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Abstract: This paper addresses the escalating threat of malicious jamming in next-generation com-
munication systems, propelled by their continuous advancement in speed, latency, and connectivity.
Recognizing the imperative for communication security, we propose an efficient jamming detection
method with distinct innovations and contributions. Motivated by the growing sophistication of
jamming techniques, we advocate the adoption of the error vector magnitude (EVM) metric, mea-
sured in IQ symbols, deviating from traditional received signal strength and bit error rate-based
measurements. Our method achieves enhanced jamming detection sensitivity, surpassing existing ap-
proaches. Furthermore, it introduces low complexity, ensuring resource-effective detection. Crucially,
our approach provides vital jammer frequency information, enhancing counteraction capabilities
against jamming attacks. It demonstrates stable results against varying system parameters, such as
modulation type and code rate, thereby contributing to adaptability. Emphasizing practicality, the
method seamlessly integrates into 5G and LTE systems without imposing additional overhead. Versa-
tility is demonstrated through successful operations in diverse scenarios that are run by extended
simulation conditions. Theoretical analysis substantiates these advantages, reinforcing the validity of
our methodology. The study’s success is further validated through laboratory experiments, providing
empirical evidence of its effectiveness. The proposed method represents a significant step toward
fortifying next-generation communication systems against evolving jamming threats.

Keywords: jamming detection; EVM; 5G; resource block

1. Introduction

5G and beyond communication systems are revolutionizing communication in today’s
rapidly evolving technological landscape. These systems provide a significant increase in
access to Internet-based services with high speeds, low latency, and wide bandwidth. They
offer users a seamless experience across multiple devices, facilitating integration between
mobile devices, desktops, and other platforms. They also support innovative features
and applications, enabling technologies such as augmented reality, remote interventions,
and the Internet of things. Owing to their flexibility and future-proof adaptability, these
systems play a key role in digital transformation, bringing a more efficient, secure, and rich
experience to the world of communications. However, all of these features also open up the
possibility for malicious jammers to attack more targets and corrupt more data. Therefore,
fast, accurate, and effective detection of jamming attacks is vital for increasing the defense
capabilities of systems.

Several jamming detection methods are proposed for wireless networks [1,2]. A signif-
icant number of these utilize received signal strength (RSS) measurements. The authors
of [3–7] obtain the RSS by estimating the spectrum of the received signal and observe
the effect of jamming signals on the RSS. In other studies, the optimal RSS thresholds for
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jamming detection are determined with likelihood tests performed by considering the
jamming presence and absence hypotheses. This method is widely proposed for massive
SIMO [8], massive MIMO [9], LTE [10], direct-sequence spread-spectrum (DSSS) [11], wire-
less sensor networks [12], ad hoc networks [13], cognitive radio networks [14] and satellite
communication [15] systems.

In addition, many studies propose the use of RSS-based metrics in combination with bit
error rate (BER)-based metrics such as throughput, packet error rate, packet delivery ratio,
packet sent ratio, packet loss rate, and bad packet ratio. Accordingly, the effects of jamming
are observed jointly on the RSS- and BER-based metrics, and jamming detection threshold
levels are set on these metrics. The jamming detection performance of such methods
is demonstrated with simulations in [16–20], and with experimental studies as well as
simulations in [21–23]. On the other hand, in [24–27], these metrics are used to train machine
learning algorithms such as support vector machines, neural networks, and random forests
for jamming detection. In addition to the aforementioned metrics, the chip error rate [28]
and inter-arrival time [29] are other metrics examined for jamming detection.

Machine learning algorithms are also trained using spectrogram images [30], IQ
samples [31], time-domain signal samples [32], and FFT samples [33,34] for jamming
detection. Although machine learning algorithms are becoming increasingly popular,
the issues of training these algorithms, collecting sufficient data for training, adapting to
varying jamming strategies, and integrating them into the system architecture with minimal
overhead must be considered.

Subspace analysis methods are the other methods used in jamming detection. Such
methods use eigenvalue [35] or singular-value [36] analyses to identify the subspaces
formed by the signal and jamming. However, the jamming detection success of such
methods requires the jamming level to be sufficiently higher than the legitimate signal level.

In our previous study [37], the EVM vs. RB metric was proposed to detect jamming
attacks in 5G networks. The error vector magnitude (EVM) is measured for each resource
block (RB) in the received signal and jamming signals are then detected at RBs where
the EVM upper threshold is not met. The success of EVM vs. RB in terms of sensitivity
compared to classical BER-based methods was verified with simulations containing only
a limited number of scenarios. The EVM metric is also used in studies [38,39] to study
jamming effects in OFDM systems. However, these studies have aimed to identify the
jamming strategies that cause the greatest damage to the system.

In this paper, we extend the work for the EVM vs. RB measurement and list below all
the innovations and contributions achieved:

1. EVM metric utilization: The paper advocates for the utilization of the EVM metric
measured in IQ symbols, a departure from the commonly used classical RSS and BER
based metrics in the literature.

