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Abstract: Few-shot classification algorithms have gradually emerged in recent years, and many
breakthroughs have been made in the research of migration networks, metric spaces, and data
enhancement. However, the few-shot classification algorithm based on Graph Neural Network is still
being explored. In this paper, an edge-weight single-step memory-constraint network is proposed
based on mining hidden features and optimizing the attention mechanism. According to the hidden
distribution characteristics of edge-weight data, a new graph structure is designed, where node
features are fused and updated to realize feature enrichment and full utilization of limited sample
data. In addition, based on the convolution block attention mechanism, different integration methods
of channel attention and spatial attention are proposed to help the model extract more meaningful
features from samples through feature attention. The ablation experiments and comparative analysis
of each training mode are carried out on standard datasets. The experimental results obtained prove
the rationality and innovation of the proposed method.

Keywords: edge-weight single-step memory-constraint (ESMC) network; few-shot; channel attention;
spatial attention

1. Introduction

Labeling data requires time and labor, but humans only need a small amount of learning
to realize the cognition and analysis of new things. This small amount of learning is the gap
between humans and machines. Therefore, employing the human learning method to achieve
classification with a small amount of label samples is a problem that researchers need to
solve [1–5]. A lack of label samples makes the training with few-shot classification different
from other big-data networks and has produced many methods to solve the few-shot classifi-
cation problem, including transfer learning [6,7], meta-learning [8,9], metric learning [10,11],
data enhancement [12,13], etc. At present, in the field of image classification, the application of
the Graph Neural Network (GNN) method in few-shot classification maximizes the use of the
connections between samples and learns intra-class relationships and inter-class connections
by building graph structures [14]. The aim is to build small classification tasks continuously
and gradually realize “the big from the small” so that a model can continuously learn how
to realize classification from a small number of samples and generalize a larger model at
the same time [15]. Its unique topological structure has good interpretability and a more
intuitive display. With the gradual rise of GNN, a few-shot classification algorithm based
on GNN not only has long-term development and economic value but also has far-reaching
research significance and research value in the military, medical, aesthetic, security, and other
industries with missing label data [16].

With the application of the GNN algorithm in the research of few-shot classification,
the accuracy of few-shot classification has gradually improved. The model based on the
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migration network cannot solve classification problems with differences in the spatial
distribution of samples. Moreover, with the increase in the number of layers in deep
networks, few-shot classification is prone to overfitting. When shallow networks are
used, rich deep features cannot be extracted, so the use of many networks is very limited.
Although the classification performance of many deep networks is good enough, in the
field of few-shot classification, the problem is of too many parameters and too few samples.
The GNN-based classification model has emerged in recent years, introducing graph
structure, combining meta-learning training strategies, establishing associations between
samples, updating each other through edge nodes, and using explicit edge annotation
as a prior condition. Its classification performance is not inferior to that of migration
networks and some deep networks. In summary, this paper will study the small-sample
classification algorithm based on the GNN model, which has both development prospects
and research value.

In this paper, according to the relationship between the edges and nodes of a graph
structure, a new graph structure is constructed specifically for edge-weight features, and
the implicit distribution of edge-weight data is added to update the edge node. In the
network, we learn both instance-level features and distribution-level features to enrich the
feature data and make use of the feature data from a more comprehensive perspective. In
addition, from the perspective of improving the feature extraction effect, this paper uses
the attention mechanism to learn the channel and spatial weights of the initial node-feature
extraction module so that the network can pay attention to more meaningful channels and
image spatial positions. At the same time, through this method, the model can improve the
generalization ability of sample-category transformation in different tasks.

2. Related Work

In recent years, it has been common to train models using big data and achieve success
both in the field of machine learning and deep learning. Many researchers often worry about
their datasets rather than how to build models. In-depth methods from different aspects
have different significance. The emergence of transfer learning has greatly promoted the
development of small-sample learning so that classification can be realized after fine-tuning
the model pre-trained under big data with only a small amount of marking data [17,18].
However, such methods require the source domain to be similar to the target domain and
have a mappable space. When such conditions are not met, the classification results are
not as expected. The sample data are too small, and the fine-tuned parameters still fail
to achieve the requirements of classification. In addition, even if methods similar to data
enhancement can increase the sample size, it still cannot fundamentally solve the problem
of few-shot classification [19–21]. According to the evolution time of the method, the
existing few-shot classification methods are divided into four categories: transfer learning,
data enhancement, metric learning, and meta-learning [22].

In 2016, Ganin et al. presented the domain-adversarial training of neural networks
at the TMLR academic conference [23]. Transfer learning fixes a large number of layer
parameters by adopting a large data pre-training model similar to the target data and
improving the situation where a small number of labeled data cannot train a good model
using few-shot classification to fine-tune the parameters of a specific layer [24]. The genera-
tion of transfer learning prompts few-shot learning, but when the probability distribution
or spatial distribution of samples between the training model data domain and the few-shot
data domain is very different, the model is difficult to establish.

In the problem of few-shot classification, many studies start from data and increase the
number of label samples, so we need to achieve data enhancement. Data enhancement is
designed to generate more new data in line with the overall distribution of image samples
on the basis of existing image samples through synthesis, style migration, geometric trans-
formation, and other operations [25,26]. The main idea of semantic feature augmentation
in few-shot learning published by Zitian Chen et al. in 2018 is data enhancement, mapping
the visual feature information of a small number of image samples to semantic space
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through a certain method [27] so that each sample can acquire richer semantic features. The
method expands the data in the semantic space by adding Gaussian noise to the sample
and nearest-neighbor matching. Finally, the method maps the supplementary semantic
information back to the visual space to expand the sample.

