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Abstract: Despite the resolution of pathology at admission, many hospitalized patients are discharged
in a worse functional state, particularly in terms of walking capabilities, due to hospitalization
inactivity. Early interventions to maintain the functional state through exercise such as passive
mobilization, executed during hospitalization, have been proven to be effective in preventing physical
and cognitive decline. Unfortunately, many patients can be excluded from such treatments due to the
high number of people hospitalized and the limited availability of healthcare personnel. This paper
presents a framework that allows the patient to autonomously perform the exercises without the
assistance of qualified personnel. Such a framework exploits the advantages of an Augmented Reality
(AR) device in which the patient can visualize real-time instructions on the exercises and directions
on their execution. The monitoring of the patient’s movements during exercise is accomplished by
means of dedicated wearable sensors fixed to the patient’s limb. The system was tested in preliminary
experiments on healthy people.

Keywords: augmented reality; wearable sensors; rehabilitation

1. Introduction

Currently, rehabilitation exercises for hospitalized bedridden patients are of paramount
importance to ensure the quick resumption of all the activities of daily living once they
return home [1]. Indeed, being bedridden for a long period results in motor problems
for patients due to reduced bone mineral density and muscle mass, as well as physical
impairment [2]. At the end of hospitalization, despite the resolution of the condition for
which they were admitted, frail patients are typically discharged in a worse functional
status. It has been demonstrated that the muscle strength of elderly people gradually
decreases at a rate of 1.5 to 3.5% per year, and if confined to bed for a long period, this loss
occurs only one day after the discharge from the hospital [3,4]. Among patients that are
bedridden, only one in four says that he/she is satisfied with his/her current life [5]. Many
patients, who were previously ambulatory, spend the majority of their time (83%) in a
supine position. This inactivity, attributed to insufficient staff, efforts to prevent accidental
falls, the prevailing culture of bed rest, and even the hospital architecture itself [6–8], is the
primary contributor to the decline of patients’ functional capacity.

As a result, 50% of such patients do not regain their pre-admission level of functional
capacity within one year [6,9,10], and complete inactivity during this period can be asso-
ciated with a wide range of adverse outcomes, including an increased risk of falls and
extended hospital stays [11–13]. Early interventions to maintain physical function through
exercise, including walking or passive mobilization, conducted during hospitalization,
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have proven effective in preventing physical and cognitive decline in patients, as well as
reducing the length of hospitalization and the associated costs [14].

Unfortunately, the majority of patients, especially the frailest elderly individuals, are
excluded from these rehabilitative treatments due to the aforementioned barriers, the high
number of hospitalized individuals, and the limited availability of human resources to
administer them [6,14–16].

This paper proposes the development of an integrated system that enables the inde-
pendent execution of active exercises for the mobilization of bedridden patients without
the assistance of dedicated healthcare personnel. This is achieved through the use of an
Augmented Reality (AR) headset and wearable sensors. The exercises follow protocols
involving flexion–extension and rotational movements of the upper and lower limbs, aimed
at maintaining muscle tone, trophism, and joint mobility. Augmented reality systems for
rehabilitation are increasingly being used in medicine to help patients regain full health as
soon as possible [17,18]. Such systems are mainly used for shoulder rehabilitation on the
upper limb and generally for hip and knee rehabilitation on the lower limb [19,20].

In this work, we propose a rehabilitation intervention for frail patients during their
hospital stay, which is supported by augmented reality. Over the past few years, and in
part accelerated by the recent COVID pandemic, there has been an increasing interest in
the development, utilization, and dissemination of digital technologies [21]. Specifically,
devices for AR, through the use of suitable headsets, allow for the integration of virtual
content into the real world by projecting three-dimensional holograms visible within the
headset. This creates a highly immersive experience for the user and facilitates the intuitive
and simplified interaction with real-world objects and tools. Noteworthy applications have
been proposed for education [22] and medicine [18,23,24].