2. Enhanced sensitivity: The proposed method demonstrates a significant improvement
in jamming detection sensitivity compared to existing approaches. Although low-
power hidden jamming signals that cannot be detected using conventional metrics
do not cause denial of service, they can limit the data transmission rate. Due to the
EVM’s ability to detect small variations in jamming level, jamming signals hidden in
an extreme form 20 dB below the legal signal are also successfully detected.

3. Low complexity: For next-generation networks with low latency requirements, it is ad-
vantageous that the proposed method has a low complexity of O(N). This advantage
also contributes to the fast response of the system for anti-jamming measures.

4. Jammer frequency information: The proposed method calculates the EVM metric for
each RB in the received signal. Since RBs represent the frequency domain, the fre-
quency bands in which jamming attacks occur are also revealed. This important
information, which is not provided by most methods, offers an important background
for countermeasure steps such as jammer localization [40] and antijamming frequency
planning. In addition, the concepts of ambient backscattering and RF energy harvest-
ing [41,42] are recently proposed as solutions to the battery problems of IoT devices.
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By using the jamming frequency information provided by our method, these devices
can be tuned to the correct jamming frequencies and, as a result, jamming energy,
which is usually emitted at high RF powers, can be utilized.

5. Reliability: The EVM vs. RB measurement provides a stable jamming detection
performance against varying system parameters such as modulation degree and code
rate. However, BER-based methods are affected by the variations of these parameters
and provide unreliable results.

6. Usability and compatibility: In LTE and 5G systems, it is known that reference IQ
symbols are also sent in the transmitted data packet to enable the UE to estimate the
channel. The EVM metric used by the proposed method is calculated using these
reference symbols that are already in the system architecture. Thus, the proposed
method can be easily integrated into the system without the need for changes in system
operation or hardware. Moreover, since jamming detection can be performed using a
single threshold level for the EVM metric, there is no need for any pre-operational
training and validation phases. As a result, the proposed method is suitable for LTE,
5G, and beyond communication systems, which include IQ modulation and resource
block (RB) architectures.

7. Theoretical analysis support: All presented advantages are substantiated with thor-
ough theoretical analysis, reinforcing the validity and efficacy of the proposed jam-
ming detection methodology.

8. Versatility in system scenarios: The proposed method’s successful operation in differ-
ent system scenarios is underscored by extending the simulation conditions to cover
the sub-6 GHz frequency region usage, different numerology (OFDM subcarrier spac-
ing) usage, line-of-sight (LOS) and non-line-of-sight (NLOS) channel cases, MIMO
structures, and millimeter-wave (mmWave) band usage scenarios.

9. Laboratory experiment validation: The study’s success is conclusively demonstrated
through experiments conducted in a laboratory environment, providing empirical
evidence of the method’s effectiveness.

2. System Model

The effectiveness of the proposed method is demonstrated on a 5G downlink data-
transmission infrastructure. For this purpose, the process steps shown in Figure 1 are
implemented in MATLAB [43] by considering the 3GPP standards [44–48].

B�t Packets DLSCH PDSCH

gNB
Antennas

Jamm�ng
Attacks

Scrambl�ng IQ Modulat�on Layer Mapp�ng Antenna
Precod�ng

OFDM
Modulat�on

OFDM
Demodulat�on

Channel
Est�mat�on

Channel
Equal�zat�onIQ Demodulat�onB�t Error

Detect�on

UE RX
  Mult�path Fad�ng Channel

The EVM vs. RB Measurement
for Jamm�ng Detect�on

Figure 1. 5G Downlink Data Transmission.
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First, the data bits are generated at the gNB (base station); they are then subjected
to “cyclic redundancy check” insertion and “low-density parity-check” coding [44] at the
downlink shared channel (DLSCH) step [45]. This permits the UE to detect and correct
bit errors. The obtained code words are then transferred to the physical downlink shared
channel (PDSCH) stage.

In the PDSCH stage [46], the code words are first scrambled so that the broadcast
cannot be decoded by unautorized devices. IQ modulation is then performed, providing
one of the QPSK, 16-QAM, 64-QAM or 256-QAM options [47].

The obtained IQ symbols are mapped to the MIMO transmitter antennas in the layer-
mapping phase. In addition, demodulation reference signals (DM-RS) [47], which are
reference IQ symbols required for channel estimation in the UE side, are also included in
the data symbols.

The IQ symbols are modulated into the RF band using OFDM. The smallest frequency
grid required for downlink transmission is called a resource element, which corresponds to
one OFDM subcarrier frequency. A group of 12 consecutive subcarriers (resource elements)
in the frequency domain form a resource block (RB). The total bandwidth allocated to a UE
is expressed in the number of RBs, and the concept of RB is used throughout the rest of
the paper.

Finally, the obtained RF signal is transmitted via MIMO antennas. The mentioned
MIMO-OFDM system is detailed in Figure 2. There are NT transmitter and NR receiver
antennas in the system.

Ser�al-to-
Parallel Equal�zer

Jamm�ng, No�se

Input
Symbols

Mult�path
Fad�ng

Channel
Parallel-to-

Ser�al

Figure 2. MIMO-OFDM Transmit–Receive Model.