From the perspective of the characteristic metric, finding a suitable metric ensures
that the correct predictions can be achieved even in a small number of samples. Currently,
most studies make improvements in the loss function section, and to minimize the impact
caused by too little data, this method, based on metric learning, was born [28]. In 2017,
the prototype network of prototypical networks for few-shot learning used the method
of projecting samples into a metric space to judge whether to cluster after analyzing the
similarity between samples [29]. Similarity was measured by distance. In 2019, an article
named Relation Network was published in CVPR, modeling for this module from the
perspective of measurement, combining a variety of metrics to constrain a similarity of
judgment samples. The main method is training a network (such as a convolutional neural
network) to learn the measure of distance, making few-shot classification more reasonable
and generalized [22]. However, whether the distance measurement is suitable for samples
with similarity still needs to be studied.

Meta-learning has received more and more attention, and this method is a kind of
model research and learning, unlike deep learning, which judges the category of new
samples through learning samples in a task [30]. In meta-learning, multiple taxonomic
tasks are constructed, and only a small number of samples exist (5 to 60 pieces) in each
task. Learning five (or ten) classifications in each task continuously lets the model accumu-
late experience so that the meta-model (meta-learner) can make judgments quickly and
accurately about the new task. Abstractly speaking, its purpose is to enable the machine to
learn by itself and to learn from a training sample. With prior knowledge, it can quickly
adapt itself to draw inferences from one instance when a new classification task arrives [31].
For example, the typical MAML algorithm uses the trained meta-model and can be applied
to new classification tasks using only a few steps of gradient iterations [32–34].

The classification algorithms based on GNN often take node features as the basis
for final prediction and classification, and the feature of edge weight is not fully utilized.
These underappreciated features are very important in few-shot classification. Because the
primary problem of few-shot classification is that there are fewer label data, the feature data
obtained by the network are fewer than those obtained by the big-data training model [35].
The graph structure contains a lot of hidden information, such as inter-class similarity and
intra-class phase specificity. If we can make good use of this information and enrich the poor
feature database, there will be much basis for classification. Therefore, how we can make full
use of feature information in few-shot classification is a research difficulty [36,37]. Some fast
convergent methods are proposed as the main adaptation mechanisms for few-shot learning.
The main idea is to teach a deep network to use standard machine-learning tools, such as
ridge regression, as part of its internal model, enabling it to adapt to novel data quickly [38].
The authors of [39] proposed an algorithm for meta-learning that is model-agnostic. It is
compatible with any model trained with gradient descent. In the approach, the parameters
of the model are explicitly trained such that a small number of gradient steps with a small
amount of training data from a new task will produce good generalization performance
on that task. The authors of [40] proposed extending an object recognition system with an
attention-based few-shot classification weight generator and redesigning the classifier of
a ConvNet model as the cosine similarity function between feature representations and
classification weight vectors. By assimilating generic message-passing inference algorithms
with neural-network counterparts, the authors of [41] defined a Graph Neural Network
architecture that generalizes several of the recently proposed few-shot learning models.
The authors of [42] learned a data-dependent latent generative representation of model
parameters and performed gradient-based meta-learning in this low-dimensional latent
space. Latent embedding optimization (LEO) decouples the gradient-based adaptation
procedure from the underlying high-dimensional space of model parameters.
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In this paper, based on the GNN model, we propose a one-step memory-constraint net-
work, and the network structure is shown in Figure 1. There are two main research points:

Electronics 2023, 12, x FOR PEER REVIEW 4 of 21 
 

 

the authors of [41] defined a Graph Neural Network architecture that generalizes several 
of the recently proposed few-shot learning models. The authors of [42] learned a data-
dependent latent generative representation of model parameters and performed gradient-
based meta-learning in this low-dimensional latent space. Latent embedding optimization 
(LEO) decouples the gradient-based adaptation procedure from the underlying high-di-
mensional space of model parameters. 

In this paper, based on the GNN model, we propose a one-step memory-constraint 
network, and the network structure is shown in Figure 1. There are two main research 
points: 

(1) According to the correlation characteristics of edges and nodes of graph structure, 
this paper constructs a graph structure specifically for the characteristics of edge weight: 
edge-weight one-step memory-constraint network ESMC, adding the implicit distribution 
law of edge-weight data into the update of edge nodes. In the network, instance-level fea-
tures and distribution-level features are learned at the same time to use the feature data 
from a more comprehensive perspective while enriching the feature data. 

(2) from the angle of improving the feature extraction effect, through the use of the 
attention mechanism for the initial node-feature extraction module channel and weight 
learning on the space, let the network focus on more meaningful channel and image space 
location. At the same time, this method improves the model for different task sample-
category transformation generalization abilities. 

 
Figure 1. Schematic diagram of ESMC. 

3. Edge-Weight Single-Step Memory-Constraint Network (ESMC) 
3.1. N-Way K-Shot Mode 

The N-way k-shot problem is a classification problem that often occurs in the field of 
few-shot and meta-learning, where n is the number of categories sampled, and K is the 
number of samples randomly sampled in each category. In the face of few-shot classifica-
tion, we borrow other existing rich label datasets to help with classification. In the base 
class, we continuously construct small classification tasks through random sampling of 
rich label datasets and overlay training to realize the generalization of the model [43,44]. 
In the novel class, we realize the real few-shot classification, learn in the same mode before 
and after, and realize the subsequent classification in the novel class through continuous 
learning in the constructed classification task. In one task, after sampling from the novel 
class, a novel support set ( nS ) and novel query set ( nQ ) are formed. In the base class, a 

base support set ( bS ) and base query set ( bQ ) are also constructed with the same number 
of samples. In the whole task, the key to determining N and K is to look at the sampling 
situation in the meta-testing stage. Therefore, to determine the number of N and K, we 
need to judge by the sampling situation in the meta-testing stage. Generally, the value is 
determined according to the data distribution of the support set part. Meta-testing and 

Figure 1. Schematic diagram of ESMC.

(1) According to the correlation characteristics of edges and nodes of graph structure,
this paper constructs a graph structure specifically for the characteristics of edge weight:
edge-weight one-step memory-constraint network ESMC, adding the implicit distribution
law of edge-weight data into the update of edge nodes. In the network, instance-level
features and distribution-level features are learned at the same time to use the feature data
from a more comprehensive perspective while enriching the feature data.