We exploited these technologies to enable bedridden patients to independently per-
form mobilization exercises. The proposed framework consists of:

• Two wearable sensors connected to the ankles to acquire biometric and motion data
from the patient, which enable the real-time analysis of the exercise execution;

• The AR application that guides the patients in the execution of a set of rehabilitation
exercises, by projecting a virtual avatar showing the movements to perform and
providing real-time feedback on the execution of the current exercise.

The remainder of the paper is organized as follows: Section 2 deals with the wearable
sensors: how they are designed and how the data are processed to reconstruct the move-
ments. Section 3 describes how the AR application is implemented on the headset device.
Section 4 portrays the integration of the systems and the preliminary experiments. The
results of the validation tests carried out on healthy volunteers are reported in Section 5.
Finally, Section 6 draws the conclusion and highlights future developments.

2. Wearables: Hardware and Algorithms
2.1. Hardware

Currently, wearable devices are used to capture data on the health and habits of
human beings, and they are increasingly accepted by users [25,26]. In this work, we
used two different wearable sensors for monitoring the physical activity of the involved
subjects. The first one was the EmotiBit Bundle (EmotiBit, Reno, NV, United States). Among
alternative devices such as commercial smartwatches or fitness trackers such as the Fitbit
Flex, Garmin Vivoactive, and Misfit Shine [27], we chose the EmotiBit because it is a
development-oriented wearable sensor kit for capturing movement and physiological
data [28]. Furthermore, it provides fully open-source software, unlike the above-mentioned
alternatives, which do not expose the API for custom programming. Moreover, it is a
scientifically validated system that enables wireless streaming of raw data throughout
the UDP protocol. When the subjects carried out the exercises, the EmotiBit was worn
on the ankle through a case with a strap, designed to add protection while still allowing
physiological data to be taken from the body. It is worth noting that such a wearable allows
the acquisition of other data in addition to movement data, which can be useful for further
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developments of our application, i.e., emotional and physiological data. The EmotiBit
sensor set includes a Photoplethysmography (PPG) sensor for monitoring the heart rate,
oxygen saturation, and respiration and a humidity/temperature sensor for monitoring
dermal perspiration and the body temperature.

The second wearable used in our framework was a custom-made IMU platform
already experimented on in previous industrial research activities [29]. The main sensor
was a Bosch Sensortec BNO055 Inertial Measurement Unit (IMU) sensor connected to
an Adafruit Feather HUZZAH ESP8266, a very popular chip for Internet of Things (IoT)
applications [30]. The selection of the components in our custom-made IMU boards was
driven by the need to measure motion data, of multiple rigid bodies, including acceleration,
velocity, and orientation. It was desirable for these devices to be easily interconnected
through the implementation of various transmission protocols such as UDP, MQTT, or
TCP, which had been previously tested in a different project [29]. The usage of a low-cost
custom-made IMU wearable boards allowed us to reduce the overall hardware costs of
our system. The cost of a single unit of our custom-made board was under USD 50, while
the EmotiBit bundle’s cost is about USD 700. The BNO055 device incorporates three-axis
sensors measuring: tangential acceleration through the accelerometer, rotational velocity
through the gyroscope, and local magnetic field strength via the magnetometer. The
sensor requires initial calibration, and once the offsets are determined, they must be stored
within non-volatile memory, namely EEPROM, ensuring that the sensor is immediately
ready for use upon subsequent power-ups. The entire device can be controlled by an
external or internal microprocessor within the sensor. In the latter case, a 32 bit Cortex
M0+ core executes a proprietary fusion algorithm, allowing the data to be requested in
different formats by the users. In addition to the three inertial sensors, the chip also
features an interrupt, which can alert an external microcontroller in the event of a change
in orientation, sudden acceleration, or other movements. The entire system is enclosed
in a 28-pin Land Grid Array (LGA) package. The operating voltage ranges from 2.4 V to
3.6 V. It supports various communication protocols, including I2C, UART, and HID. To
ensure the I2C communication with the Adafruit ESP8266-based board, the PS0 and PS1
pins were connected to the ground using 10 KΩ resistors. The Adafruit Feather HUZZAH
is an ESP8266 WiFi development board variant, incorporating a battery management and
recharging circuit for Li-Po cells, enabling its wearability. The ESP8266 WiFi module
operates at an 80 MHz clock frequency, supplied at 3.3 V. Because of the two SDA and
SCL ports, the HUZZAH ESP8266 is compatible with the I2C protocol, enabling seamless
communication with the BNO055 sensor, which conforms to the same protocol. The
Address (ADDR) pin serves as the internal counterpart to the BNO055 COM3 pin, crucial
for I2C communication address selection. In its default configuration, the BNO055 sensor’s
address is represented as 0x29 in hexadecimal format (0101001 in binary), with the COM3
pin linked to the GND via a pull-down resistor, thereby establishing the 0x28 hexadecimal
address (0101000 in binary). The RESET pin, tethered to PIN 15, adheres to the Bosch
Sensortec datasheet guidelines, effecting a Vdd-to-GND transition and subsequent return
to the Vdd for the BNO055 reset. Consequently, PIN 15 is configured to output a high
signal at the Vdd. The INT pin functions as a hardware interrupt signal emitter, generating
3 V under specific event conditions. Additionally, it serves as an output signal relay from
the BNO055. The Vbat

