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3. Future Prospects of Wireless Communication
3.1. Future Prospects of the Channel Model

With the evolution of the radio communication system, the measurement method,
and intelligent technology, the current modeling method has challenged the demand for
higher-quality radio communication services. The refinement and intelligence of the current
channel modeling method need to be improved. In the future, the large-scale combination
model suitable for large-scale scenes, the wide-area generalization model suitable for multi-
scenes, and a more efficient intelligent model will be the main development direction of
channel modeling. Figure 11 shows the development direction of channel modeling in
the future.

3.1.1. Intelligent Modeling Process

It is challenging to balance the predicted efficiency and accuracy of the traditional
channel modeling method. Modeling methods driven by artificial intelligence technologies,
such as ML and IC, have excellent learning and prediction abilities, strong nonlinear
fitting and adaptive abilities, good mining of complex features in high latitude and high
redundancy data, and efficient performance. The ML can train channel models offline with
measurement or simulation. In addition, due to its high nonlinearity, it is an ideal choice for
predicting propagation parameters such as multipath fading. Moreover, it can also be used
to model the specific or general model due to its high flexibility [136]. Figure 12 shows the
classification and the advantages of intelligent modeling methods.
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Modeling Method Based on ML

ML, which can self-learn and self-adapt, is a method that uses computers to build
statistical models based on a great deal of data. We can efficiently utilize the built models to
predict and analyze anonymous data. An ML algorithm can be supervised, semi-supervised,
or unsupervised, depending on whether the data used for training is labeled. ML algorithms
have excellent advantages in dealing with simple classification problems because of their
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simple structure and fast computing speed, making them the main algorithm for channel
multipath clustering. In the field of ML, clustering belongs to unsupervised learning.
K-means, the Gaussian mixture algorithm (GMA), and the density-based spatial clustering
of applications with noise algorithm (DBSCAN) are the common clustering models. The
K-means algorithm adopts Euclidean distance. Therefore, the model can easily achieve
and converge quickly. However, it cannot capture the propagation characteristics of a
multipath channel. The GMM algorithm is based on the statistical distribution of data. The
DBSCAN algorithm is density-based. Both of these algorithms account for the statistical
characteristics of multipath components (MPC) and can cluster dense datasets of any shape.
However, when the cluster distribution is uneven, the DBSCAN algorithm has a poor
clustering effect [137]. In [66], a multipath component clustering architecture was proposed
based on statistical information and a compact index evaluation criterion of mean and
variance. This model used the GMM model and the mean and covariance structure of
channel multipath components to achieve multipath component clustering. In [138], He
et al. compared a variety of multipath component clustering algorithms, including the KPM
algorithm, fuzzy C-means clustering algorithm (FCM), kernel power density-based (KPD)
algorithm, and DBSCAN algorithm. The first two algorithms need the number of clusters
as an a priori message, and the last two algorithms can automatically generate a more
reasonable number of clusters. In addition, to model the non-stationary characteristics
of frequency and space through related cluster groups, the paper [139] further clusters
based on clusters using the K-means clustering algorithm to obtain related cluster groups.
That is, a cluster group is composed of multiple similar clusters. In addition, supervised
learning is also widely used in channel modeling. In order to improve the accuracy of
frequency band prediction for FM broadcasting in Beijing, Wang et al. established a high-
precision model based on support vector machine (SVR) [140] and statistical machine
learning algorithms [141], achieving good results and achieving high-precision modeling
in Beijing.

Modeling Method Based on IC

At present, IC used in channel modeling mainly includes fuzzy inference system
(FIS), ANN, evolutionary algorithm (EC), and swarm intelligence (SI). ANFIS is a kind of
adaptive network equivalent to FIS in function [142]. This network solves the problem
that traditional mathematical modeling tools cannot obtain satisfactory results in modeling
fuzzy uncertain systems. At the same time, compared with the non-interpretability of the
general ANN, ANFIS gives weight to the physical meaning of the inference parameters
in the fuzzy logic, making the ANN interpretable. In [143], the author inputs the height
and distance of the transceiver antenna into the fuzzy system to obtain the path loss in the
areas to be predicted. The prediction results show that the path loss of the city is the largest,
and the average loss increases by 10 dB every ten kilometers. The model is proven to have
better performance by accurately predicting path loss. In [94], a model for predicting path
loss based on the fuzzy method is proposed. This model uses free space, vegetation terrain,
flat terrain, and rural terrain to establish a fuzzy set. The results make clear that the path
loss index for open areas is 2.2, and for low vegetation, small towns, and high vegetation
areas, the path loss index is 3.3, 4.1, and 4.7, respectively.