(2) from the angle of improving the feature extraction effect, through the use of the
attention mechanism for the initial node-feature extraction module channel and weight
learning on the space, let the network focus on more meaningful channel and image space
location. At the same time, this method improves the model for different task sample-
category transformation generalization abilities.

3. Edge-Weight Single-Step Memory-Constraint Network (ESMC)
3.1. N-Way K-Shot Mode

The N-way k-shot problem is a classification problem that often occurs in the field of
few-shot and meta-learning, where n is the number of categories sampled, and K is the
number of samples randomly sampled in each category. In the face of few-shot classification,
we borrow other existing rich label datasets to help with classification. In the base class, we
continuously construct small classification tasks through random sampling of rich label
datasets and overlay training to realize the generalization of the model [43,44]. In the novel
class, we realize the real few-shot classification, learn in the same mode before and after,
and realize the subsequent classification in the novel class through continuous learning
in the constructed classification task. In one task, after sampling from the novel class,
a novel support set (Sn) and novel query set (Qn) are formed. In the base class, a base
support set (Sb) and base query set (Qb) are also constructed with the same number of
samples. In the whole task, the key to determining N and K is to look at the sampling
situation in the meta-testing stage. Therefore, to determine the number of N and K, we
need to judge by the sampling situation in the meta-testing stage. Generally, the value
is determined according to the data distribution of the support set part. Meta-testing
and meta-training always maintain the same sampling method and are similar in the
construction of classification tasks. When comparing the accuracy, various experiments in
the field of few-shot classification often use 5-way–1-shot and 5-way–5-shot to train, test,
compare, and analyze the accuracy of these two models [45].

3.2. Graph Neural Network

As shown in Figure 2, an ESMC flow diagram is mainly divided into four parts: Zone
I based on node features graph structure, Zone II based on edge-weight data, Zone I to II
transition module (mosaic of Zone I and II edge-weight features and node update of Zone
II) and Zone II to I transition module (mainly realizing the fusion of Zone II edge and Zone
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I node features). In order to simplify the expression of the network process, this section
mainly takes the support set samples in 5-way–1-shot as an example, and the samples in
the query set section also use the same calculation.
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3.2.1. Edge Initialization and Update of the Graph Structure in Zone I

In Figure 2, Zone I is the graph structure of the EGNN network based on node features.
A general GNN is a graph directly connecting all nodes from the support set to the query
set. Nodes classify the query set’s samples by using the embedding vector and the single-
heat encoding label representation and by iteratively updating the node features through
neighbor aggregation. Considering that the method of explicit edge annotation is to assign
the initial edge weight to the edges directly, this practice also combines representation
learning and measurement learning, which can enable the information between nodes and
edges to be fully utilized.

The initial edge weights are set as follows:

yij =

{
1, i f yi = yj
0, otherwise.

i, j ≤ N

(I)e0
ij =


[1||0], i f yij = 1
[0||1], i f yij = 0

[0.5||0.5], otherwise.
i, j ≤ N

(1)

where i, j is the image sample mark of Zone I, N is the total number of samples of a task,
and yi, yj is the label of the real category of the sample—if 1, it is similar; if 0, it is alien.
Set the initial edge (I)e0

ij weight of Zone I according to the judgment result of yij. (I)e0
ij

is composed [internal similarity || phase difference between classes]. For the unknown
category samples, the initial value is 0.5, and the other value is 0 or 1.
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The Zone I edge-weight update, as shown in Figure 3, is as follows. First, the feature
node Iv l

1 is calculated by its other adjacent nodes Iv l
2, Iv l

3, Iv l
4, Iv l

5, and then the resulting
vector is sent into MLP3. MLP3 is mainly composed of dimension reduction, convolution,
BN, LeakyReLU, and Dropout operations. After a series of similarity calculations, the
current layer l (l ∈ [1, 3]) gets one-dimensional similarity calculation results multiplied by
the l − 1 layer edge weight to update the edge weight.
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The general formula for weight updates in this phase is as follows:

Ie l
ij1 =

(I) f l
e(

Iv l
i ,

Iv l
j; θl

e)
Ie l−1

ij1

∑k
(I) f l

e(
Iv l

i ,
Iv l

k; θl
e)

Ie l−1
ik1 /(∑k

Ie l−1
ik1 )

,

Ie l
ij2 =

(1− (I) f l
e(

Iv l
i ,

Iv l
j; θl

e))
Ie l−1

ij2

∑k (1− I f l
e(

Iv l
i ,

Iv l
k; θl

e))
Ie l−1

ik2 /(∑k
Ie l−1

ik1 )
,

Ie l
ij =

Ie l
ijd/‖Ie l

ijd‖1

(2)

where (I) f l
e is the edge-weight update similarity calculation function, Iv i, Iv j is the Zone

I node, θl
e is the set of parameters, k is all node marks, k ∈ [0, N], Ie l

ij2 and Ie l
ij1 are

the updated edge weights, representing the intra-class similarity and inter-class phase
specificity, respectively, d are 1, 2, generally, the sum is set to 1.

3.2.2. Node Initialization and Update of the Graph Structure in Zone I

In contrast to the custom method for calculating the initial edge weight in Zone I, the
initialized node features of Zone I are obtained through model learning in the network
with an embedding layer especially used to extract the initial node features. The updating
of the node features in the graph structure is different from its initial node features. The
two parts exist as mutually independent modules. The updated schematic diagram of the
Zone I node is shown in a diagram structure in Figure 4. The main operation mode of the
update of Iv l−1

1 is actually the same as the module operation obtained by v∗ l
1 in Figure 2.