The CDL (Clustered Delay Line) channel model, specified by 3GPP [48] for 5G and
beyond communication systems, represents a realistic channel structure with clustered
multipath components, each exhibiting Rayleigh fading characteristics. This model aligns
with industry standards and is well-suited for the simulation of wireless communication
systems, allowing us realistic capture of the effects of multipath propagation and fading
in our study. Hence, the overall multipath channel can be expressed by an H matrix with
each element following a Rayleigh distribution.

H =

 h1,1 . . . h1,NT
...

. . .
...

hNR ,1 . . . hNR ,NT

, (1)

where hi,j =
[
hi,j[L− 1] . . . hi,j[0]

]
is the channel between the ith receiver and jth transmit-

ter antennas, and L is the maximum channel length of all NR×NT links. The statistical
properties of hi,j[l](l = 0, . . . , L− 1) and hi,j can be summarized as follows:

E{hi,j[l]} = 0, (2)
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E{|hi,j[l]|2} = 1, (3)

E{hi,j[l]h∗m,n[l]} = 0 if i 6= m or j 6= n, and so (4)

E{hi,jhH
i,j} = L. (5)

The received signal samples at time instant k are expressed as follows:

y[k] =

√
PT
NT

 h1,1 . . . h1,NT
...

...
...

hNR ,1 . . . hNR ,NT


 x1[k]

...
xNT [k]

+ v[k], (6)

where PT represents the average transmitted symbol power, v[k] = j[k] + n[k] represents
the sum of the received jamming and noise vectors, and

xj[k] =

xj[k− L + 1]
...

xj[k]

 (7)

is the vector of the transmitted symbols, each with an average power of one unit, that is,
σ2

x = 1.
T received vector samples can be combined into a single matrix as

Y = [y[k] . . . y[k + T − 1]] =

√
PT
NT

 h1,1 . . . h1,NT
...

...
...

hNR ,1 . . . hNR ,NT


 X1

...
XNT

+ V

=

√
PT
NT

HX + V,

(8)

where Xj and V are written as

Xj =


xj[k− L + 1] xj[k− L + 2] . . . xj[k− L + T]

...
... . . .

...
xj[k− 1] xj[k] . . . xj[k + T − 2]

xj[k] xj[k + 1] . . . xj[k + T − 1]

 and (9)

V =


v1[k] v1[k + 1] . . . v1[k + T − 1]
v2[k] v2[k + 1] . . . v2[k + T − 1]

...
... . . .

...
vNR [k] vNR [k + 1] . . . vNR [k + T − 1]

. (10)

After receiving Y, the Minimum Mean Squared Error (MMSE) equalizer is used to
mitigate the negative effects caused by the channel, such as fading. The MMSE equalization
matrix, WMMSE [49], is calculated as

WMMSE =

√
NT
PT

(
HHH +

PV NT
PT

INT

)−1
HH

=

√
NT
PT

BHH ,

(11)
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where PV = PJ + PN is the sum of jamming (PJ) and noise (PN) powers and

B =

(
HHH +

PV NT
PT

INT

)−1
. (12)

To estimate the transmitted IQ symbols, the equalizer is applied as follows:

X̂ = WMMSEY =

√
NT
PT

BHHY

= BHHHX +

√
NT
PT

BHHV

= BCX +

√
NT
PT

BHHV,

(13)

where C = HHH.
At this point, the proposed error vector magnitude (EVM) metric for jamming detection

is calculated using the reference and estimated IQ symbols as follows:

EVMn =

√
e2

n
1
N ∑N

n=1(i2n + q2
n)

, (14)

where

• n denotes the index of the IQ symbol,
• N is the total number of symbols used for calculation,
• e2

n = (in − în)2 + (qn − q̂n)2 is the power of the error caused by the jamming and noise,
• in and qn are the reference in-phase and quadrature values of the nth symbol (xn = in + jqn),
• în and q̂n are the estimated in-phase and quadrature values of the nth symbol (x̂n = în + jq̂n),
• 1

N ∑N
n=1(i

2
n + q2

n) represents the average power of the reference symbols.

As shown in Equation (14), each of the N symbols is used once for vectoral difference
calculation. Therefore, the computational complexity of the EVM is in terms of the first
power of N, that is, O(N). Consequently, the computational complexity of our jamming
detection method using the EVM metric has a low value of O(N).

For EVM calculation, both reference and estimated symbols are required. The nat-
ural flow of next-generation communication systems, such as LTE and 5G, includes the
transmission of reference symbols. In this manner, without any pre-training and without
changing the system architecture, we calculate the EVM metric and detect the presence of a
jamming signal by checking whether the EVM exceeds a single threshold level. This makes
the proposed method very advantageous in terms of integrability into real-world scenarios.

In addition, Equation (14) indicates that EVM is proportional to the square root of
the jamming plus noise-to-signal ratio (JNSRx̂). Therefore, to perform EVM analysis, it is
necessary to extract the signal, jamming, and noise power components from X̂. For this
purpose, it is convenient to calculate the covariance matrix of X̂. Using the statistical
independence property [49] and Equation (5), the covariance matrix is calculated as follows:

ΣX̂X̂ = ΣBBΣCCΣXX +
NT
PT

ΣBBΣHHΣVV

=

(
σ2

b L2σ2
x +

NT
PT

σ2
b Lσ2

v

)
INT ,

(15)
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where σ2
x = 1 as expressed in Equation (7), and σ2

v is PV = PJ + PN . The diagonals of ΣX̂X̂
indicate the total power of each x̂n. Thus, JNSRx̂ can be obtained as follows:

JNSRx̂ =
NT
PT

σ2
b Lσ2

v

σ2
b L2σ2

x
=

PV NT
PT L

. (16)

Consequently, it is revealed that the EVM is related to the parameters given in Equation (17).