An ANN is composed of a number of interconnected neurons. The input layer, hidden
layer, and output layer are the necessary structures of an ANN. It learns and optimizes
through BP. Self-learning, self-adaptive, and nonlinear fitting are characteristics of ANNs.
The ANN can effectively simulate the radio channel characteristics of real scenes by using
massive measured datasets, fully training to determine the relationship between inputs
and outputs. Therefore, the ANN is suitable for modeling channels with insignificant and
time-varying statistical characteristics. The channel characteristics can be determined and
modeled accordingly using ANNs, treating the channel as data. In [142], a model based on
the ANN and adaptive evolutionary algorithm for the urban environment was built. This
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model was compared with the RT. It makes clear that the prediction performance of the
proposed model is better than the RT.

The main application of Evolutionary Computing (EC) is to solve combinatorial opti-
mization problems. The process is simulated through program iteration, and the problem
to be solved is regarded as an environment. The optimal solution will be found through
natural selection among a population of possible solutions. In [73], a prediction model
based on the microcellular area’s GA is proposed, which is applicable to the frequency
within 900 MHz and the distance between 0.1 and 2 km. This model can well explain
the influence of building area on path loss. Similarly, in [72], a model based on the GA
was proposed. The GA is used to tune the free space mobile information system and
the Ericsson model. The results show that the model test data are similar to the actual
measurement data.

SI comes from research on the group behavior of social insects such as ants and bees.
SI is a distributed, self-organized, and systematic collective behavior, whether natural
or artificial, usually composed of a group of simple individuals without central control
who interact with each other and the environment [144]. Among them, PSO is the most
widely used SI in channel modeling. The PSO is a stochastic optimization algorithm based
on the foraging behavior of birds, which is used to solve nonlinear problems [145]. A
particle can be searched in space by combining three vectors: the personal best vector (x),
the position vector (v), and the fitness value. The PSO algorithm can be applied during
either the initialization phase or the iteration phase [146]. At initialization, the velocity
and position of each vector are assigned randomly. In the iteration stage, the speed and
position can be modified by the equation in [147] to approximate the best solution. Because
the PSO does not need detailed propagation environment information, it is widely used in
channel modeling. In [145], He et al. created an adaptive radial basis function (RBF) ANN
model for path loss estimation using the PSO algorithm. The comparison results show
that the performance of the proposed model is better than other RBF–NN-based models.
Tahat and Taha applied statistical adjustment technology based on PSO to correct the path
loss output of COST-231–WI. Compared with the measured values, this model has a more
minor standard deviation than the traditional COST-231–WI model [75].

3.1.2. Hybridization Methods of Multi-Models

Radio channel models are often designed for different scenes, so each model has a
different emphasis. There are many different scenes when predicting large-scale areas.
Usually, satisfactory results will not be obtained using a single model. Therefore, we can
combine different channel models to reach the goal of improving the accuracy of prediction.
Multi-model fusion technology is mainly divided into subjective and objective fusion
technology. In subjective fusion technology, researchers subjectively divided the predicted
area of the independent sub-model according to the characteristics of each model. The
typical fusion model is the advanced propagation model (APM) of the US. This model
fuses the PE and the geometrical optical (GO) based models [148]. APM selects the Flat
Earth (FE) model in the region where the propagation angle is greater than 5◦ and the
propagation distance is less than 2.5 km. Because of the short propagation distance and the
large transmitting angle, the earth can be approximately flat. Therefore, there are fewer
obstacles in this region, so the FE model is used for prediction. Due to the propagation
angle of the PE model varying with frequency, when the frequency is greater than 100 MHz,
the maximum propagation angle of PE is 5◦. Therefore, APM uses PE for prediction in the
low-altitude region, where the propagation angle is suitable for the PE model. Above this
region, where the altitude is high and there are almost no obstacles, a relatively simple
Extended Optics (EO) model is used to predict. The EO is based on the assumption of
parallel rays and is suitable for predicting high-altitude propagation without obstacles.
Finally, the RO model is selected to predict propagation loss in other regions. This is because
the RO model is suitable for flat surfaces and assumes that the refraction environment
is horizontal and uniform. The region’s division of the APM is shown in Figure 13. The
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objective fusion technology does not involve the subjective judgment of experts, and the
prediction results are obtained entirely through objective formula calculation. Wang et al.
used entropy weight theory and root mean square error as the evaluation standard to
establish a combined prediction model by objectively weighting the ITU-R model [149].
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Based on the previous analysis, the propagation region is re-divided based on APM.
Figure 13 gives the new region’s division for modifying APM. The region division is
changed in the near-ground, where the propagation distance is less than 10 km, and the
propagation height is less than 100 m. Dense buildings characterize the region. Therefore,
RT can realize better prediction accuracy and operation speed by combining ML. Beyond
this region, we can select a mixed method combining PE, semi-empirical, and empirical
models, which can also be assisted by machine learning. This region is characterized by
sizeable topographic relief and many ground obstacles. Because this region is close to the
ground, we can easily obtain the radio environment. Therefore, it is easy to see that ML
can effectively combine traditional methods for support modeling. As mentioned earlier,
the propagation angle of PE varies with frequency. When the frequency reaches 20 GHz,
the maximum propagation angle of PE is only 0.4◦. Therefore, as the carrier frequency
continues to increase in the future, the PE method will no longer be suitable for prediction
in this area.