First, it is necessary to multiply and sum Iv l−1
1 with the edge weight Ie l−1

12 , Ie l−1
13 , Ie l−1

14 , Ie l−1
15

connected to this node, then perform the splicing operation, and finally enter MLP2. The
main operations implemented in MLP2 are convolution, BN, LeakyReLU, and Dropout,
thus obtaining the new node feature Iv l

1 of l layer in Zone I.
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The general formula for the initial node update is as follows:

v0
i = (I) f emb(xi; θemb)

Iv l
i =

(I) f l
v([∑

j

Ie l−1
ij1

Iv l−1
j ||∑

j

Ie l−1
ij2

Iv l−1
j ]; θl

v)
(3)

where (I) f emb is the convolutional mapping function, θemb is the set of parameters, (I) f l
v is

the l layer node transmission network. Iv l
i is the characteristic of the i sample of the l layer,

v0
i is the initial node feature, and xi is the i sample.

3.2.3. Edge Initialization of the Edge Weights Structure in Zone II

When l = 1, Zone I graph networks v0
i and e0

ij are updated, if, according to the previous
way of doing 2–3 layers of updating, the network is still mainly updated node features,
and ignoring the important implicit information in the data-distribution level. In particular,
the data distribution of Ie l

ij at the edge of Zone I implies that information also represents a

“special” multidimensional feature composed of Ie l
ij. This abstract feature comes from the

intra-class similarity and inter-class dissimilarity between the sample image features.
Therefore, to better combine node features representing the sample instances with

edge features representing the sample distribution, a one-step memory-constraint network
builds a graph structure based on the characteristics of the edge-weight distribution. In
this process, Zone II also adopts the same initial edge-weight setting rules as Zone I. First,
it is necessary to judge the same class of the sample. This part is mainly based on the
edge-weight distribution, so it is necessary to find the corresponding nodes according to
the current edge-weight characteristics and then set the initial edge label according to the
judgment results.

The initial edge weights used in Zone II are set as follows:

ymn =

{
1, i f ym = yn
0, otherwise.

m, n ≤ N

(I I)e0
mn =


0 i f ym 6= yn,
1 i f ym = yn,

0.5 otherwise.
m, n ≤ N

(4)

where m, n is the sample mark of Zone II. ym, yn is the real class label of the node corre-
sponding to the multidimensional edge-weight feature, (I I)e0

mn is the initial edge label, and
N is the total number of samples for a task.

3.2.4. Node Update of the Edge-Weight Implicit Distribution Graph Structure in Zone II

When l > 0, as shown in Figure 2, by stitching the edge data Ie l
12, Ie l

13, Ie l
14, Ie l

15 of Zone
I and the edge data I Ie l−1

12 , I Ie l−1
13 , I Ie l−1

14 , I Ie l−1
15 of l − 1 layer in Zone II, to structure a vector

of 8d, the number of channels remains unchanged, the feature dimension increases, and it
is a one-way feature fusion, which is the so-called single step.

This part of the graph structure is always splicing I Ie l−1
12 , I Ie l−1

13 , I Ie l−1
14 , I Ie l−1

15 of the
Zone II l − 1 layer to retain the previous edge-weight data-distribution characteristics
and constantly remembers the upper edge-weight information in one way, which is a
memory constraint.

Then, after MLP1, this part is mainly operated as FC and LeakyReLU to fuse the
feature vector dimension reduction into 4d size and to increase the data nonlinearity so
as to restrain the formation of a new feature information and then as the node of the new
Zone II graph structure. Its node update formula is as follows:

I Iv l
m = (I I) f emb([

I Ie l
ij

∣∣∣∣∣∣I Ie l−1
mn ]; ϕemb) (5)
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where (I I) f emb is the mapping function of the obtained Zone II nodes. ϕemb is a set of
parameters for a node update network. I Iv l

m is the m node feature of l layer, where || is
the concat operation.

3.2.5. Edge Update of the Edge-Weight Implied Distribution Graph Structure Zone II

The update of the edge weights in the Zone II graph structure is shown in Figure 5.
First, it is necessary to calculate the L2 distance between the I Iv l

1 of the l layer and the
other nodes I Iv l

2, I Iv l
3, I Iv l

4, I Iv l
5 in Zone II and then to normalize the resulting similarity

measure result between 0 and 1 through the Sigmoid function to get the final edge-weight
update result.
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When l > 0, to reduce the risk of overfitting the few-shot, a relatively simple method
is adopted to calculate the edge weight of the Zone II graph structure. This paper mainly
uses L2 distance. The smaller, the higher the similarity, and the larger the distance, the
lower the similarity. Its general update formula is as follows:

I Ie l
mn = (I I) f l

e((
I Iv l

m − I Iv l
n)

2
; ϕl

e) (6)

Among them, I Ie l
mn is the edge weight between m and n node nodes in the l layer, (I I) f l

e
is the l layer edge-weight update similarity calculation function, ϕl

e is the set of parameters,
I Iv l

m is the m node feature of the l layer, and I Iv l
n is the n node feature in the l layer. This

I Ie l
mn is not the final result and also requires normalization I Ie l

mn in practical application.

3.2.6. Feature Fusion Update of Zone II and Zone I

The transition from Zone II to Zone I, as shown in Figure 2, better integrates the node
features of the junction between Zone I and Zone II edge features, i.e., integrates the result-
ing edge-weight hidden features into the node features. The updated I Ie l

12, I Ie l
13, I Ie l

14, I Ie l
15

in Zone II requires feature mapping through function f l
v, and considers the intra-node class

similarity and phase specificity between classes. Then, through MLP2, this part is mainly
convolution, BN, LeakyReLU, and Dropout. This enables the update Iv l

1 node in l of the
current Zone I layer. This section updates the formula group as follows:

v∗ l
i = f l

v∗([∑
i

I Ie l
mn

Iv l
i ||∑

i
∑ 1− I Ie l

mn) · Iv l
i ]; θl

v∗)

Iv l
i = v∗ l

i

(7)

Among them, m, n, i ≤ N, f l
v∗ is the node similarity calculation function of the l layer

from Zone II to Zone I, θl
v∗ is the set of parameters, v∗li is the result of the fusion of the

characteristics of Zone II and Zone I of the current layer l, and Iv l
i is the feature vector of

the i node in Zone I.
Through the introduction of the above module process, we can find that the update

function and Formula (7) in many places are the same, but there are different details. The
difference is Ie l

ij, which is used in Formula (3) for the Zone I edge-weight features. Each
edge represents the similarity between instances (points), namely the similarity between
the sample nodes. The edge-weight feature I Ie l

mn of Zone II is used in Equation (7). After
the Euclidean distance calculation and normalization, each edge represents the similarity
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between the distributions (edges), which is the implied distribution feature of the edge-
weight data. Thus, after a round of learning of all the data, the edge nodes of Zone I and II
are updated, the graph structure of the two parts is complete, and the operation of the next
layer begins.

