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Abstract: The displaced phase center multiple azimuth beams (DPCMAB) technique can help space-
borne synthetic aperture radar (SAR) systems obtain the high-resolution wide-swath (HRWS) imaging
capacity, and azimuth multichannel reconstruction is usually required due to azimuth non-uniform
sampling. Compared with stationary and moving targets, the range history and azimuth signal
model of the moving target with an acceleration are obviously different. The azimuth multichannel
signal model of an accelerated moving target is established, and the relationship between accelera-
tion and Doppler parameters is analyzed. Furthermore, the impact of the acceleration on azimuth
multichannel reconstruction and imaging results is simulated and analyzed. According to the az-
imuth multichannel signal model, an azimuth multichannel reconstruction approach for accelerated
moving targets is proposed. The key point of the proposed reconstruction approach is the mod-
ified azimuth multichannel matrix, which is related not only to azimuth and slant velocities but
also accelerations. The target’s velocities and accelerations are obtained using multiple Doppler
parameter estimations. Compared with the conventional method of processing the raw data of
accelerated moving targets, this proposed method could distinctly suppress image defocusing and
pairs of false targets. Simulation results on point targets validate the proposed azimuth multichannel
reconstruction approach.

Keywords: spaceborne synthetic aperture radar; displaced phase center multiple azimuth beams;
acceleration; azimuth multichannel reconstruction; Doppler parameters estimation

1. Introduction

High-resolution wide-swath (HRWS) is an irreconcilable contradiction in the tra-
ditional spaceborne synthetic aperture radar (SAR) system [1–4]. Constrained by the
minimum antenna area, spaceborne SAR cannot simultaneously obtain azimuthal high-
resolution and wide-swath [5]. The azimuthal high resolution is determined by the Doppler
bandwidth. To avoid azimuthal Doppler spectrum aliasing it is required to raise the pulse
repetition frequency (PRF), whereas the wide-swath depends on the pulse repetition in-
terval such that the PRF needs to be decreased to prevent range ambiguity. The result
is that the wide-swath and azimuthal high-resolution cannot be obtained together [6].
The displaced phase center multiple azimuth beams (DPCMAB) technique [7] effectively
resolves a conflict between width-swath and resolution. The technique can increase the
sampling rate to several times that of the transmitted pulse while transmitting a lower
pulse repetition frequency, thereby meeting the requirement of high-resolution imaging.

Limited by the geometric relationship of spaceborne SAR imaging and the timing dia-
gram selection of radar signal transmission and reception, the system PRF corresponding to
some wave positions will seriously deviate from the ideal uniform sampling PRF. The result
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is that the equivalent phase center (EPC) of the received signal is unevenly distributed [8].
Direct processing will form strong false targets in azimuth, which will significantly affect
SAR image quality and amplify the ambiguity energy in azimuth [9]. Therefore, azimuth
multichannel reconstruction is performed before image processing to solve the non-uniform
sampling problem [10,11]. For stationary targets, Gerhard Krieger proposed an azimuth
multichannel SAR system spectrum reconstruction filter bank algorithm based on the
generalized sampling theorem [12], which achieves unambiguous reconstruction of the
azimuth spectrum caused by aliasing due to nonuniformity [13]. Yongzhen Guo proposed
an algorithm to eliminate azimuthal signal ambiguity by converting bi-static data into
mono-static data [14]. However, these methods are only applicable to stationary scenes and
cannot effectively reconstruct echo data when moving targets exist. Therefore, imaging
algorithms for moving targets under azimuthal multichannel were investigated. Based on
the beamforming principles, Stefan V. Baumgartner proposed the matched reconstruction
filter bank algorithm (MRFB) and successfully achieved spectrum reconstruction of moving
targets for the first time [15]. Aiming to tackle the problem that moving targets in sea scenes
can lead to false targets in SAR reconstructed images, an AMC-HRWS SAR algorithm for
unblurred imaging of moving targets was proposed in [16] to eliminate the false targets
generated by the range velocity error. However, most of the literature studying moving
targets on the ground and ships at sea usually assumes that targets move at a constant
velocity [17–19]. When monitoring sea and road traffic, it is important to take into account
that moving targets often accelerate.