3.2. Potential Technology for Future Communication

Future radio communication will be a highly heterogeneous four-dimensional “space,
air, ground, and sea” communication [150]. The communication enables comprehensive,
multi-level, and three-dimensional coverage to meet communication applications in diverse
environments and under various requirements. To achieve four-dimensional communi-
cation, the current wireless networks require even faster transmission rates and lower
latency to support intelligent coordination among various communication systems. Longer
transmission distances are necessary to facilitate long-distance transmission scenarios, such
as those in air, space, and sea. The degree of sensory integration needs to be further en-
hanced to empower emerging applications like autonomous driving and digital twinning.
Furthermore, there is a need to increase channel capacity and spectrum utilization further
to address the explosive growth of wireless services and frequency devices. In response
to the requirements mentioned above, new technologies such as terahertz (THz) commu-
nication, reconfigurable intelligent surfaces (RIS), integrated communication and sensing
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(ICAS), orbital angular momentum (OAM), and ultra-large antenna arrays technology
(ULAAs) will emerge as crucial enabling technologies driving the future development of
wireless communication. Figure 14 shows the evolution from current communication to
future communication.
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3.2.1. The Application Technology of THz

Because millimeter wave has the advantages of continuity and wide bandwidth, it is
the critical application of 5G [151]. Due to the increasing data volume and the pursuit of
a high data transmission rate, millimeter wave has yet to meet the current development,
which causes people to focus on the THz band with higher frequency and wider band-
width [152]. The THz frequency band, which ranges from 0.1 to 10 THz, has rich bandwidth
and spectrum resources. It is one of the key technologies of future communication. Com-
bined with multi-antenna technology, THz is expected to achieve Tbps-level high-speed
mobile communication. However, with the increase in frequency, the wavelength is shorter
and shorter. The frequency coverage will significantly decrease, which will increase the
networking cost. Meanwhile, there may be apparent changes in propagation characteristics.
For example, because the wavelength of THz is close to molecules and small particles in
the atmosphere (such as water vapor and oxygen), THz’s absorption or scattering effect
will be more obvious [153,154]. In addition, narrow beams in THz communication are
prone to misalignment, leading to a decrease in communication link capacity and even link
interruption, which is also a major challenge for THz communication applications [155].

Fortunately, the beamforming technology based on MIMO can improve the transmis-
sion distance of THz communication. In [156], Enahoro et al. explored the performance
of the least mean square algorithm (LMS) beamforming algorithm. The result shows that
the LMS algorithm increases signal quality by eliminating interfering signals and noise by
nulling them, while sending maximum signal (beams) to the desired direction. In [157],
the prospect of ultra-massive multi-input multi-output (MIMO) technology to combat the
distance problem at the THz band is considered. They achieved high gain and directionally
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adjustable narrow beam transmission based on MIMO technology. It also can significantly
improve coverage by using RIS. ICAS can effectively solve the problem of narrow beam
misalignment. RIS and ICAS will be discussed in the following text.