in pin directs the battery voltage to a resistive voltage divider input,
facilitating ESP8266 power supply. The output of the voltage divider is then channeled
to a buffer input, effectively preventing signal attenuation, resulting in an output signal
governed by the formula:

Vbat
out = Vbat

in
R2

R1 + R2
(1)

The Vbat
out pin is linked to the Analog-to-Digital Converter (ADC) input on the ESP8266.

Employing a dedicated software algorithm, battery charge metrics are derived and pre-
sented in milliampere-hours (mAh) based on the corresponding voltage reading. The
ESP8266’s ADC pin accommodates a voltage range from 0 V to 1 V, necessitating an



Electronics 2023, 12, 4958 4 of 14

appropriately configured voltage divider to scale the maximum 3.7 V Li-Po battery voltage
down to 1 V. Figure 1 shows the two different wearable sensors. Specifically, our custom
wearable IMU was associated with the reference system s1, and the EmotiBit was paired
with the reference system s2.

Figure 1. (A) Our custom wearable IMU platform with the associated reference system s1 and (B) the
EmotiBit with the associated reference system s2. The x-axis is red, the y-axis is green and the z-axis
is blue.

2.2. Comparative Analysis

In this section, we address the comparison between the two utilized devices, the EmotiBit
and the custom-made IMU wearable, through the execution of specific experiments.

The first experiment involved placing both devices on the same rigid body (i.e., an
upper limb), so as to maintain the identical orientation while the user performs rotational
movements along one axis. Our aim was to observe the different dynamical reconstructions
of the orientation on the basis of the time-synchronized acquisition of the IMU sensors.
The aim was to ascertain whether both devices exhibit similar responses under the same
conditions. In reference to the provided Figure 2, it was observed that both devices
demonstrated analogous responses, indicating their suitability for the intended application.

Figure 2. Comparison of Euler’s angle acquisition during specific movements between the EmotiBit
and custom-made IMU.
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The second experiment involved employing a parallel robot, specifically a ‘Stewart
platform’, to ensure that both boards possessed identical inclinations in reference to the
gravity vector. This assessment aimed to analyze the static behavior of the accelerometers,
which can highlight differences in the calibration and captured noise. More specifically, as
illustrated in Figure 3, the Stewart platform is a parallel robotic mechanism characterized
by its ability to provide multi-axis movement and precise positioning by employing a set
of six linear actuators arranged in a parallel configuration. This arrangement enables the
platform to be tilted at will inside the considered workspace. It consists of a fixed base and
a movable platform connected by several extendable legs or struts. In this experiment, both
devices were mounted on the platform, which was not aligned with the gravity vector, but
slightly inclined.

