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Abstract: For the problem of low time-frequency aggregation of the short-time Fourier transform
(STFT), which causes the parameter estimation performance degradation of linear frequency modu-
lation (LFM) signals at low signal-to-noise ratio (SNR), second-order synchrosqueezing transform
(SSST) is proposed based on the square of STFT amplitude. The time-frequency resolution and energy
aggregation are improved by means of squeezing and reassigning the time-frequency spectrum.
Meanwhile, in order to decrease the calculation of classical parameter estimation methods, the Hough
transform is used for rough estimation, and then the fractional Fourier transform (FRFT) is used for
accuracy estimation based on the Renyi entropy. The simulation result shows that higher estimation
accuracy is obtained at low SNR, and it has better robustness.

Keywords: LFM signals; parameter estimation; STFT; SSST; Hough transform

1. Introduction

An LFM signal is a typical non-stationary signal. The signal is widely used in various
radar systems because of its wide bandwidth product, good range resolution, and anti-
jamming and anti-interception capability [1,2]. The parameter detection of LFM signals
plays an important role in the identification of friend or foe, communication transmission,
interference electronic countermeasures [3], and electronic and anti-jamming applications,
especially the parameter estimation method of LFM signals based on dewiring modula-
tion [4]. The estimation accuracy of frequency modulation parameters is the prerequisite
for the accurate estimation of other parameters [5], so it is of great significance to estimate
the frequency modulation of LFM signals with high precision.

Now, the research of LFM signal parameter estimation focuses on the analysis method
based on time-frequency characteristics. One of the most classic time-frequency analysis
methods, short-time Fourier transform, can describe the local time-frequency characteristics
of LFM signals [6]. However, due to the uncertainty criterion, the time resolution and
the frequency resolution cannot be obtained with high precision, resulting in non-optimal
energy aggregation. The estimation accuracy of the frequency modulation of LFM signals
is insufficient at low SNRs. As a kind of nonlinear transform, the Wigner-Ville transform
has serious cross interference terms in the condition of multi-component LFM signals. This
method will make it impossible to estimate the frequency modulation when the received
signals are multi-component LFM signals. By introducing a scale factor into the window
function, the wavelet transform (WT) makes the window size of the window function
change with the frequency and has a better frequency resolution at the low frequency and a
better time resolution at the high frequency. However, because the energy at every moment
is always distributed in the frequency band centered on the instantaneous frequency, it
cannot have the optimal time resolution and frequency resolution. Therefore, the WT and
STFT have similar performance in estimating the frequency modulation of LFM signals.
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The S-transform [7] combines the characteristics of the STFT and WT, and introduces the
frequency variable into the Gaussian window function of the STFT. Compared with the WT,
the result of the transform has a higher time-frequency resolution, but the time-frequency
energy is still distributed in the frequency band near the instantaneous frequency, and
time-frequency energy aggregation cannot be achieved. The matched Fourier transform
(MFT) is used to estimate the frequency modulation of LFM signals. After the MFT,
according to the relationship between the peak coordinates of the transform domain and
the parameters of LFM signals, the parameters of LFM signals can be estimated [8]. Gabor
atoms are used to estimate the parameters of LFM signals, which require a large amount of
computation. After determining the most matched atoms, the Hough transform is used to
extract the parameters of atoms in linear distribution, which further increases the amount
of computation. In addition, Gabor atoms are used to achieve sparse decomposition of
LFM signals, and the result shows that their sparsity is not high, which is not conducive
to parameter estimation of LFM signals [9]. For the detection of the parameters of LFM
signals, a method combining the generalized S transform (GST) and Hough transform was
proposed. The GST is the same as the WT, so it cannot have the optimal time resolution
and frequency resolution. When the GST is used to estimate the parameters of LFM signals,
the detection performance will be greatly reduced at low SNRs [10].