Conventional moving target imaging methods assume that the target moves in a
uniform linear motion within synthetic aperture time; through estimating the first and
second phases of the echo spectrum, the velocity component of the moving target is inverted
and then refocused [20]. In actual situations, the target trajectory is complex, and ignoring
even small accelerations will cause serious errors when estimating the velocity [21–23].
To systematically and scientifically study the potential effects of acceleration on detection
and focusing, Jayanti Sharma [24] first studied the effect of acceleration on the detection
and estimation velocity of ground-moving targets and found that acceleration seriously
impacts focusing. The quadratic phase error generated by the acceleration of the moving
target will lead the target to defocus, which will seriously impact the accuracy of signal
reconstruction. To reduce the impact of phase error, a moving target imaging method based
on map drift subspace is proposed in [25] to compensate for phase error and improve
signal reconstruction accuracy. For the problem of acceleration estimation, a theory and
method for compensating along-track acceleration were proposed in [26], which improves
the accuracy of acceleration estimation by using the phase derivative in the Doppler
frequency domain. Compared with stationary and moving targets, the range history and
azimuth signals of moving targets with acceleration are significantly different. This paper
establishes a geometric model of accelerated moving targets in azimuth multichannel
SAR and analyzes the relationship between acceleration and Doppler parameters and the
impact of acceleration on the quality of azimuth multichannel reconstruction image. A
multichannel reconstruction method for accelerated moving targets is proposed, which
eliminates the azimuth channel imbalance caused by acceleration by correcting the azimuth
multichannel matrix. A fast estimation and search method for the acceleration velocity of
moving targets in spaceborne azimuth multichannel SAR mode is given.

This paper is organized as follows: The azimuthal multichannel geometric imaging
model for accelerated moving targets is derived and the impact of acceleration on azimuthal
multichannel imaging is analyzed in Section 2. Section 3 proposes an azimuth multichannel
reconstruction method based on the accelerated moving target echo model and introduces
a velocity estimation method. Simulation experiments of point targets are conducted to
verify the effectiveness of the proposed method in Section 4. The conclusions of this paper
are reported in Section 5.
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2. Signal Model
2.1. Geometric Model of Moving Targets

The structure of the spaceborne azimuth multichannel SAR accelerated moving target
imaging geometric model is shown in Figure 1. A motion model is established in three-
dimensional space and decomposes the motion parameters of the moving target into four
components: along-track velocity ux, along-track acceleration ax, slant range velocity uy,
and slant range acceleration ay. Although the difficulty of the problem has increased, it
is more general. The satellite moves along the track at velocity vs. The entire antenna
is divided into n sub-apertures along the azimuthal direction, with the center channel
transmitting the signal and all channels receiving the echo signal. ∆xn is the distance
between the n-th receive channel and the transmit phase center.
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Figure 1. Imaging geometric model of spaceborne SAR accelerated moving target in azimuth multichannel.

Moving targets are different from stationary targets because they have additional
motion relative to the radar platform. From Figure 1, the slant distance RT(t) between the
satellite launch center and the moving target can be expressed as:

RT(t) =

√(
R0 + uyt +

1
2

ayt2
)2

+

(
vst− uxt− 1

2
axt2

)2
(1)

where R0 is the shortest distance from the received echo phase center to the moving target
imaging and t is the azimuth time.

Expanding Equation (1) into a Taylor series, considering the presence of acceleration
and retaining the expanded term of t3, results in the following expression:

RT(t) = R0 + uyt +
1
2

ayt2 +
(vs − ux)

2

2
(

R0 + uyt + 1
2 ayt2

) t2 − ax(vs − ux)

2
(

R0 + uyt + 1
2 ayt2

) t3 (2)
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Similar to (1), when the satellite receives the echo, the slant distance Rn(t) between
the channel and the moving target is obtained, which can be defined as:

Rn(t) =

√(
R0 + uyt +

1
2

ayt2
)2

+

(
vst− uxt− 1

2
axt2 − ∆xn

)2
(3)