EVMn ∝
√

JNSRx̂ =

√
PV NT
PT L

=

√
PJ + PN

(PT/NT)L
. (17)

As shown in Equation (17), EVM depends directly on the jamming power represented
by PJ . Thus, the EVM metric can sense even small changes in the jamming level. However,
for BER-based metrics, such as throughput and packet delivery ratio, to detect jamming
signals, the jamming power must be strong enough to divert the received IQ symbols to the
wrong regions in the constellation diagram, that is, to create a bit error. Because jamming
signals below this jamming power do not create any bit errors, jamming is not sensed by
BER-based metrics. Although such weak jamming signals do not cause denial of service,
they may limit the data rate performance. Owing to the aforementioned ability of the EVM,
these jamming signals can also be successfully detected.

EVM also depends on the transmitted symbol power, which is denoted as PT . Af-
ter equalization, PT is normalized by NT . Parameter L, on the other hand, is the expected
improvement brought by the equalizer. This improvement is also mentioned in simulation
results in Section 3.1.

Another conclusion is that the EVM metric is not affected by varying system param-
eters, such as modulation type and code rate, and as a result, jamming signals are stably
detected. However, as shown in the results in Sections 3.2 and 3.3, BER-based metrics are
affected by these system parameters and exhibit unreliable results.

The final EVM is expressed in both the RMS (18) and MAX (19). Because the maximum
EVM can sense instantaneous distortions in the received signal, it can also detect more
sophisticated jamming attacks that target a short-timed fragment of the legitimate signal.
Such jammers are also called reactive or responsive jammers [50] and may adopt such short-
time operating styles to minimize both their detectability and battery usage. Therefore,
the maximum EVM is used in this study.

EVMRMS =

√
∑N

n=1 EVM2
n

N
, (18)

EVMMAX = max
n∈[1,...,N]

EVMn. (19)

The maximum EVM is measured for each RB in the received signal. Thus, the EVM vs.
RB data are obtained. Because the RBs represent the frequency domain, the EVM vs. RB
data reveal the frequency bands attacked by the jammer. After this stage, the operations
in the receiver side are completed with IQ demodulation and decoding, and the data
bits are obtained. The BER and throughput are measured using the data bits, and these
measurements are also observed for jamming detection, whereas the EVM vs. RB detects
the jamming attack at an earlier stage. This capability brings extra speed along with low
computational complexity.

3. Simulation Results
3.1. Base Scenario

The processing steps required for 5G downlink data transmission are explained in
Section 2. The system parameters used in the processing steps are listed in Table 1.
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Jammers may concentrate their RF energy into certain frequency bands using tone-type
signals, or occupy a broader spectrum using chirp-type signals. Therefore, it is considered
sufficient to examine the tone and chirp jammers in this study.

Table 1. Selected Data Transmission Parameters for the Base Scenario.

Parameter Name Value Explanation

Carrier Frequency 2.65 GHz Frequency Range-1 for 5G

MIMO Structure 8 × 2

MIMO Transmission Layers 2

Fading Channel Model CDL-C Urban Macrocell Model,
NLOS

OFDM Subcarrier Spacing
(SCS) 30 kHz µ = 1 (numerology)

Assigned RBs 51
Transmission bandwidth close

to 20 MHz with the
30 kHz SCS

IQ Modulation 16QAM

Code Rate 490/1024

First, in the no-jammer case, the RF power spectrum and EVM vs. RB are measured
for the received signal, and the measurement results are shown in Figure 3. The observed
fluctuations in the spectrum is caused by multipath fading. As explained in Section 2,
an equalizer is used to minimize the fading effect on the received IQ symbols. To observe
the effect of equalizer on the EVM data, EVM vs. RB is measured for both the unequalized
and equalized IQ symbols, as shown in Figure 3b. The EVM vs. RB measurement obtained
using unequalized IQ symbols directly reflects the fluctuation characteristics of the RF
spectrum (red line in Figure 3b). On the other hand, the improvement brought about by
the equalizer shows a decrease in the EVM data (blue line in Figure 3b). As shown in
Equation (17), this improvement is expected.

2.635  2.64 2.645  2.65 2.655  2.66 2.665
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Figure 3. No-Jammer Case, Obtained Throughput = %100 (BER = 0). (a) The Rx signal spectrum and
(b) EVM vs. RB.