3.2.7. Loss Function

In the one-step memory-constraint network structure, there are three layers of loop
updates that are set. l = [1, 3] when l = 0 is the initialization layer. As shown in Figure 6
below, in one loop, the edge-weight prediction value for both Edge 1 and Edge 2 will
respectively be obtained in Zones I to II, and the second dimension of each vector is 3
because the dimension represents the number of loop layers of the graph network. Each
layer gets two edge-weight prediction results. When calculating the accuracy, the last layer
of edge-weight update value in Zone I is used.
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In calculating the loss with BCE, the prediction results for each layer and each region
are adopted to make the optimization effect more accurate. The setting formulas and
parameters of Zone I and II are similar, as follows:

(I)L = 0.5 · Ll=1
BCE(pr_e1, target) + 0.5 · Ll=2

BCE(pr_e1, target) + Ll=3
BCE(pr_e1, target) (8)

(I I)L = 0.5 · Ll=1
BCE(pr_e2, target) + 0.5 · Ll=2

BCE(pr_e2, target) + Ll=3
BCE(pr_e2, target) (9)

where pr_e1 and pr_e2 is the edge-weight prediction result of the two Zones; (I)L is the
loss of Zone I, and (I I)L is the loss of Zone II. In a three-layer cycle, the loss weights are 0.5,
0.5, and 1.

The first two layers are mainly used as auxiliary learning layers, and the last layer is
used as the most important layer for accuracy calculation, so the weight proportion is the
largest. Therefore, the loss calculation formula of the one-step memory-constraint network,
which ultimately needs to conduct backpropagation, is as follows:

Lall =
(I)L + 0.1(I I)L (10)

3.3. Feature Extraction of the Initialized Nodes Based on Attention

The ESMC mainly explores hidden feature information to realize new distribution-
level feature learning. Every time random sampling constitutes a classification task, the
first work to be done is the feature extraction of the image samples, i.e., initial node-
feature extraction [46]. If initial feature extraction is not good enough, this is influential
for all subsequent updates. This subsection describes the improvement of the attention
mechanism on the initial feature extraction effect.

Figure 7 is the overall framework diagram of the convolutional block attention mecha-
nism. The general use order is to first use the channel attention to input the feature map
obtained from the channel attention module into the spatial attention module so as to
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gradually realize the feature attention on the channel and the image space. This process
corresponds to the model in adaptively adjusting the local attention of the image. The
CBAM is a lightweight and easily integrated module that can be used in many convolu-
tional networks [47], along with end-to-end training. Its two-part attention module can be
used for plug-and-play and can also be used selectively, easily, and simply when integrated
into the existing network architecture.
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3.3.1. Initialized Node-Feature Extraction Based on Channel Attention

In the channel attention module, as shown in Figure 8, in the process of image ex-
traction, multiple channels are often used to obtain features in different situations. Model
learning assigns different weights to different channels to extract useful features so as to
obtain meaningful sample features based on the channel [48]. In this attention module,
global average pooling and global maximum pooling are only used to achieve attention,
summarizing the features of the channel.
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As shown in the figure, the operation in the channel attention module first passes
the input feature map F through global max pooling and global average pooling based
on height and width, then passes through MLP operation, obtains new features through
convolution, dimensionality reduction, etc., adds the output features element by element at
the corresponding position, and then gets the final feature map under the channel attention
mechanism through Sigmoid activation.

Subsequently, we need to integrate the feature map and the original input feature map
and multiply element by element at the corresponding positions so as to get the subsequent
input feature map into the spatial attention module. The calculation formula is as follows:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ(W1(W0(Fc
avg)) + W1(W0(Fc

max)))
(11)

where W0 ∈ RC/r×C, W1 ∈ RC×C/r, σ is the Sigmoid operation, r is the reduction rate, W0
followed by the ReLU nonlinear activation.

3.3.2. Initialized Node-Feature Extraction Based on Spatial Attention

The spatial attention module is slightly different from the channel attention module in
the whole mind. As can be seen from the name, one focuses on the channel, and the other
focuses on the space. Channel attention is based on the weight obtained on the channel
dimension, while spatial attention is based on the spatial dimension obtained from the
characterization of the features of various parts of an image, as shown in Figure 9, which is
the framework diagram of the spatial attention module.
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The function of the spatial attention module can be clearly seen in Figure 9. It is based
on the maximum pooling and average pooling of one channel dimension, and then the
channel descriptions of the two pooling operations are fused through convolution [49].
Then, through a 7× 7 further convolution layer, using the activation function Sigmoid,
the feature graph of that phase is multiplied by the original feature graph to get the new
feature graph. Generally, the input of the spatial attention module is the output of the
channel attention module, but a feature F with H ×W × C can also be given according
to the different embedding methods. After obtaining the weight coefficient Ms(F) of the
image, the output can be obtained by multiplying the output with the original image. The
calculation principle is shown in Formula (12).

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)]))

= σ( f 7×7([Fs
avg; Fs

max]))
(12)

where σ is the Sigmoid nonlinear activation operation, 7× 7 represents the size of the
convolutional kernel. The convolution kernel of 7× 7 is better than that of 3× 3.