Using the Taylor series expansion of (3), the slant range history is written as follows:

Rn(t) = R0 + uyt + 1
2 ayt2 − ∆xn(vs−ux)

R0+vyt+ 1
2 ayt2 t

+ (vs−ux)
2+∆xnax

2(R0+uyt+ 1
2 ayt2)

t2 − ax(vs−ux)

2(R0+uyt+ 1
2 ayt2)

t3 + ∆xn
2

2(R0+uyt+ 1
2 ayt2)

(4)

By combining (2) with (4) we can obtain the following expression:

Rtotal = RT(t) + Rn(t)

= 2R0 +
∆xn

2

2(R0+uyt+ 1
2 ayt2)

+
2uyR0−(vs−ux)∆xn

R0+uyt+ 1
2 ayt2 t

+
2uy

2+2(vs−ux)
2+2ayR0+ax∆xn

2(R0+uyt+ 1
2 ayt2)

t2 +
ayuy−ax(vs−ux)

R0+uyt+ 1
2 ayt2 t3

(5)

Since the synthetic aperture time is R0 � uyt + 1
2 ayt2, the approximated expression in

(5) becomes:

Rtotal = RT(t) + Rn(t)

= 2R0 +
∆xn

2

2R0
+

2uyR0−(vs−ux)∆xn
R0

t

+
2uy

2+2(vs−ux)
2+2ayR0+ax∆xn

2R0
t2 +

ayuy−ax(vs−ux)
R0

t3

(6)

For a moving target under illumination, the baseband radar echo received by the n-th
receiving sub-aperture is formulated as:

sn(τ, t) = A0 ·ωr

{
τ − RT(t)+Rn(t)

c

}
·ωa(t) · exp

{
−j 2π

λ [RT(t) + Rn(t)]
}

· exp
{

jπKr

[
τ − RT(t)+Rn(t)

c

]2
}
· rect

{
τ−[RT(t)+Rn(t)/c]

τp

} (7)

where A0 is a complex constant, c is the light speed, τ is the range time, ωr(·) and ωa(·) rep-
resent the received and transmitted echo pulse envelopes, respectively, λ is the wavelength,
Kr is the transmit pulse repetition frequency, and τp is the transmit pulse duration.

This paper focuses on multichannel reconstruction in azimuth. Then, the signal
component of (7) is provided as follows:

smov,n(t) = exp
{
−j

2π

λ
[RT(t) + Rn(t)]

}
(8)

By substituting (6) into (8), the echo signal after range compression is given as:

smov,n(t) ≈ exp
{
−j 4π

λ R0

}
· exp

(
−j π

λ
∆xn

2

R0

)
· exp

{
−j 2π

λ

[
2uyR0−(vs−ux)∆xn

R0

]
t
}

· exp
{
−j 2π

λ

[
2uy

2+2(vs−ux)
2+2ayR0+ax∆xn

2R0

]
t2
}

· exp
{
−j 2π

λ

[
ayuy−ax(vs−ux)

R0

]
t3
}

(9)
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2.2. Acceleration Impact Analysis

The Doppler center fdc generated by the slant range velocity of the moving target is:

fdc = −
2uy

λ
(10)

The Doppler second-order frequency modulation ka,2 caused by slant range velocity
and slant range acceleration can be written as follows:

ka,2 = − 2
λ

[
2uy

2 + 2(vs − ux)
2 + 2ayR0

R0

]
(11)

The Doppler third-order frequency modulation ka,3 can be expressed as:

ka,3 = − 4
λ

[
ayuy − ax(vs − ux)

R0

]
(12)

Figure 2 illustrates the effect of slant range acceleration on the second-order and higher-
order parameters of the Doppler frequency modulation. Figure 2a shows that Doppler
frequency modulation is very sensitive to slant range acceleration, with the frequency
modulation changing by 100 Hz/s for every 1 m/s2 change in slant range acceleration.
Figure 3 illustrates the impact of slant range velocity on second-order and third-order
Doppler frequency modulation parameters. Figure 3a shows that the slant range velocity
does not change the Doppler frequency modulation under the influence of slant range
acceleration. Comparing Equations (11) and (12), the Doppler third-order frequency has
vs − ux � uy, so the influence of ax is greater than ay. However, compared with the
influence of the second-order frequency modulation parameter ay, the influence of ax can
be ignored.
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2.3. Effect of Acceleration on Imaging Results