At low SNRs, the time-frequency energy concentration of LFM signals determines the
estimation accuracy of frequency modulation. To solve the problem that time-frequency
resolution and time-frequency energy concentration of time-frequency analysis meth-
ods are not optimal, researchers have done a lot of research, mainly including the syn-
chrosqueezing transform (SST) and time-frequency reassignment (TFR). The SST is a kind
of time-frequency analysis method based on the WT proposed by Daubechies et al. [11],
which squeezes the energy within a certain frequency range of the wavelet transform
spectrum to near the instantaneous frequency of the signal, so as to improve the time-
frequency resolution and time-frequency energy aggregation of the signal. By extending
the definition of the SST, an improved second-order synchrosqueezing transform (SSST)
is proposed by D. Fourer [12,13], which further improves the energy concentration of the
signal time-frequency spectrum. By rearranging the time-frequency energy spectrum, the
time-frequency reassignment algorithm [14] based on the the STFT squeezes the energy
within a certain range of the time-frequency centroid to the centroid position, which signifi-
cantly improves the time-frequency energy aggregation. However, compared with the SST,
it requires more computation.

Through the analysis of several time-frequency analysis algorithms, this paper selects
the SSST based on the STFT as the time-frequency analysis tool of LFM signals. First, the
SSST is performed on LFM signals to obtain their time-frequency distribution spectrum,
and the time-frequency distribution diagram is binarized. Second, combined with the
Hough transform, the frequency modulation of LFM signals is roughly estimated. Last, the
fractional-order Fourier transform is used to estimate the LFM signals with high precision
based on the Renyi entropy.

2. SSST Methods
2.1. The SST Method

For the signal x(t), its short-time Fourier transform is defined as

F(t, w) =
∫ ∞

−∞
x(τ)h(τ − t)e−iwτdτ = A(t, w)eiφ(t,w) (1)

where h(t) is the window function, and A(t,w) and φ(t,w) represent the amplitude and phase
of STFT, respectively. The time-frequency energy spectrum of the signal x(t) is defined
as follows:

|F(t, w)|2 = F(t, w) · F∗(t, w) (2)
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where (*) indicates the conjugate operation. Because the time-frequency energy aggregation
of signal x(t) is distributed in a certain frequency band centered on the instantaneous
frequency, its energy aggregation is poor. In order to improve its time-frequency energy
aggregation, the SST squeezes the time-frequency energy distributed in a certain frequency
band of the instantaneous frequency to near the instantaneous frequency by estimating its
instantaneous frequency. When h(t) is selected as Gaussian window, the steps of the SST
are as follows:

(a) Estimate the instantaneous frequency of the signal x(t). According to literature [15],
the definition of STFT instantaneous frequency of x(t) is defined as ŵ = ∂tφ(t, w), where
ŵ = ∂tφ(t, w) represents partial derivative of phase with respect to time. The partial
derivative of (1) is defined as

∂F(t,w)
∂t = ∂A(t,w)

∂t eiφ(t,w) + i ∂φ(t,w)
∂t A(t, w)eiφ(t,w)

= ∂t A(t,w)
A(t,w)

F(t, w) + i ∂φ(t,w)
∂t F(t, w)

(3)

Then, the definition of STFT instantaneous frequency of x(t) is defined as follows [16]:

ŵ(t, w) = Re(−i
∂tF(t, w)

F(t, w)
) (4)

where ∂tF(t, w) is partial derivative to time, and Re(·) represents the real part of com-
plexes. In practice, to improve efficiency, the following formula can be used to estimate
instantaneous frequency:

ŵ(t, w) = w + Im(
FDh(t, w)

F(t, w)
) (5)

where FDh is defined as the STFT when the window function is the derivative of h(t), and Im(·)
represents the imaginary part of complexes. The formula is to estimate the instantaneous
frequency by calculating the energy barycentric coordinates of time-frequency spectrum.

(b) In order to improve the time-frequency resolution of the signal x(t), it is necessary
to squeeze the energy in a certain band of the instantaneous frequency to the instantaneous
frequency, so the SST is defined as follows:

F̂(t, ŵ) =
∫

R
|F(t, w)|2δ(w− ŵ(t, w))dw (6)

Compared with the original SST, the square of the STFT amplitude is taken in the
formula to avoid energy loss caused by positive and negative cancelling.

2.2. The SSST Method

The definition of instantaneous frequency derived from the SST based on the STFT
is shown in Equation (4). From the definition of the equation, it can be seen that the
instantaneous frequency estimated by this equation is based on the first partial derivative
of time t to estimate the instantaneous frequency of the signal. When the phase of the
signal changes linearly with time, the instantaneous frequency obtained from Equation
(4) is theoretically the instantaneous frequency of the signal STFT, but when the phase of
the signal changes nonlinearly with time, there will be an error between the instantaneous
frequency obtained from formula (4) and the real value.