The same measurements are performed for different jamming cases, that is, tone and
chirp jammers. Reviews related to tone jamming are given below, whereas repeated reviews
for chirp jamming are provided in the Appendix A. The SJR parameter is selected as −5 dB
for both jamming conditions. The observed changes in the RF power spectrum and EVM
after the application of these jamming signals are shown in Figures 4 and A1, respectively.
In the EVM vs. RB data obtained using unequalized symbols, jamming effects are observed in
addition to fluctuations owing to the fading (red lines in Figures 4b and A1b). On the other
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hand, in the EVM vs. RB measurement taken with equalized symbols, the fluctuation is
minimized owing to the equalizer, but jamming effects are still clearly observed (blue lines
in Figures 4b and A1b)). Thus, in the EVM vs. RB data obtained with equalized symbols,
jamming signals can be easily detected using a single threshold level, without considering
any fluctuation effect in the data. Therefore, to avoid dealing with the fluctuation effect
due to fading, EVM vs. RB measurement using equalized IQ symbols is proposed for
jamming detection.
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Figure 4. Tone Jammer Case, SJR = −5 dB, Obtained Throughput = %0 (BER = 0.343). (a) shows the
Rx signal spectrum and (b) shows the EVM vs. RB.

In the next simulation, where the SJR is increased to 10 dB, the received signal is
contaminated with jammers of the same tone and chirp type. The RF spectrum and EVM vs.
RB measurements are shown in Figures 5 and A2, respectively. In this SJR case, the jamming
signals cannot be detected using the RF power spectrum, which provides RSS information,
as shown in Figures 5a and A2a. In addition, the throughput measurement for both the
jamming cases is 100%, which means that the jamming effect cannot be sensed using this
BER-based metric. However, the EVM vs. RB measurements successfully detect these small
jamming signals, as shown in Figures 5b and A2b. This reveals the success of the proposed
method in terms of sensitivity compared with RSS- and BER-based methods.
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Figure 5. Tone Jammer Case, SJR = 10 dB, Obtained Throughput = 100% (BER = 0), (a) the Rx signal
spectrum and (b) EVM vs. RB.

EVM vs. RB, throughput, and BER are measured for various SJR values to examine
the dependencies of the jamming detection metrics on SJR. According to the results shown
in Figure 6d, jamming cannot be sensed using the throughput and BER observations
when SJR exceeds 10 dB. However, using the EVM vs. RB measurement, jamming signals
are successfully detected, even under extreme SJR conditions, such as 20 dB (Figure 6b).
To demonstrate the performance of EVM vs. RB under other SJR conditions, the peak
value of EVM vs. RB for each SJR is calculated and the results are shown in Figure 6c. It is
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concluded that jamming signals with an SJR of 25 dB can also be detected using EVM vs.
RB. However, beyond 25 dB, EVM vs. RB also becomes unsuccessful in jamming detection.
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Figure 6. EVM vs. RB, BER and Throughput Measurements for Multitone Jammer. (a) EVM vs. RB
for SJR = 0 dB, (b) EVM vs. RB for SJR = 20 dB, (c) Peak-EVM vs. SJR, and (d) throughput and BER
vs. SJR.

The sensitivity performance of the proposed method for tone jamming is also valid for
chirp jamming, as shown in Figure A3. In the following sections, the BER results are not
presented alongside the throughput results, because, as shown in the figures, the BER is
inversely proportional to the throughput and does not provide any additional information.

3.2. Reliability of the Proposed Method against Modulation Type Change

5G systems choose the appropriate M-PSK or M-QAM modulation types according
to the data rates required by the UEs and channel availability. 16-QAM modulation is
considered in the base scenario (Section 3.1). In this section, along with 16-QAM, QPSK
and 64-QAM modulations are considered. Thus, jamming detection performances of EVM
vs. RB and throughput metrics are examined against changes in the modulation type.

For the QPSK, 16-QAM, and 64-QAM modulation-type use cases, the peaks of EVM
vs. RB are calculated for each SJR, and the results are presented in Figure 7a. Because the
EVM measurement shows consistent results across modulation types, the proposed method
can be safely used for jamming detection in system scenarios in which the modulation
type changes.

On the other hand, Figure 7b shows the throghput results versus SJR for the use cases
of the aforementioned modulation types. When SJR is 0 dB, the throughput for the QPSK
case is 100%; therefore, no jamming signal is detected. If the system decides that there is
no jamming threat by looking at this throughput result and then increases the modulation
degree to 16-QAM or 64-QAM, it experiences a dramatic decrease in throughput. In other
words, the jamming effect is sensed differently by using the throughput metric under differ-
ent modulation-type usage conditions. However, the proposed measurement consistently
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detects jamming threats independently of the chosen modulation type, thereby possessing
the capability to provide reliable guidance to the system.

-20 -10 0 10 20 30 40

SJR(dB)

0

100

200

300

400

500

600

P
ea

k 
E

V
M

(%
)

Peak-EVM vs SJR

16QAM
QPSK
64QAM
Jamming Detection Threshold

(a)

-20 -10 0 10 20 30 40

SJR(dB)

0

10

20

30

40

50

60

70

80

90

100

T
h

ro
u

g
h

p
u

t(
%

)

Throughput vs SJR

16QAM
QPSK
64QAM

(b)

Figure 7. Effect of the Modulation Type Change, Tone Jammer. (a) Peak-EVM vs. SJR, and (b) through-
put vs. SJR.