In actual use, CBAM integration into the network has a variety of methods. The most
common is Conv Block. We can also not change the network structure; it is only added in
the first layer and the last layer. At the same time, we can also use channel attention and
spatial attention separately. Different integration strategies will generate different effects.

4. Experimental Results and Analysis

Relevant experiments were performed on the miniImageNet dataset. Firstly, the
relevant configuration parameters are introduced. On the basis of ESMC, the influence
of 5-way 1-shot and 5-way–5-shot was analyzed, and relevant discussion and analysis
was conducted.

4.1. Parameters Setting

Datasets: MiniImageNet [17] is the standard dataset in the few-shot field, containing
100 categories, including 600 samples and 600,000 color pictures. Each picture specification
is 84× 84, the picture is a single label, and the target occupies a large zone in the whole
image. There is no need for a preprocessing operation. The ratio of the training set to the
prediction set is 8:2. In the experiment reported in this section, a set of evaluation criteria is
provided for this dataset, namely average accuracy (mean acc), on which it is trained and
tested. The example images of the dataset are shown in Figure 10.

Training: There are two model training modes: 5-way 1-shot and 5-way 5-shot. Sam-
ples in each task were sampled randomly. The model used the Adam method to optimize
the network parameters. The batch size was set to 40. The learning rate was set to expo-
nential decay. The original learning rate per 15,000 generations was set to 0.99 times. The
initialized learning rate was set to 0.001. We stopped the training of the entire dataset at
100,000 generations (Epoch). To prevent the model from overfitting, we set the random
deactivation rate (Dropout) to 0.1. A regularization term with a weight decay rate (Weight
decay) of 1 × 10−6 was also set.



Electronics 2023, 12, 4956 12 of 20

Electronics 2023, 12, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 9. Spatial attention in convolutional block attention module. 

The function of the spatial attention module can be clearly seen in Figure 9. It is based 
on the maximum pooling and average pooling of one channel dimension, and then the 
channel descriptions of the two pooling operations are fused through convolution [49]. 
Then, through a 7 7×  further convolution layer, using the activation function Sigmoid, 
the feature graph of that phase is multiplied by the original feature graph to get the new 
feature graph. Generally, the input of the spatial attention module is the output of the 
channel attention module, but a feature F  with H W C× ×  can also be given according 
to the different embedding methods. After obtaining the weight coefficient M (F)s  of the 
image, the output can be obtained by multiplying the output with the original image. The 
calculation principle is shown in Formula (12). 

7 7

7 7
max

M (F) ( ([ (F); (F)]))
( ([F ;F ]))

s
s s
avg

f AvgPool MaxPool
f

σ
σ

×

×

=

=
 (12)

where σ  is the Sigmoid nonlinear activation operation, 7 7×  represents the size of the 
convolutional kernel. The convolution kernel of 7 7×  is better than that of 3 3× . 

In actual use, CBAM integration into the network has a variety of methods. The most 
common is Conv Block. We can also not change the network structure; it is only added in 
the first layer and the last layer. At the same time, we can also use channel attention and 
spatial attention separately. Different integration strategies will generate different effects. 

4. Experimental Results and Analysis 
Relevant experiments were performed on the miniImageNet dataset. Firstly, the rel-

evant configuration parameters are introduced. On the basis of ESMC, the influence of 5-
way 1-shot and 5-way–5-shot was analyzed, and relevant discussion and analysis was 
conducted. 

4.1. Parameters Setting 
Datasets: MiniImageNet [17] is the standard dataset in the few-shot field, containing 

100 categories, including 600 samples and 600,000 color pictures. Each picture specifica-
tion is 84 84× , the picture is a single label, and the target occupies a large zone in the 
whole image. There is no need for a preprocessing operation. The ratio of the training set 
to the prediction set is 8:2. In the experiment reported in this section, a set of evaluation 
criteria is provided for this dataset, namely average accuracy (mean acc), on which it is 
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4.2. Experimental Results
4.2.1. Impact of ESMC on Classification Performance

The processes and the setting of the losses of ESMC are shown in Figure 2. During the
transition from Zone I to Zone II, the feature-splicing part always adopts the Zone II graph
edge weight of the l − 1 layer. Moreover, this practice of increasing feature richness is very
similar to memorizing data information in the upper layer. In contrast to bidirectional
LSTM and forward and reverse acquisition of bidirectional features, the memory of ESMC
belongs to the l − 1 layer and to the l layer and one-way memory, which is also the reason
it is called single-step. In addition, this memory-splicing method enlarges the feature
information of the edge-weight distribution level of Zone II so that the network can take
into account the data information of Zone II when learning the characteristics of Zone I,
thus realizing the so-called memory-constraint network.

The experiment in this paper is currently based on two modes, 5-way 1-shot and
5-way 5-shot. Since the samples in the dataset are pickel files and multiple coded data after
reading, the classification results of images can not be directly visualized, so the accuracy
of the experimental results is expressed by mean acc. Moreover, the few-shot classification
network is different from the general convolutional neural network. Its training and
testing methods were introduced in the second section, and the sample categories of
training and testing are completely disjointed. After adding the edge-weight one-step
memory-constraint module, the average accuracy results obtained by both modes were
improved. As shown in the 5-way 1-shot mode in Table 1, our method achieves a relatively
good effect, which is higher than the ESNN [11] methods, MatchingNet [17], wDAE [20],
RelationNet [22], Meta-Transfer [24], TPN [36], R2D2 [38], MAML [39], Dynamic [40],
GNN [41], Global [43], CloserLook [50], respectively. After adding the edge-weight feature
measure, EGNN adds more abundant feature information on the basis of the original
network. There are also the characteristics of implicit edge-weight distribution in Zone
II. So, from a cardinal point of view, ESMC does a good job of helping graph neural
networks learn more data. In the 5-way–5-shot mode, the proposed ESMC makes the
feature information rich and makes full use of the correlation of only samples. At the same
time, the setting rules of initial edge weights are closer to the real category of samples, and
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the consideration of network details is more careful. Thus, it also improves the effect of
final classification by at least 1.16% compared with other mainstream models.