Consider non-stationary signals such as LFM signals

x(t) = eiπ(2 f0t+kt2) (7)

where f 0 is center frequency, and k is the slope of frequency modulation. The phase ϕ(t) is
defined as

ϕ(t) = 2π f0t + πkt2 (8)



Electronics 2023, 12, 4938 4 of 10

From this equation, it can be seen that the phase is a quadratic function with respect
to t, and it has nonlinear properties. According to Lagrange’s mean value theorem, the
instantaneous frequency can be expressed as

ϕ′(t) = ϕ′(τ) + ϕ′′ (τ)(t− τ) (9)

where ϕ′(t) is the first derivative of ϕ(t), and ϕ′′ (t) is the second derivative of ϕ(t). Com-
pared with the first derivative, the instantaneous frequency calculated by the second
derivative is closer to the real value.

Therefore, in order to reduce the deviation when calculating the instantaneous fre-
quency with the SST, Equation (5) is modified by the SSST, and then the modified instanta-
neous frequency is defined as [17]

ŵ(2)(t, w) =

{
ŵ(t, w) + q̂(t, w)(t− t̂(t, w)), if ∂t t̂(t, w) 6= 0

ŵ(t, w), otherwise

}
(10)

where q̂(t, w) is the modulation operator, and it is defined as follows [18]:

q̂(t, w) = Re(
∂t(∂tF(t, w)/F(t, w))

2iπ − ∂t(∂wF(t, w)/F(t, w))
) (11)

In this equation, ŵ(t, w) is defined as follows:

t̂(t, w) = t− Re(
∂wF(t, w)

iF(t, w)
) (12)

where ∂wF(t, w) is the partial derivative to frequency. To further suppress noise, the value
of STFT spectrum is set as zero when less than threshold, as follows:

F′(t, w) =

{
F(t, w), |F(t, w)|≥ T

0, |F(t, w)|< T

}
(13)

where T is the threshold. Then, the SSST based on the square of STFT amplitude is
defined as

F̂(t, ŵ(2)) =
∫

R

∣∣F′(t, w)
∣∣2δ(w− ŵ(2)(t, w))dw (14)

2.3. Time-Frequency Energy Aggregation Analysis

The STFT of LFM signals describes the linear change of its frequency over time, and
its STFT is a straight line. Therefore, the higher the time-frequency energy aggregation
of LFM signals, the closer its distribution in the time-frequency domain is to the straight
line, the better the anti-noise performance, and the more conducive it is to the subsequent
parameter detection.

Renyi entropy can describe the uncertainty of information distribution. The stronger
the randomness of the signal, the larger the Renyi entropy value. Conversely, the weaker
the randomness of the signal, the smaller the Renyi entropy value. For the time-frequency
energy distribution, the more dispersed the time-frequency energy distribution, the larger
the Renyi entropy value, and the more concentrated the time-frequency energy, the smaller
the Renyi entropy value. Therefore, Renyi entropy can be used to describe the strength of
several time-frequency analysis methods. Renyi entropy is defined as

Ha(p) =
1

1− a
ln

N

∑
i=1

pi
a (15)

where a is the order of Renyi entropy, and a is generally an integer. Here, a takes the value
of 2.
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3. Methodology

The STFT of LFM signals describes the linear relationship of its frequency change
with time, because its distribution in the time-frequency domain is a straight line, and
the parameters of the line can reflect various modulation parameters of the original LFM
signals, such as frequency. Therefore, the detection of the parameters of the line is an
important means to detect the parameters of LFM signals. As a method of linear parameter
detection, Hough transform has better anti-noise performance and can effectively detect
the straight line in the image, and the peak value of the Hough transform domain directly
corresponds to the slope and intercept of the line. However, the detection accuracy of
parameters is affected by the resolution of coordinate (θ, ρ) in Hough transform domain.
In line detection, if a higher angular resolution is adopted, the calculation time and peak
search time of Hough transform will be increased. But if a lower angular resolution is
adopted, the accuracy of parameter estimation will be lower.