To verify the previous analysis, this section uses a conventional multichannel recon-
struction method to simulate point targets with acceleration. The impacts of along-track
acceleration and slant range acceleration on moving target imaging were analyzed, respec-
tively. The simulation parameters used in this research are listed in Table 1.

Table 1. System simulation parameters.

Parameter Value

Satellite velocity 7200 m/s
Carrier frequency 5.6 GHz

Number of sub-apertures 3
Transmitting antenna length 4 m

Receiving antenna length 3 m × 3
Scene center slant distance 600 km

Operated system PRF 1800 Hz
Transmitted pulse width 4 µs

Pulse bandwidth 100 MHz
Sampling frequency 120 MHz

After the conventional multichannel reconstruction approach is processed, the results
of capturing point target images with different moving velocities, as shown in Figures 4
and 5. Figure 4a,b show the interpolated contour plots and the maximum azimuth profile
of a point target with an along-track velocity of 10 m/s and an along-track acceleration of
5 m/s2, which causes image defocus. The amplitude of false targets caused by along-track
acceleration is small or even negligible. Figure 5a,b represent a moving target traveling at a
slant range velocity of 10 m/s and a slant range acceleration of 5 m/s2. There are obvious
false targets in the imaging results. To address this phenomenon, this paper proposes an
azimuthal multichannel reconstruction method.
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Figure 4. Imaging results for a point target moving along track with a velocity of 10 m/s and an
acceleration of 5 m/s2. (a) Contour plots of the point target. (b) Peak profile of azimuth.
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Figure 5. Imaging results for a point target moving at a slant range velocity of 10 m/s and an
acceleration of 5 m/s2 (a) Contour plots of the point target. (b) Peak profile of azimuth.
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3. Azimuth Multichannel Reconstruction
3.1. Moving Target Imaging Method

When processing echo signals, the multichannel reconstruction processing algorithm
only needs to take into account t2 [27], so the expression of Equation (9) can be approxi-
mated as:

smov,n(t) ≈ exp
{
−j 4π

λ R0

}
· exp

(
−j π

λ
∆xn

2

R0

)
· exp

{
−j 2π

λ

[
2uy

2+2(vs−ux)
2+2ayR0+ax∆xn

2R0

]
·
[

t− (vs−ux)∆xn−2uyR0

2uy2+2(vs−ux)
2+2ayR0+ax∆xn

]2
}

· exp

{
j π

λ

[
(vs−ux)

2∆xn
2−4uy(vs−ux)R0∆xn+4uy

2R0
2

R0

(
2uy2+2(vs−ux)

2+2ayR0+ax∆xn

)
]} (13)

The derivation of Equation (13) is in Appendix A. Comparing the azimuth impulse
responses of stationary targets and moving targets, the differences are mainly reflected
in two aspects: time delay ∆tn and phase error ∆ϕn. These differences can be expressed
as follows:

∆tn =
(vs − ux)∆xn − 2uyR0

2uy2 + 2(vs − ux)
2 + 2ayR0 + ax∆xn

(14)

∆ϕn = −π∆xn
2

λR0
+

2π

λ

 (vs − ux)
2∆xn

2 − 4uy(vs − ux)R0∆xn + 4uy
2R0

2

2R0

(
2uy2 + 2(vs − ux)

2 + 2ayR0 + ax∆xn

)
 (15)

As a result, the echo signal within azimuth multichannel is written as:

smov,n(t) = smov(t− ∆tn) · exp(j · ∆ϕn) (16)

with:

smov(t) ≈ exp
{
−j

4π

λ
R0

}
· exp

{
−j

2π

λ

[
2uy

2 + 2(vs − ux)
2 + 2ayR0 + ax∆xn

2R0

]
t2

}
(17)

Equation (15) shows that the slant range acceleration causes different phase errors
in each channel, consequently causing phase imbalance between the channels. Due to
R0 � ∆xn, the influence of the along-track acceleration on the quadratic coefficient is
almost zero, ax has no effect on overall imaging quality. Although ay is relatively small, its
influence on the quadratic term coefficient after multiplying with R0 cannot be ignored.
So the impact of ay is much greater than that of ax. Therefore, the following will mainly
analyze and process the slant range acceleration.