Figure 3. The EmotiBit and the custom-made IMU board on the Stewart platform.

Therefore, the second experiment allowed for the comparison, as shown in Figure 4,
of the static measurements of the acceleration acquired from the two devices. We also
computed the mean and standard deviation of the previously calculated static acceleration.
These values are presented in Table 1. It is worth noting that the two devices exhibited
offsets due to different factory calibration values. However, for the purposes of our
application, such a variation did not significantly affect the elaboration of the orientation,
as demonstrated in the previous experiment.

Figure 4. x, y, and z components of acceleration acquired in static conditions from the two devices.
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Table 1. Mean and variance of the acceleration measurements acquired in static conditions from the
two devices.

Emotibit

Mean Variance

0.21 1.3359 × 10−4

0.58 1.1789 × 10−4

9.67 1.8610 × 10−4

Custom IMU

Mean Variance

0.1572 0.0022
0.6449 0.0039
9.6389 0.0022

As a result, both devices demonstrated highly similar comparative results regarding
our current application, as demonstrated in Figures 2 and 4. Two primary differences
existed between the two boards. Firstly, there was a significant cost disparity, with the
custom-made board being substantially more affordable than the EmotiBit. Secondly, the
EmotiBit offers a more-extensive array of functionalities. However, for this application’s
requirements, the usage of two or more of our custom-made boards alone would suffice.
In a prospective application, the EmotiBit could complement the custom-made board,
providing additional functionalities, when required, like heart rate monitoring, anxiety
state detection, and blood oxygen level measurement. These capabilities are absent in our
custom-made boards.

2.3. Algorithms

Raw motion data were acquired using the three-axis accelerometer, gyroscope, and
magnetometer built into the EmotiBit and the BNO055-based custom device, which worked
in a synchronized manner with a sampling rate of 25 Hz. Then, the data were appropri-
ately filtered in MATLAB, version R2022a, to extrapolate the data of interest, such as the
estimation of the orientation and the number of repetitions of the movement performed
over the entire exercise.

More in detail, the number of repetitions was computed as follows: The three com-
ponents of the acceleration along the three Cartesian axis, i.e., ax, ay, and az, acquired
from the starting time to the current time were filtered through a 3rd-order band-pass
Butterworth filter with cut-off frequencies of 0.1 Hz, to eliminate the DC component, and
1.5 Hz, to remove the high-frequency components of the noise. At this point, only one of the
three components was selected, depending on the exercise task. The filtered signal, which
took a repeatable oscillatory form over time, was normalized between 0 and 1. Finally,
our algorithm highlighted whether a peak was present through the exceeding of a set
threshold value in height and width. When a peak was found, the movement repetition
count increased.

Also, the orientation estimation was processed on the basis of the raw measurements
of the acceleration data, but including also gyroscope and magnetometer data. In particular,
we used the sensor fusion algorithm known as the Attitude and Heading Reference System
(AHRS) filter, which provided an online estimation of the orientation in the form of the
rotation matrix wRs of the sensor (subscript s) with reference to its inertial reference system
(subscript w). For the purposes of our application, the orientation was always relative to
the initial position of the sensor, which was supposed to be fixed to the upper part of the
ankle with the x-axis of the sensor directed towards the foot. The orientation at the kth
sample step was then computed as follows:

s,0Rs,k = (wRs,0)
TwRs,k (2)
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where the subscript T indicates the transpose operator.
The current rotation matrix was then converted into Euler angles, namely α, β, and γ,

to have a more-intuitive representation of the orientation, which allowed the definition of
the thresholds for the evaluation of the correctness of the posture during the exercise, as
described in Section 4.