The results in Figure A4 show that this reliability of the proposed method against
changes in the modulation type is also achieved for the chirp jamming case.

3.3. Reliability of the Proposed Method against Code Rate Change

In 5G systems, the code rate parameter can also be changed depending on the require-
ments. A code rate of 490/1024 is considered for the base scenario. In this section, code
rates of 245/1024 and 980/1024 are also considered.

For the aforementioned code rate use cases, the peaks of EVM vs. RB are calculated
for each SJR, and the results are shown in Figure 8a. The proposed method provides stable
results without being affected by the code rate parameter; therefore, it can be safely used
for jamming detection in system scenarios in which the code rate changes.
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Figure 8. Effect of the Code Rate Change, Tone Jammer. (a) Peak-EVM vs. SJR, and (b) Throughput
vs. SJR.

However, Figure 8b shows that different throughput results are obtained for different
code rate conditions for a fixed SJR case. For example, when the SJR is 0 dB and a code
rate of 245/1024 is used, the throughput approaches 100%. Therefore, the jamming effect
cannot be clearly observed. If the system relies on this and decides to increase the code rate
to 490/1024 or 980/1024, the throughput decreases significantly. Meanwhile, the proposed
measurement can prevent such incorrect decisions, because it detects jamming threats
without being affected by code rate changes.
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This achievement of the proposed method for the tone-jamming scenario is also valid
under chirp-jamming, as shown in Figure A5.

3.4. Change in the OFDM Subcarrier Space (SCS)

In the previous sections, simulations are performed for 30 kHz OFDM SCS use; how-
ever, 5G networks can also use OFDM SCSs of 15, 60, 120, and 240 kHz to serve other
applications with different bandwidth requirements. This flexible use of different OFDM
SCS corresponds to the numerology term. However, only the 15 kHz SCS option is available
for LTE networks. In this section, we demonstrate that the EVM vs. RB measurement suc-
cessfully detects jamming attacks for different SCS use cases. For this purpose, simulations
are performed for 15 and 60 kHz SCS selections.

The jamming signal types and jamming frequencies are the same as those described
in the previous sections. When the SCS is reduced from 30 to 15 kHz, the transmis-
sion bandwidth is halved, resulting in half of the jamming frequencies occupying the
spectrum (Figures 9a and A6a). Conversely, when the SCS is increased to 60 kHz, all
jamming frequencies are observed in the transmission bandwidth (Figures 10a and A7a).
Figures 9b, 10b, A6b and A7b show that the EVM vs. RB measurement successfully de-
tects all jamming attacks included in the transmission bandwidth regardless of the OFDM
SCS applied.
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Figure 9. Chirp Jammer Case, SJR = −10 dB, SCS = 15 kHz. (a) the Rx signal spectrum and (b) EVM
vs. RB.
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Figure 10. Chirp Jammer Case, SJR = −10 dB, SCS = 60 kHz. (a) the Rx signal spectrum and (b) EVM
vs. RB.

3.5. Jamming Detection for mmWave Conditions

Millimeter waves encompass frequencies of 24 GHz and above. Millimeter-wave
(mmWave) bands offer increased bandwidth and data transfer rates, although they have a
limited coverage range. Consequently, mmWave signals rely significantly on line-of-sight
(LOS) propagation to ensure effective coverage.
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In the previous sections, experiments are conducted on the utilization of 5G in the
sub-6 GHz frequency range. In this section, on the other hand, the channel conditions are
changed, taking into consideration the deployment of 5G in the mmWave frequency band,
along with the corresponding channel conditions. In this context, the carrier frequency
is adjusted to 28 GHz, the transmission channel type is set to CDL-D (LOS), and OFDM
SCS is configured at 60 kHz. Figures 11 and 12 show that the EVM vs. RB metric can be
successfully used to detect jamming attacks under mmWave data transmission conditions.
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Figure 11. Tone Jammer Case, MmWave Conditions, SJR = −10 dB. (a) the Rx signal spectrum and
(b) EVM vs. RB.
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Figure 12. Chirp Jammer Case, MmWave Conditions, SJR = −10 dB. (a) the Rx signal spectrum and
(b) EVM vs. RB.

4. In-Lab Validation

In this section, the jamming detection performance of the EVM vs. RB measurement is
demonstrated through experiments performed in a laboratory environment in addition to
theoretical analysis and simulations. Because broadcasting interfering (jamming) signals
alongside legitimate communication is illegal, experiments are performed in a closed-loop
manner by adopting the following procedure to overcome this legal limitation:

First, the vector signal generator shown in Figure 13 generates a 5G signal by mod-
ulating the IQ symbols in the baseband to the RF band with OFDM. The IQ modulation,
OFDM subcarrier spacing and number of OFDM subcarriers are set to 16-QAM, 30 kHz
and 612, respectively, to make the generated signal similar to that in the base scenario
(Section 3.1). The jamming signal, on the other hand, is generated in the RF band using the
analog signal generator. The 5G signal is then contaminated with the jamming signal using
the RF combiner module, and the resulting signal is transferred to the spectrum analyzer,
which represents the receiver.