Table 1. The influence of ESMC on classification performance.

Method Backbone 5 Way-1 Shot (%) 5 Way-5 Shot (%)

MatchingNet ConvNet 43.56 ± 0.84 55.31 ± 0.73
ProtoNet ConvNet 49.42 ± 0.86 68.20 ± 0.54

RelationNet ConvNet 50.44 ± 0.82 65.32 ± 0.70
R2D2 ConvNet 51.20 ± 0.78 68.20 ± 0.61

MAML ConvNet 48.70 ± 1.84 63.11 ± 0.92
Dynamic ConvNet 56.20 ± 0.86 71.94 ± 0.62

GNN ConvNet 50.33 ± 0.36 66.41 ± 0.63
TPN ConvNet 55.51 ± 0.93 69.86 ± 0.78

Global ConvNet 53.21 ± 0.89 72.34 ± 0.74
wDAE WRN 61.07 ± 0.15 76.75 ± 0.11

CloserLook Resnet18 51.75 ± 0.83 74.59 ± 0.64
Meta-Transfer ResNet12 61.20 ± 1.8 75.53 ± 0.80

EGNN ConvNet 59.14 ± 0.71 76.37 ± 0.60
ESMC(ours) ConvNet 65.97 ± 0.69 77.46 ± 0.44

The first reason for this is that the EGNN itself does not make rich use of the feature
information of the constructed graph network when it processes a small amount of data.
Therefore, the 5-way 1-shot experiment resulting in the EGNN network is not as accurate
as other experiments in the same period; secondly, the ESMC causes the features of the
data-distribution level to be learned continuously. For each task alone, l = [1, 3], each batch
size is 40 for 100,000 generations, which is enough to accumulate the huge training amount
and enrich the self-learning content, thus achieving a better classification effect.

For the 5-way 5-shot model, accuracy was also improved by 1.16%. The index im-
provement is not as large as the 5-way 1-shot model, probably because, first, in a task, the
sample size of the 5-way–5-shot model is three times that of the 5-way–1-shot, so the added
edge-weight distribution feature information can only be partially added to the original
sufficient information, so the effect may not be as obvious as the 5-way–1-shot model. For
the newly improved network, to more intuitively observe the clustering effect of nodes,
we visualized the node features of each layer, as shown in Figure 11, showing the effect
of the TSNE visualization of node features in a 5-way–5-shot model, mainly to realize the
high-dimensional clustering of node features in a more intuitive way compared to the
abstract multidimensional features.

In the experiment, the confusion value is 20, the order from top to bottom in the
graph is l = 1, l = 2, l = 3, from left to right is EGNN, and in the left-to-right single-step
memory-constraint network (ESMC), the triangle represents the sample of query set, and
the circle represents the sample of suppport set.

From the detailed analysis of the distribution of the scatter plot, we can find that EGNN
also shows better results in the clustering of sample features. As with the edge-weight
one-step memory-constraint network, when l = 1, there are some sample distribution
errors, but the EGNN is still confused at l = 2 and l = 3, and all the scatter points do
not achieve the optimal clustering effect. In fact, in the state where the node features are
constantly updated, the best result we expect is to ensure that node features obtained after
the update of each layer can become more and more obvious and the obtained clustering
effect is getting better and better, i.e., various kinds of samples can cluster more obviously
and do not interfere with each other.

Through alignment analysis, the edge-weight one-step memory-constraint network
outperforms the EGNN network in the final performance. In the graph with layer l = 2,
l = 3, the sample clustering division is obvious, and there is no special error scatter, which
is closer to the ideal distribution state. Therefore, we can also verify that the improved
ESMC has a relatively good node-feature extraction ability, and the performance of node
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aggregation can also reflect that the interdependent edge-weight features should also have
a good extraction effect.
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” represents the samples of suppport set. Different colors represent different
categories. The samples in the red circle are the samples that were shifted during clustering.

After the visualization of node features, to more intuitively show the change of edge
weight, the ESMC edge-weight features are also visualized. Unlike the high-dimensional
features of nodes, edge weight is a kind of feature vector similar to the correlation matrix,
which is a two-dimensional feature.

In the experiment, the edge-weight view under the real label, the initialized edge-
weight view, and the l = 1, l = 2, l = 3 layer of the graph network are given. By converting
the edge-weight value into color blocks, it is clear how the evolution trend of the whole
color block is constantly updated by edge weights gradually close to the real label.

In Figure 12, the deepest color block is eij = 1, which means that the probability that
the two samples i and j has to belong to the same class is 1, and the white color block
is eij = 0, indicating that the two samples i and j cannot belong to the same class as the
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two samples. From deep to shallow represents a decrease in correlation between samples.
Figure 12 shows the visualization results of the real label features connecting the edge
weights between the samples in the few-shot five-classification task 5-way 1-shot. Until the
last layer of the edge-weight feature visualization (Figure 13d), its color block distribution
is increasingly similar to the edge-weight real label visualization diagram. In this part of
the experiment, we used the experimental results under the 5-way–1-shot model. The first
5 rows are the association degree of support set samples with other samples, and the last
5 rows are the correlation degree of query set samples with other samples.

Electronics 2023, 12, x FOR PEER REVIEW 16 of 21 
 

 

In the experiment, the edge-weight view under the real label, the initialized edge-
weight view, and the 1l = , 2l = , 3l =  layer of the graph network are given. By con-
verting the edge-weight value into color blocks, it is clear how the evolution trend of the 
whole color block is constantly updated by edge weights gradually close to the real label. 