According to Equation (15), the phase error of the n-th channel is described as:

∆ϕn = −π∆xn
2

λR0
+

2π
[
(vs−ux)

2∆xn
2−4uy(vs−ux)R0∆xn+4uy

2R0
2
]

λ(vs−vx)
2

+
ayπ

[
(vs−ux)

2∆xn
2−4uy(vs−ux)R0∆xn+4uy

2R0
2
]

2λ
[
(vs−ux)

2+ayR0

]
·(vs−ux)

2

(18)

The phase error in Equation (18) consists of three terms. The first term is only related
to the geometric relationship of the channel, which is the same as the echo signal from a
stationary target. The second term represents the results of the along-track and slant range
velocity of the target. The third term represents the phase error due to slant range velocity
and slant range acceleration.

Parametric Analysis

Figure 6a shows that the time delay is less sensitive to changes in range acceleration,
since in each channel the time delay is almost constant with increasing acceleration, but
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it increases significantly when the range velocity increases. According to Equation (18),
the slant range velocity and acceleration of the moving target produce different phase
errors for each channel. The variation curve of the phase error with slant range acceleration
of the receiving channel is shown in Figure 6b, where the channel with a slant range
acceleration of 0 m/s is used as a reference. It is obvious that phase error is significantly
affected by changes in acceleration. Each channel has a different slant range velocity,
and the increase in acceleration exacerbates the impact on the channel, resulting in a
phase imbalance between channels. The previous analysis demonstrates that moving
targets between channels are affected by phase errors and will produce false targets; it is
therefore critical to correct the phase error before multichannel imaging in azimuth. Then,
the conventional multichannel imaging method is used to capture the entire scene, and
the moving target is identified based on the focusing condition, false target, and other
information on the focused SAR image. The following are the specific processing steps of
azimuth multichannel reconstruction method for accelerated moving targets.
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3.2. Multichannel Reconstruction Processing

Figure 7 shows the multichannel reconstruction flow chart of the signal.
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First, let Smov,n( fa) represent the equivalent single channel SAR, after pre-filtering and
PRF sampling, while Smov( fa) represents the received signal spectrum of the multichannel
SAR system channel. The signal of each channel is superimposed after passing through
the respective reconstruction filter Pn( fa). Finally, the deconvolve channel signal Smov,n( fa)
is obtained. Based on the previous analysis, to obtain a reconstruction filter for moving
targets and realize effective spectrum reconstruction, the phase term related to the slant
range velocity must be analyzed.

Due to R0 � ∆xn, Equation (13) is approximated as:

smov,n(t) ≈ exp
(
−j 4π

λ R0

)
· exp

{
−j 2π

λ

[
2(vs−ux)

2+2ayR0
2R0

]
·
[

t− (vs−ux)∆xn−2uyR0

2(vs−ux)
2+2ayR0

]2
}

· exp
(
−j π

λ
∆xn

2

R0

)
· exp

{
j π

λ

[
(vs−ux)

2∆xn
2−4uy(vs−ux)R0∆xn+4uy

2R0
2

2R0[vs−ux)2+ayR0]

]} (19)

The connection between an equivalent single-channel signal and the multichannel
signal can be obtained from the echo signal

Smov,n( fa) ≈ Smov( fa) · Hn( fa) (20)

with:

Hn( fa) = exp

{
j π

λ

[
(vs−ux)

2∆xn
2−4uy(vs−ux)R0∆x+4uy

2R0
2

R0

(
2(vs−ux)

2+2ayR0

)
]}

· exp
{
−j2π fa

(vs−ux)∆xn−2uyR0

2(vs−ux)
2+2ayR0

} (21)

where fa is the Doppler frequency, and the prefilter matrix composition H( fa) is defined as:

H( fa) =


H1( fa) · · · HN( fa)

H1( fa + PRF) · · · HN( fa + PRF)
...