The spectrum analyzer calculates the RF power spectrum that provides the RSS
information and performs RF demodulation to obtain IQ symbols. To calculate the EVM
vs. RB data, the correct (reference) IQ symbols transmitted by the vector signal generator
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and jammed IQ symbols obtained by the spectrum analyzer are transferred to the test
PC. EVM vs. RB data are then obtained by calculating the EVM metric using Equation (14)
for each RB.

(a)

Test PC

Vector S�gnal Generator
(5G S�gnals)

RF Comb�ner

Analog S�gnal
Generator (Jamm�ng

S�gnals)

S�gnal Analyzer
(RF and IQ Analyzer)

Ethernet

RF Cables

(b)

Figure 13. (a) The hardware setup and (b) the block diagram of the setup.

The first experiment is conducted for a no-jammer scenario. Figure 14a shows the
power spectrum of the received RF signal and Figure 14b shows EVM vs. RB results. It is
observed that there is no jamming signal in the spectrum other than the 5G signal, and on
the other hand, the EVM values are low as expected.

Figures 15 and 16 show the results for the tone and chirp jamming cases, respectively,
where SJR is −10 dB. The effects of the jamming signals on the spectrum are clearly visible
in Figures 15a and 16a. In parallel, the EVM vs. RB measurement successfully reveals
jamming attacks for RBs corresponding to the frequency bands exposed to the jamming
signals (Figures 15b and 16b).
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Figure 14. No-Jammer Case, (a) the Rx signal spectrum and time-domain IQ waveform obtained
after RF demodulation and (b) EVM vs. RB.
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Figure 15. Tone Jammer Case, SJR = −10 dB, (a) the Rx signal spectrum and time-domain IQ
waveform obtained after RF demodulation and (b) EVM vs. RB.
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Figure 16. Chirp Jammer Case, SJR = −10 dB, (a) the Rx signal spectrum and time-domain IQ
waveform obtained after RF demodulation and (b) EVM vs. RB.

In the next experiment, to test the jamming detection sensitivity of both the RF power
spectrum and the EVM-vs-RB metric, the SJR parameter is set to 0 dB by reducing the power
of the jamming signals by 10 dB. The results obtained for the tone and chirp jamming cases
are shown in Figures 17 and 18, respectively. As shown in Figures 17a and 18a, the jamming
signals become no longer detectable in the RF power spectrum. However, the EVM-vs-RB
metric (Figures 17b and 18b) can still clearly detect jamming threats hidden in the spectrum.
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Figure 17. Tone Jammer Case, SJR = 0 dB, (a) the Rx signal spectrum and time-domain IQ waveform
obtained after RF demodulation and (b) EVM vs. RB.
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Figure 18. Chirp Jammer Case, SJR = 0 dB, (a) the Rx signal spectrum and time-domain IQ waveform
obtained after RF demodulation and (b) EVM vs. RB.

5. Discussion

The presented paper introduces a novel and efficient jamming detection method, EVM
vs. RB, designed to enhance the security of next-generation communication systems against
jamming attacks. The method is characterized by its ability to measure the EVM in the
system, offering a direct perception of changes in jamming levels. The sensitivity success of
the proposed method is a significant contribution to the field, as it enables robust detection
even in the presence of small jamming signals that may remain unnoticed by other metrics.

A crucial aspect of the proposed method is its low complexity, operating at O(N),
and its independence from variable system parameters such as modulation degree and
code rate. This independence ensures the method’s adaptability to diverse communication
scenarios, adding to its practicality and versatility in real-world applications.

The theoretical analysis of the proposed method begins with the construction of a 5G
data transmission infrastructure based on international 3GPP standards. By incorporating
a jamming attack into the system model, analytical expressions for received IQ symbols
are calculated, leading to the derivation of the EVM expression. This analytical foundation
establishes the groundwork for understanding the method’s inner workings, particularly
its capability to perceive changes in jamming levels directly.

Simulation results using MATLAB software [43] showcase the effectiveness of EVM vs.
RB in providing the jammer’s spectrum information. Comparative metrics, including power
spectrum for Received Signal Strength (RSS), Bit Error Rate (BER), and BER-dependent
throughput, are evaluated. The results demonstrate that EVM vs. RB outperforms these
metrics in detecting jamming signals, even at an extreme Signal Jamming Ratio (SJR)
of 25 dB. This robust performance underscores the method’s resilience against varying
jamming levels, reinforcing its potential as a reliable jamming detection solution.

Furthermore, the simulations reveal the stability of EVM vs. RB against changes in
system parameters such as modulation degree and code rate. In contrast, metrics like
throughput exhibit unreliability under such variations. This highlights the method’s ability
to maintain consistent performance across different communication scenarios, a critical
factor for its widespread applicability.

The study extends its scope to various applications, including 5G’s mmWave technology,
demonstrating the versatility of EVM vs. RB across different communication technologies.
The method’s success is further validated through experimental studies conducted in a labora-
tory environment, providing empirical evidence of its effectiveness in real-world settings.