3.2.2. Reconfigurable Intelligent Surface Technology

As mentioned earlier, the high attenuation and small coverage of THz communication
have become one of the key issues in its deployment. In the past, we usually improved
signal coverage by establishing relay stations, but this will greatly increase the cost of de-
ployment [158]. RIS can solve the problems of low coverage and low-frequency efficiency of
THz communication. RIS integrates a large number of low-cost passive reflection elements
on a planar surface, and each element independently reflects radio waves by controlling
their amplitude and phase, thereby achieving the reconfiguration of the propagation envi-
ronment [159]. Compared with traditional relay stations, RIS-assisted wireless networks
can significantly improve communication quality and reduce networking costs. In the
future, RIS can play the following role in wireless communication.

Act as a network repeater to increase coverage: By deploying RIS to establish a virtual
line-of-sight link and receiver, the coverage range of millimeter wave communication
can be greatly improved, and communication quality can be improved [160]. Wu et al.
proposed a RIS-aided single-cell wireless system where one RIS is deployed to assist in the
communications between a multi-antenna access point (AP) and multiple single-antenna
users. The result shows that the received SNR increases quadratically with the number of
reflecting elements of the RIS, which is more cost-efficient than the conventional massive
MIMO or multi-antenna AF relay [161]. At the same time, Peng et al. utilized RIS to assist in
UAV communication; thus, the communication quality and flexibility of the ground-to-air
network were improved [162].

Improve the security of wireless communication: The physical layer security is a
fundamental issue in wireless communications [163]. RIS can adaptively adjust the phase
shifts of its reflecting units to strengthen the desired signal and/or suppress the undesired
signal. Yang et al. utilized RIS to maximize the SNR of the legitimate user path, thereby
cutting the eavesdropper path. They achieved the aim of improving the security of wireless
communication [163]. Cui et al. maximized the secrecy rate of the legitimate commu-
nication link by jointly designing the AP’s transmit beamforming and the RIS’s reflect
beamforming [164]. Chen et al. proposed a method of adjusting the reflecting coefficients
of the RIS to change the attenuation and scattering of the incident electromagnetic wave so
that it can propagate in the desired way toward the intended receiver [165].

In addition, RIS can also be used as the signal reflection hub. In this scenario, it can
realize the communication from device to device and achieve communication interference
suppression while supporting low-power transmission [159].

3.2.3. Integrated Communication and Sensing Technology

ICAS is also one of the key technologies in future communication. On the one hand, it
is because many future application scenarios, such as unmanned driving, digital twins, and
virtual reality, require both high-performance sensing and wireless communication [166].
On the other hand, communication and sensing systems have long been studied as two
independent systems. However, they have great similarities in spectrum occupation, system
architecture, antenna composition, and signal processing. Through joint design, such as
signal transmission integration and hardware architecture integration, communication and
sensing functions can be achieved simultaneously on the same set of devices and frequency
spectrum to alleviate the shortage of spectrum resources, reduce equipment interference,
and reduce equipment costs [167].

The integration of communication and perception realizes the integrated design of
communication, perception, and computing functions through means such as air inter-
face and protocol joint design, spectrum resource sharing, and software and hardware
device sharing, resulting in the fusion and symbiosis of communication and perception
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functions. While transmitting information, communication and perception integration
can also analyze the characteristics of radio waves such as direct, reflected, and scattered
waves to locate, measure distance, measure speed, image, detect, identify, reconstruct the
environment, and other target or environmental information [168].

As the key technology for future communication, ICAS has been extensively re-
searched by the academic community [169]. Carlos et al. explored the full duplex ICAS
system from a signal-processing perspective [170]. In [171,172], the effectiveness of com-
munication and the bounds of the sensing are discussed. In [173,174], design schemes for
wireless communications and radar sensing shared waveforms were proposed. In [175,176],
new frameworks for ICAS were proposed. Preeti et al. proposed an adaptive preamble de-
sign to balance the positioning accuracy and communication rate of the ICAS system [177].

3.2.4. Orbital Angular Momentum Technology

The explosive growth of wireless services and devices is a major issue that needs to be
considered in future communications. However, due to the strict limitations of spectrum
resources in traditional multiplexing technologies (such as time division multiplexing,
frequency division multiplexing, and code division multiplexing), current multiplexing
technologies cannot meet the growing demand for ultra-high communication capacity
from users. OAM can provide a new degree of multiplexing freedom for wireless com-
munication systems and is recognized as one of the potential key technologies in future
communication [178].