In Figure 12, the deepest color block is ije  = 1, which means that the probability that 
the two samples i  and j  has to belong to the same class is 1, and the white color block 

is 0ije = , indicating that the two samples i  and j  cannot belong to the same class as 
the two samples. From deep to shallow represents a decrease in correlation between sam-
ples. Figure 12 shows the visualization results of the real label features connecting the 
edge weights between the samples in the few-shot five-classification task 5-way 1-shot. 
Until the last layer of the edge-weight feature visualization (Figure 13d), its color block 
distribution is increasingly similar to the edge-weight real label visualization diagram. In 
this part of the experiment, we used the experimental results under the 5-way–1-shot 
model. The first 5 rows are the association degree of support set samples with other sam-
ples, and the last 5 rows are the correlation degree of query set samples with other sam-
ples. 

 
Figure 12. ESMC visualization of edge-weight real label features. 

  
(a) (b) 

Figure 12. ESMC visualization of edge-weight real label features.

Ideally, we want to make the edge-weight visual color block of the l = 3 layer similar
to the real label map, i.e., the diagonal is all dark, and the other parts are all white. The
above images clearly show the representation effect of the edge weights after constant
updates. Although there are still less-than-ideal color blocks in the last visual layer, the
overall color block remains at a good level. The color of the sections is gradually closer
to the label image. Therefore, the above experimental results verify the idea of using the
edge-weight one-step memory-constraint network to add distributed-level edge-weight
data-implicit features to perform GNN edge-node updates more comprehensively.
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4.2.2. Impact of Initialization Feature Updates on Classification Performance

The principle of the CBAM mechanism of attention is mainly divided into two parts,
namely CA (channel attention) and SA (spatial attention). The two parts of the module
have their respective significance. CA needs more attention on how to get more important
features in the channel, so after the pooling and MLP operation, getting a new channel is
more helpful to subsequent modules. SA focuses on where the part of a picture is more
important, realizes the feature attention in the image space, improves the attention of the
model, reduces the impact of redundant information, and improves learning efficiency.

The few-shot training mode is relatively special because the two-attention mechanism
in the Conv Block is diversified; the module can add or call alone, and in the attention
mechanism experiment, a variety of cross-experiments mainly give the following several
attention modules. The specific add location is shown in Figure 14.
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1© In order not to change the network structure, CBAM is added after the first Conv
Block and the last Conv Block;

2© The CBAM is added after each Conv Block;
3© The CA is added after each Conv Block;
4© The SA is added after each Conv Block.

The experiment was mainly divided into two parts. The first is for four methods on
EGNN (baseline) ( 1© Do not change the network structure. The CBAM is added after the
first Conv Block and the last Conv Block; 2© The CBAM is added after each Conv Block;
3© CA is added after each Conv Block; 4© SA is added after each Conv Block) for the

experiments; then, the module is added at the same position on the ESMC.
Through the experiment, as shown in Table 2, the experimental results in the 5-way

1-shot model are obtained. From different addition positions, the performance of the
channel attention mechanism is not as good as the spatial attention mechanism. This also
shows that it is more important to focus on the local key parts of the feature image in the
special mode of few-shot training.

Table 2. The impact of feature enhancement on classification performance in 5-way–1-shot mode.

Method Mean Acc
Model

EGNN ESMC

No attention module is added 59.14% 65.97%
1© 59.34% 62.83%
2© 57.50% 66.12%
3© 56.62% 56.40%
4© 59.68% 67.31%

As the data shows in the above table, it can be found that the 5-way–1-shot model
is different under the four methods, and the optimal effect is to add the SA module after
each Conv Block, i.e., Method 4©. Compared with the model without the module, the
index increased by 0.54%. In fact, for the 5-way–1-shot model, the sample size of a single
task is very small, with only 10 pieces. The addition of the SA module helps the network
to acquire more meaningful features in the image under the limited sample size, which
improves the subsequent classification effect. Compared with a small number of samples,
the multi-channel continues to obtain data features that are not rich on the channel itself,
and the effect is naturally not as good as how to obtain important features in a single
image. The experiments in this section also verify the effectiveness and rationality of SA
module addition.

The results of the experiments in 5-way–5-shot mode are shown in Table 3.

Table 3. The impact of feature enhancement on classification performance in 5-way–5-shot mode.

Method Mean Acc
Model

EGNN ESMC

No attention module is added 76.37% 77.46%
1© 76.89% 74.08%
2© 75.28% 74.93%
3© 75.35% 74.89%
4© 77.52% 77.66%

As shown in the table above, EGNN, just like ESMC, achieved optimal results on the
fourth method, with a 1.15% and 0.2% improvement on the model without the attention
module, respectively. Moreover, the final index value of ESMC is higher than that of EGNN,
which once again proves the positive effect of the ESMC on few-shot classification and the
validity and rationality of SA module addition.

In both Tables 2 and 3, Methods 2© and 3© reduce the classification mean acc, which is
not difficult to understand. Because of the special few-shot classification, the data volume
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of a single task is only 30 for even 5-way–5-shot, but the number of channels of the model
reaches 256 at the highest time, which may not be good for a small number of samples in
this case, although if the number of channels increases, we can enrich only the small part of
the feature information. This approach is equivalent to constantly making a thick picture
thinner and thinner when, horizontally, it actually adds much redundant information. The
CA module can only be screened from these graphs that do not provide too much effective
information, and then it will not help the model to improve the classification effect or even
lead to the reverse decline of the index.

5. Conclusions

This paper puts forward new improvement schemes for how to improve the effect
of network feature extraction and how to make full use of sample data characteristics,
ranging from the distribution characteristics and spatial attention of edge-weight data.
In the process of implementation, the graph structure is first constructed according to
the characteristics of the sample image and the initial edge weight, and on this basis, the
graph structure with the characteristics of the edge-weight data as the node is introduced.
We make full use of the sample’s data information from the distribution level. In the
experimental stage, we prove the effectiveness of the ESMC module, visualize the effect,
and prove the advantages of feature extraction based on comparative analysis and trend
evolution; second, based on the structure principle of the CBAM module, the channel
attention and spatial attention are added to obtain more meaningful feature information
from the channel and space to realize the features of the original network model. In
the experimental stage, each method of attention module addition is explored, and the
effectiveness of the spatial attention module on the network is proved.
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