. . .
...

H1( fa + (N − 1)PRF) · · · HN( fa + (N − 1)PRF)

 (22)

The relationship between data reconstruction filters P( fa) = (n = 1, · · ·N) and H( fa)
is written as follows:

P( fa) = H−1( fa) =


P11( fa) P12( fa + PRF) · · · P1N [ fa + (N − 1)PRF]
P21( fa) P22( fa + PRF) · · · P1N [ fa + (N − 1)PRF]

...
...

. . .
...

PN1( fa) PN2( fa + PRF) · · · PNN [ fa + (N − 1)PRF]

 (23)

In the matrix, each row corresponds to a reconstruction filter Pn( fa) of each channel,
which Pnj( fa) (j = 1, · · · , N) is composed of N filters. That filter partitions the whole
frequency band [−(N · PRF)/2, (N · PRF)/2] into N sub-bands and the center frequency
of each sub-band is [j− (N + 1)/2] · PRF. Then, combining echoes from all azimuthal
receiving channels, a clear spectrum of imaging for the moving targets can be gained.
Finally, the equivalent single-channel raw data are obtained by inverse azimuth Fast
Fourier transform.

3.3. Velocity Estimation

After azimuth multichannel reconstruction of azimuth multiple beams SAR echo of
the accelerated moving target, the conventional imaging method can be used for focused
imaging. But, from Equation (21), it is evident that the azimuth multichannel reconstruc-
tion approach for accelerated moving targets needs to accurately know the velocity of this
moving target, so it is necessary to estimate this moving target velocity accurately before
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multichannel reconstruction. Conventional SAR velocity estimation methods of moving
targets mainly estimate azimuth velocity and range velocity of moving targets. Existing
velocity estimation methods include the Wigner–Ville Distribution [28], azimuth autofo-
cusing [29], Fractional Fourier transform (FRFT) [30], and other methods. For acceleration
estimation, this paper adopts the method of the combination of STFT and FRFT [31]. The
application of the combined STFT and FRFT algorithm resolves the issue of the STFT direct
estimation’s inaccuracy and difficulty in computing FRFT.

The accurate slant-range velocity uy can be obtained by using fdc when ka,2 is used
to invert azimuth, range velocity, and range acceleration, but three unknown parameters
cannot be estimated based on one parameter. It can be observed through Doppler third-
order frequency modulation that the generation of the cubic term is mainly related to along-
track velocity, along-track acceleration, slant-range velocity, and slant-range acceleration,
so the phase error parameter ∆ϕn,a is introduced here. For the four unknown parameters,
the estimated values can be obtained through four equations.

Based on Equation (18), the acceleration residual phase error due to estimating slant
range velocity is represented as:

∆ϕn,a =
2π

λ

 ay

[
(vs − ux)

2∆xn
2 − 4uy(vs − ux)R0∆xn + 4uy

2R0
2
]

4
[
(vs − ux)

2 + ayR0

]
· (vs − ux)

2

 (24)

This method uses a Short-time Fourier transform to roughly search the Doppler center,
Doppler second-order frequency modulation, Doppler third-order frequency modulation,
and phase error, then uses this result to deduce order p of FRFT. The FRFT search area can
be narrowed by determining the p order search area based on the rough results of STFT.
FRFT of the signal within the designated area is calculated using M as the step size to
generate a two-dimensional energy distribution in the (a, u) plane. Parameter estimation is
achieved by detecting the highest peak (α̂0, û) on the energy plane. By finding the optimal
values of these four parameters, multichannel reconstruction is performed, and the quality
of the reconstruction is evaluated through simulation. If the reconstruction result is not
ideal, it means that the searched parameters are not optimal and the search needs to be
restarted. Through continuous search and reconstruction, until the optimal value of the
parameters is found, multichannel reconstruction is performed.