In conclusion, the proposed EVM vs. RB jamming detection method presents a
compelling solution to enhance the security of next-generation communication systems.
Its direct perception of jamming level changes, low complexity, and independence from
variable system parameters contribute to its robustness and adaptability. The extensive
theoretical analysis, simulations, and experimental studies collectively establish the method
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as a promising and practical tool in the ongoing efforts to safeguard communication systems
against jamming attacks.

6. Conclusions

This paper introduces a capable jamming detection method to secure LTE, 5G, and next-
generation communication systems. Through the utilization of the EVM metric measured
in IQ symbols, the proposed approach diverges from traditional methods based on RSS-
and BER-based measurements, thereby contributing to the advancement of jamming detec-
tion methodologies.

The achieved contributions of this research are multi-faceted. First, the utilization
of the EVM metric demonstrates its effectiveness in enhancing jamming detection sensi-
tivity, surpassing existing approaches and providing a more reliable solution. Moreover,
the method introduces low computational complexity. On the other hand, the provision of
jammer frequency information by measuring the EVM for each RB in the received signal,
a critical aspect often lacking in other methods, further fortifies the system’s capabilities in
understanding and counteracting jamming attacks.

A notable strength of the proposed methodology is that it provides stable results
against changes in system parameters such as modulation type and code rate. This stability
contributes to the reliability of the results.

The verification methods employed in this study serve to reinforce the credibility of
the proposed approach. The method’s successful operation in diverse system scenarios,
as highlighted through extended simulation conditions, underscores its versatility and
applicability in real-world situations. Theoretical analyses provide a solid foundation for
the presented advantages, establishing the validity and efficacy of the jamming detection
methodology. Furthermore, the conclusive demonstration of the method’s success in labora-
tory experiments offers empirical evidence, validating its effectiveness in practical settings.

Looking ahead, the future direction of this research aims to leverage the jammer
frequency information provided by the proposed method. The intention is to develop
an intelligent frequency assignment strategy for anti-jamming purposes. This forward-
looking approach underscores the continuous evolution of the proposed methodology,
with potential applications in optimizing communication systems against sophisticated
jamming attacks.

In summary, this study not only introduces a novel jamming detection method, but
also substantiates its effectiveness through theoretical analysis and empirical validation.
The method’s low computational complexity, adaptability to varying system parameters,
and seamless integration into existing communication systems position it as a promising
solution for securing LTE, 5G, and future communication networks against jamming attacks.
The envisioned future direction further emphasizes the potential of this methodology to
contribute to intelligent anti-jamming strategies.
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Abbreviations
The following abbreviations are used in this manuscript:

3GPP 3rd Generation Partnership Project
5G 5th Generation of Cellular Networks
BER Bit Error Rate
CDL Clustered Delay Line
DLSCH Downlink Shared Channel
DM-RS Demodulation Reference Signals
DSSS Direct-Sequence Spread-Spectrum
EVM Error Vector Magnitude
FFT Fast Fourrier Transform
IQ In-phase and Quadrature
JNSR Jamming plus Noise-to-Signal Ratio
LOS Line of Sight
LTE Long-Term Evolution
MIMO Multiple Input, Multiple Output
MMSE Minimum Mean Squared Error
NLOS Non-Line of Sight
OFDM Orthogonal Frequency Division Multiplexing
PDSCH Physical Downlink Shared Channel
PSK Phase Shift Keying
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
RB Resource Block
RF Radio Frequency
RSS Received Signal Strength
Rx Receive
SCS Subcarrier Spacing
SIMO Single Input, Multiple Output
SJR Signal-to-Jamming Ratio
Tx Transmit
UE User Equipment

Appendix A

2.635  2.64 2.645  2.65 2.655  2.66 2.665
Frequency (GHz)

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

 d
B

m

RX Spectrum Max-Hold

(a)

0 5 10 15 20 25 30 35 40 45 50

RB

0

200

400

600

800

1000

1200

1400

E
V

M
(%

)

EVM vs RB

UnEqualized
Equalized

(b)

Figure A1. Chirp Jammer Case, SJR = −5 dB, Obtained Throughput = %1 (BER = 0.344). (a) the Rx
signal spectrum and (b) EVM vs. RB.
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Figure A2. Chirp Jammer Case, SJR = 10 dB, Obtained Throughput = %100 (BER = 0), (a) the Rx
signal spectrum and (b) EVM vs. RB.
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Figure A3. EVM vs. RB , BER and Throughput Measurements for Chirp Jammer, (a) EVM vs. RB
for SJR = 0 dB, (b) EVM vs. RB for SJR = 20 dB, (c) Peak-EVM vs. SJR, and (d) Throughput and BER
vs. SJR.
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Figure A4. Effect of the Modulation Type Change, Chirp Jammer. (a) Peak-EVM vs. SJR,
and (b) Throughput vs. SJR.
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Figure A5. Effect of the Code Rate Change, Chirp Jammer. (a) Peak-EVM vs. SJR, and (b) Throughput
vs. SJR.
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Figure A6. Tone Jammer Case, SJR = −10 dB, SCS = 15 kHz. (a) the Rx signal spectrum and (b) EVM
vs. RB.
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Figure A7. Tone Jammer Case, SJR = −10 dB, SCS = 60 kHz. (a) the Rx signal spectrum and (b) EVM
vs. RB.
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