Further noteworthy information that can be processed and that will be integrated
in future developments is the speed of the movements. The speed was calculated as
follows. Firstly, the three components of the acceleration, i.e., the ax, ay, and az signals, were
filtered through a 3rd-order low-pass Butterworth filter with a cut-off frequency of 5 Hz
to eliminate the high-frequency components of the noise. Then, cumulative trapezoidal
numerical integration, i.e., the cumtrapz MATLAB function, was applied on the acceleration
signals to find the three components of the velocity, i.e., the vx, vy, and vz signals. Once
we had obtained the velocity signals, the speed of movement throughout the exercise was
calculated as the mean value of the velocity magnitude:

s =
√

v2
x + v2

y + v2
z (3)

3. Augmented Reality Application

In this work, the adopted AR headset was the Microsoft Hololens2, a device that has
undergone an increasing diffusion in applications for medicine [31]. For the scope of our
application, it was fundamental to use AR instead of Virtual Reality (VR), which can be
implemented by means of alternative devices such as the Meta Quest 2 or PlayStation PS
VR, because of the need for the user to maintain the view of the real world, so as to not
cause undue discomfort.

Furthermore, free software platforms such as Unity 3D [32] and Microsoft Visual Stu-
dio can be used to implement, build, and deploy a custom AR application on the Hololens2.

The software architecture of the application was designed to be flexible for future
changes, also allowing for possible customization of the session based on the patient’s
needs. The exercise abstract class was defined. This class exposes the common base
parameters of every exercise, such as the number of repetitions, the frequency at which
they are performed, and the seconds of rest after the exercise. This class is then specialized
in the various exercises, exposing specific parameters for the movements to be performed.
Every exercise was saved as a prefab, a Unity reusable asset. Such prefabs also contained
the 3D mannequin and the animation it would execute. The application manager either
sequentially enables the prefab of the current exercise or initializes a resting timer, if
scheduled from the previous exercise. A second script was responsible for establishing
a TCP/IP socket connection with MATLAB. Furthermore, it will notify the application
manager in case of a detected repetition or incorrect position. The entire Unity application
was written in C#. The Graphical User Interface (GUI) was event-driven, decoupling the
logic of the software from its appearance.

The target users of our framework include people with possibly no previous experience
in the usage of AR, so the GUI was designed taking into account the need for having
simplified interactions between the user and the holographic elements. Furthermore, the
immersive AR scenario was designed to enhance the level of concentration of the user
without completely alienating him/her from the outside. Figure 5A depicts the design
of the GUI. There were two main hologram elements, namely the avatar and the control
window. The former was a 3D animation showing the correct way to execute the selected
exercise respecting the target execution timing fixed by the medical personnel, while the
latter mainly consisted of a panel containing the title and the description of the current
exercise and further information based on the feedback of the wearable data, i.e., the
number of remaining repetitions and the warning message if the wrong posture has been
detected. Further buttons allowed the user to disable the exercise panel, so as to have a
better view of the avatar, and to stop the application. Figure 5B shows the final visualization
on the headset of the holograms projected in the real environment.
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Figure 5. (A) The design of the GUI with (1) the animation of the avatar showing the correct way
to execute the exercise, (2) the exercise panel, (3) the enable/disable panel button, (4) the repetition
count, and (5) the stop button. (B) The visualization of the holograms on the AR headset.

4. System Integration and Experiments

We propose the integration of all of the system components as depicted in the block
diagram in Figure 6. We exploited MATLAB (version 2022a), running on a laptop (Intel
Core i5-1230u, 16 GB RAM LPDDR5) as the middleware between the wearables and the
AR app on the Microsoft Hololens2 headset. More in detail, the EmotiBit and the custom
wearable IMU platform send motion data via UDP to MATLAB, at a fixed rate of 0.04 s
(25 Hz). Then, a MATLAB script is in charge of processing the acquired data to provide
the computation of the repetitions and the estimation of the current leg orientation, as
described in Section 2. Furthermore, the same MATLAB script establishes a TCP/IP socket
connection towards the AR app running on the Hololens, so as to provide, with negligible
delay, the processed data. Figure 7 shows the experimental setup in which the user is
executing a mobilization exercise while wearing the AR headset, the EmotiBit on the right
leg and our custom wearable IMU platform on the left leg.
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Figure 6. The block diagram of the system integration.