Using the above relationship, the following moving target parameter estimation
relationship can be obtained:

f̂dc = û csc α̂0 = − 2uy
λ

k̂a,2 = − cot α̂0 = − 2
λ

[
2uy

2+2(vs−ux)
2+2ayR0

R0

]
k̂a,3 = − cot α̂0 = − 4

λ

[
ayuy−ax(vs−ux)

R0

]
∆ϕ̂n,a = arg

[
Fα̂0 ( f̂dc)

Aα̂0 exp(jπ f̂dc
2 cot α̂0)

]
= 2π

λ

{
ay

[
(vs−ux)

2∆xn
2−4uy(vs−ux)R0∆xn+4uy

2R0
2
]

4
[
(vs−ux)

2+ayR0

]
·(vs−ux)

2

} (25)

with
Fa0(u) = Fp[s(t)] =

∫ ∞

−∞
smov,n(t)Ka0(t, u)dt (26)

Aα̂0 =
exp[−jπsgn(sin α0)/4 + jα0/2]

|sin α0|1/2 (27)

where Ka0(t, u) is the kernel function, (α̂0, û) is the location in the FRFT domain where a
maximum of modulus values are located, Fp[·] is the operator symbol of FRFT, α0 = pπ/2,
p is the order of FRFT and could be an arbitrary real number, sgn(·) is the sign function,
and arg(·) is the argument of a complex number.
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The signal-to-clutter-noise ratio (SCNR) is an important indicator for judging the
accuracy of velocity estimation of moving targets, for which two sets of experiments are
designed. One is to estimate the slant range acceleration of moving targets at fixed PRF and
different SCNR. The other estimates the slant range acceleration under the same SCNR and
PRF. In the first set of experiments, the slant range acceleration is set to 5 m/s2. As shown
in Figure 8a, the higher the SCNR, the more accurate the slant range acceleration estimation
is. To obtain the smallest relative estimation error, the SCNR should exceed 20 dB. In the
second set of experiments, as shown in Figure 8b, the SCNR is set to 20 dB, and most of the
deviations in the designed and estimated slant range accelerations are below 3%.
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The introduced fast estimation and search method of moving target velocity was used
to create the specific flow chart shown in Figure 9.
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4. Simulation Experiment

To verify the correctness of the previous signal analysis and the effectiveness of the
proposed multichannel reconstruction method, this section conducts three simulation ex-
periments on multiple-point moving targets. Figure 10 shows that the slant range velocities
of the three-point targets are all 5 m/s. Figure 11 shows the slant range acceleration of
1 m/s2, 3 m/s2, and 5 m/s2 added to P1, P2, and P3 points in Figure 10, respectively.
After the conventional multichannel reconstruction, a point is selected here; take the point
target P2 as an example. Figures 10 and 11 compare the two-dimensional spectrum, point
target focusing result, and the azimuth maximum profile. It can be distinctly seen that the
acceleration makes the moving target produce a serious false target. Figure 12 shows the
imaging results using the method proposed in this paper. Compared with the imaging
results in Figure 11, the method in this paper substantially improves the imaging effect of
accelerating moving targets, and false targets are well suppressed. Meanwhile, to further
analyze the impact of the improved multichannel reconstruction algorithm on the imaging
quality of the point targets the values for resolution (Res), peak-side-lobe ratio (PSLR),
integrated-side-lobe ratio (ISLR), and maximum false target amplitude (MFTA) of each
point target are summarized in Table 2.

In addition, for the completeness of the paper, a simulation experiment with three-
point targets in the same scene was designed; the corresponding geometric relationship of
three-point targets is illustrated in Figure 13. All point targets have different movement
velocities. This provides additional evidence to support the feasibility of the proposed
method. Target P1 has an along-track velocity of 10 m/s and an along-track acceleration of
5 m/s2 (Figure 13). Target P2 has an along-track velocity of 10 m/s and a slant range velocity
of 10 m/s. Target P3 has a slant range velocity of 10 m/s and a slant range acceleration of
5 m/s2. When the conventional azimuth multichannel reconstruction method is used, as
seen in Figure 14a, there is no change at point P1, indicating that along-track acceleration
has no effect on imaging. The point target P3 is significantly out of focus and contains
obvious false targets. After using the proposed azimuth multichannel reconstruction
method the three-point targets can be effectively focused and false targets are obviously
suppressed, as observed in Figure 14b.
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Table 2. Imaging quality indicators of three-point targets.