Compared with traditional planar waves, the vortex electromagnetic waves carrying
OAM have a helical phase structure in the wavefront and a helical phase factor. In addition,
different modalities theoretically satisfy strict orthogonality. Thus, in OAM wireless com-
munication, multiple signals can be modulated to multiple OAM modes for transmission.
This enables universal data transmission under limited resources and improves channel
capacity. Research on OAM wireless communication has begun. Chen et al. proposed a
misalignment–robust receiving model by extracting the phases of channel state information
and implementing joint phase compensation and signal detection. Compared with the
conventional model, the proposed model is more robust [179]. Jing et al. proposed a simple
channel–independent beamforming model with fast symbol-wise maximum likelihood
detection. Though the bit error rate of the proposed model is the same as that of conven-
tional models, the numbers of complex additions and complex multiplications are much
smaller than those of the traditional model [180]. Liang et al. proposed a hybrid orthogonal
division multiplexing model using OAM multiplexing and orthogonal frequency division
multiplexing in conjunction [181]. Hu et al. proposed an OAM-based independent analog
beam selection by using the divergence to solve the problem that the interferences among
different users degrade the system performance.

3.2.5. Ultra-Large Antenna Arrays Technology

Radio communication systems have already adopted MIMO and have demonstrated
significant performance improvements [182]. With the increased RF, the spacing between
antennas is reduced so that a more extensive antenna array can be constructed [183,184].
In 2010, Marzetta first proposed providing large-scale MIMO antenna arrays for the base
station to improve users’ service [185]. In addition, using 3D antenna arrays can increase
system capacity [186]. According to the channel measurement result, it has been verified
that the 3D MIMO technology achieves 33% channel capacity gain compared to 2D MIMO
technology [187]. With the increase in antennas, 3D MIMO channels become dispersed in
the spatial domain, significantly increasing the channel capacity [188]. Therefore, large-
scale MIMO technology is a crucial technology of 5G [189]. For future communication,
as the frequency increases, ULAAs can be used. However, many problems are still to
be solved in modeling channels with the ULAA. For example, the measurement results
of using virtual 40 × 40 planar antenna arrays show that the channel characteristics are
non-stationary on the array [190]. Channel models should, therefore, take into account
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the non-stationarity of antenna arrays. In addition, more antennas will produce narrower
beams, so more accurate multipath propagation angles (MPCs) are required to make the
radio wave propagation beam point accurately to users. In addition, it is also a challenge
to use ULAAs for channel measurement from the perspective of channel measurement.
On the one hand, applying ULAAs in HF channel transmitters is difficult, especially in
the THz band. On the other hand, with the increase in antenna array size, the amount of
measurement data increases exponentially, and more computing costs are required.

4. Conclusions

This paper systematically overviews the existing terrestrial radio channel models.
Specially, these models are sorted into deterministic, empirical, and semi-empirical models.
Then, we analyzed the features of the three kinds and summarized the semi-empirical
model. The results show that the deterministic model has the highest accuracy, does
not need a large number of measured data, and is suitable for various scenarios, but its
calculation and simulation are time-consuming and not suitable for large-scale scenes. The
empirical model has features of high universality, low complexity, simple calculation, poor
accuracy, a large amount of measured data required, poor scene applicability, and suitable
for small-scale scenes. The semi-empirical model has a moderate amount of computation,
adaptation to large-scale scenes, low complexity, and higher accuracy. Namely, the three
typical models are relatively balanced in universality, accuracy, and complexity.

At the same time, development trends in the future are also analyzed: the large-
scale combination model suitable for large-scale scenes, the wide-area generalization
model suitable for multi-scenes, and a more efficient intelligent model will be the main
development direction of channel modeling. After that, for the requirement of intelligence
and refinement, we propose to use the intelligent method based on the ML or the IC to
realize the intelligent modeling process and use the fusion multi-model technology to
achieve refined modeling. Finally, we look forward to the potential technologies of future
communication, which include the THz application technology, reconfigurable intelligent
surface technology, integrated communication and sensing technology, orbital angular
momentum technology, and ultra-large antenna array technology. We hope this paper will
stimulate more interest in modeling terrestrial radio channels.
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