Figure 7. The experimental setup. (A) the AR headset; (B) the EmotiBit on the right leg; (C) our
custom wearable IMU platform on the left leg; (D) the user interacting with the holograms while
performing the exercise.

The mobilization exercise used for our test consisted of the flexion of the target thigh
(3 series of 5 repetitions with 40 s of rests) maintaining the leg along the longitudinal axis of
the body, i.e., the axis that connects the human body from the top of the head to the heels.
As depicted by the graph in Figure 8, our algorithm was able to detect all of the repetitions
by monitoring the peaks of the filtered signal of the acceleration measured by the wearable
along the vertical axis (z-axis). After filtering the acceleration as described in Section 2,
the number of peaks in the waveform that locally exceeded the defined thresholds in the
amplitude and width corresponded to the number of executed repetitions. Furthermore,
we monitored the orientation of the leg during the motion. In our test during the second
repetition, the leg became misaligned with the longitudinal axis of the body. Our method
detected a value of the Euler α angle that exceeded the threshold of 20◦. This event triggered
a warning holographic message that allowed the user to autonomously recover from such
an error in the next repetitions. Figure 9 shows the monitored orientation of the ankle
during the exercise, highlighting the detection of the wrong alignment.
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Figure 8. The computation of the repetitions

Figure 9. The estimation of the ankle orientation during the exercise, with the detection of misalign-
ment with the longitudinal body axis.

The correct way to execute the selected mobilization exercise was achieved by main-
taining the orientation of the leg along the longitudinal axis of the body. Performing the
exercise with the wrong posture can cause unexpected injury. Our system can detect if the
user is performing the exercise correctly and notify about such an event in the graphical
interface of the AR application so that the user can autonomously rectify the position by
observing the virtual avatar’s movements without the need for a medical operator. The
error message from the virtual interface warns the users to adjust his/her posture, thereby
resuming the exercises aligning appropriately with his/her rehabilitation task.

5. Validation

We invited a group of 10 healthy volunteers to execute three exercises using our
framework. The age of the volunteers varied between 23 and 55 years old, and they had
different levels of expertise in the usage of AR devices. At the end of the session, we
asked each of them to fill out the following anonymous questionnaire. The questionnaire is
reported in Table 2. This was split into 6 categories, namely expertise, workload, usability,
design, instructions, and satisfaction. The total number of questions was 11, and each of
them had a score from 1 (lowest) to 5 (highest). Moreover, We report 2 different tables for
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discussing the results. In Table 3, each question is associated with the number of responses
obtained based on voting.

Table 2. Questionnaire filled out by 10 volunteers, including 11 questions divided into 6 categories.

Questionnaire
Categories Questions

Level of expertise (Q1) previous experience in using virtual/augmented
reality devices.

Workload
(Q2) Evaluate the comfort of wearing the headset and
wearable sensors during the exercise.
(Q3) Rate the perceived well-being while using the AR app,
i.e., lack of sensations of nausea, discomfort, or unease.

App usability
(Q4) Rate the usability of the APP.
(Q5) Assess the interaction with AR element in the app.
(Q6) Were the AR element easy to understand?
(Q7) Evaluate the system performance in guiding the exercises.

Design
(Q8)Evaluate the AR app user interface design.
(Q9) Evaluate the clarity of the feedback and notifications
in the execution of the exercise.

Need for Instruction (Q10) Did you require instructions or tutorials to use
the app?

Overall satisfaction (Q11) Rate your overall satisfaction with the proposed
framework.

Table 3. Score distribution for each question and free feedback comments by the volunteers.