Method Target Res. (m) Range
PSLR (dB) ISLR (dB) MFTA (dB)

Conventional
P1 2.66 −13.25 −9.96 −28.41
P2 2.67 −13.34 −10.06 −25.04
P3 2.70 −13.46 −10.13 −29.81

Proposed
P1 2.67 −13.29 −10.07 −56.68
P2 2.68 −13.32 −10.14 −59.39
P3 2.69 −13.48 −10.15 −60.63
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5. Conclusions

Acceleration is an important feature of relative motion between a radar and its target.
It can enhance maneuvering, target tracking, and target recognition capabilities, and has
important application prospects in search and large-scale road monitoring. However,
because of the difference in echo signal models between stationary targets and accelerated
moving targets, conventional azimuth multichannel reconstruction algorithms cannot
complete high-quality moving target imaging. The slant range acceleration of the moving
target induces additional phase error, which leads to the phase imbalance of each channel
and makes the target appear as a serious pair of false targets, which will seriously affect the
SAR image interpretation. To solve this problem, an azimuth multichannel imaging method
for accelerated moving targets is proposed. The key to this method is to reconstruct the
Doppler spectrum of the acceleration target by using the improved azimuth multichannel
reconstruction filter bank according to the echo signal model of the acceleration moving
target. Since it is necessary to accurately know the velocity of the moving target before
multichannel reconstruction, a velocity estimation method that combines STFT and FRFT
is introduced, this method first estimates parameters roughly by STFT and then uses
the FRFT method to calculate parameters accurately. Simulation results for point targets
demonstrate the feasibility of introducing an azimuth multichannel reconstruction method
for accelerated moving targets. In the future, research can be conducted on imaging
methods of accelerating moving targets in squint mode.
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Appendix A

When processing echo signals and the multichannel reconstruction processing algo-
rithm only needs to take into account t2 [27], Equation (9) is then written as:

smov,n(t) ≈ exp
{
−j 4π

λ R0

}
· exp

(
−j π

λ
∆xn

2

R0

)
· exp

{
−j 2π

λ

[
2uyR0−(vs−ux)∆xn

R0

]
t
}

· exp
{
−j 2π

λ

[
2uy

2+2(vs−ux)
2+2ayR0+ax∆xn

2R0

]
t2
} (A1)

In order to obtain the time delay ∆tn and phase error ∆ϕn of echo signal smov,n(t), the
following Equation is used:

smov,n(t) = smov(t− ∆tn) · exp(j · ∆ϕn) (A2)



Electronics 2023, 12, 4954 16 of 17

Therefore, Equation (A1) can be written as:

smov,n(t) ≈ exp
{
−j 4π

λ R0

}
· exp

(
−j π

λ
∆xn

2

R0

)
· exp

{
j 2π

λ

[
(vs−ux)∆xn−2uyR0

R0

]
t
}

· exp
{
−j 2π

λ

[
2uy

2+2(vs−ux)
2+2ayR0+ax∆xn

2R0

]
t2
}

· exp

{
−j 2π

λ
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2

2R0

(
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)
]}

· exp

{
j π

λ

[
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2
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(
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2+2ayR0+ax∆xn

)
]}

(A3)

due to

2uy
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2R0
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2
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[
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(A4)

After sorting out Equation (A3), that can be re-expressed as Equation (13):

smov,n(t) ≈ exp
{
−j 4π

λ R0

}
· exp

(
−j π

λ
∆xn

2

R0

)
· exp

{
−j 2π

λ

[
2uy
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2+2ayR0+ax∆xn

2R0

]
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· exp

{
j π

λ

[
(vs−ux)
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]} (A5)
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