Questions

Ev
al

ua
ti

on
s

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1 4 0 0 0 0 0 0 0 0 0 0
2 3 0 1 3 5 0 0 0 0 2 0
3 0 1 0 3 1 0 4 0 2 0 2
4 3 8 2 3 2 4 6 8 4 3 7
5 0 1 7 1 2 6 0 2 4 5 1

Comments and Suggestions
(1) Improve the graphical interface;
(2) Improve the repetition counter;
(3) Improve the position of the avatar;
(4) Making text larger for people with vision problems.

The statistical results of the questionnaire are reported in Table 4. Most of them had
no previous experience in the usage of an AR device (Q1 had a mean score of 2.2). This
fact conditioned the rate of the usability section of the questionnaire; indeed, some users
felt unsatisfied with the interaction with AR elements (Q4 and Q5 had a mean score of
around 3 with a standard deviation higher than 1). On the basis of such feedback, future
releases of the app will further reduce the required interaction with the user. In terms of
workload, the user perceived no relevant discomfort in wearing the headset or the sensors
or in immersing into the AR environment (Q2 and Q3 received a score higher than 4). The
intuitiveness of the user interface was appreciated (Q8 and Q9 had a score higher than 4),
and just a few users needed further instructions from the operator to complete the exercises
(Q10 had a standard deviation higher than 1). Finally, Q11 on the overall satisfaction in
executing the exercises with the support of our framework received a mean score of 3.9. We
also made further considerations about the age of the volunteers. There were 3 individuals
aged between 24 and 26, 4 older volunteers aged between 48 and 55, and 3 middle-aged
individuals aged between 30 and 35. The first and third groups, despite having little prior
experience with an AR headset, showed a higher level of expertise in using such devices
and learning more quickly. However, these two groups proved to be more demanding in
terms of the graphical interface, requiring a more-sophisticated one, as we can understand
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by their free feedback comments reported in Table 3. Furthermore, we did not observe a
substantial difference in terms of age regarding the overall usability assessment and user
satisfaction with the application.

Table 4. The statistical results of the questionnaire.

Category Question Mean Std Deviation

Expertise Q1 2.2 1.31

Workload Q2 4.0 0.47
Q3 4.5 0.97

Usability

Q4 3.2 1.04
Q5 3.1 1.28
Q6 4.6 0.51
Q7 3.6 0.51

Design Q8 4.2 0.42
Q9 4.2 0.78

Instructions Q10 4.1 1.19

Satisfaction Q11 3.9 0.56

6. Conclusions

In this paper, we presented a framework for the execution of mobilization exercises
supported by Augmented Reality (AR), with the aim of implementing a system that enables
the autonomous execution of rehabilitation, without the need for the assistance of qualified
medical personnel. We proposed the usage of an AR headset to project a virtual avatar
showing the correct way to perform the mobilization exercise and providing also feedback
on the current execution. By means of wearable sensors, fixed to the patient’s ankles,
we could acquire and process the movement data to compute the number of executed
repetitions and estimate the orientation of the leg, so as to detect the wrong posture during
the exercise. We tested our framework in preliminary experiments, which demonstrated
the feasibility of our setup. Further validation tests were conducted by inviting a group
of healthy volunteers to execute a set of mobilization exercises using our framework. The
result of the final questionnaire provided feedback on future developments and highlighted
the overall satisfaction.

The use of this application could be fundamental in alleviating the workload in hospital
settings for physicians and physiotherapists, who are increasingly understaffed and may
find themselves in situations with a higher level of priority. However, this application is not
confined to hospital use, but could also be useful at the household level, where situations
might arise making it difficult for patients to reach hospitals or physiotherapy centers,
both due to logistical impossibilities and health-related reasons. Future developments can
involve the implementation of methods to monitor the emotional and stress data from the
patients to regulate the execution of the exercise. Additionally, we will aim to extend the
application field of our system by implementing AR applications supported by wearable
devices for guiding the fitness activity of healthy people.
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