Therefore, in order to obtain higher parameter estimation accuracy of LFM signals
and reduce computation and peak search time, this paper first uses Hough transform
to perform rough estimation of the slope of frequency modulation with lower angular
resolution, and then uses FRFT to perform higher precision estimation of the slope of
frequency modulation.

3.1. Rough Estimation of the Frequency Modulation Slope

Hough transform maps a line in an image to a point in Hough transform domain,
which uses the line and point correspondence between image space and Hough transform
parameter space. According to the principle of Hough transform, if a line is represented by
polar coordinates, it can be expressed as

ρ = x cos θ + y sin θ (16)

where ρ represents the vertical distance from the origin to the line, θ represents the angle
between the vertical line and the horizontal axis of the line, and θ ranges from −90◦ to
90◦. Then, the correspondence between the slope of line and the peak value of the Hough
transform domain can be expressed as [19]

k̂ = − cot θm (17)

where θm represents the horizontal coordinate corresponding to the peak point.
When the discrete data space is mapped to the Hough transform domain, the Hough

transform domain needs to be discretized, then (θ, ρ) needs to be discretized, θ is evenly
divided into L parts, and ρ is evenly divided into M parts. In this case, the Hough transform
domain is evenly divided into L×M parts. After the image space is mapped to the Hough
transform domain, the cumulative results of each region are counted, and the coordinates
corresponding to the peak can be obtained through peak search.

3.2. Precise Estimation of the Frequency Modulation Slope

After rough estimation of the slope of frequency modulation, accurate estimation can
be performed around the rough estimation value. When θm is estimated with high precision,
the range of search ranges from [θm − ∆θ, θm + ∆θ], where ∆θ represents the angular
resolution. In order to obtain accurate estimation of the slope of frequency modulation from
the range of search, an accurate estimation method of the slope of frequency modulation
based on FRFT is proposed.

The P-order FRFT of signal x(t) is defined as [20]

XP(u) =
∫ ∞

−∞
x(t)KP(t, u)dt (18)
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where KP(t, u) is the kernel function, and it is defined as

KP(t, u) =

Aαeiπ(u2 cot α−2ut csc α+t2 cot α) α 6= nπ
δ(t− τ) α = 2nπ
δ(t + τ) α = (2n + 1)π

 (19)

where Aα is equal to
√

1− i cot α, and α is equal to Pπ/2.
Since the Renyi entropy can describe the strength of the aggregation of energy, the

Renyi entropy can be selected to evaluate the aggregation of energy of FRFT result under
different rotation order, and the minimum Renyi entropy corresponds to the optimal
estimation of the slope of frequency modulation.

The steps of accurate estimation of the slope of frequency modulation based on FRFT
are as follows:

(a) For the range of search from θm −∆θ to θm + ∆θ, the angular resolution is set to 2∆θ/i,
where i is the integer. Then, the rotation angle corresponding to each discrete point
is calculated, the FRFT corresponding to each rotation angle and the corresponding
Renyi entropy are calculated, and the polar angle θ1 corresponding to the minimum
value is searched;

(b) Determine whether the angular resolution corresponding to step 1 reaches the thresh-
old. If it does, the polar angle corresponding to the minimum Renyi entropy is the
required optimal θ̂m; otherwise, continue the search;

(c) The polar angle value θ1 and the angular resolution ∆θ′ constitute the search interval
[θ1 − ∆θ′, θ1 + ∆θ′], and continue the search according to step 1.

4. Simulation Results

In this section, the energy aggregation of time-frequency spectrum is analyzed, which
corresponds to the STFT, SST, SSST1, and SSST2 of the multi-component LFM signals,
where SSST1 represents the SSST based on the square value of STFT, and SSST2 represents
the SSST based on the value of STFT. The multi-component LFM signals are defined as

x(t) = exp(iπkt2) + exp(i2π f0t− iπkt2) (20)

The simulation parameters were set as shown in Table 1.

Table 1. Simulation parameters.

The Name of Simulation Parameters Value

The form of signal Chirp
The pulse width of signal (µs) 20

The bandwidth of signal (MHz) 40
The slope of frequency modulation (MHz/µs) 2

Center frequency (MHz) 40
SNR (dB) −14~0

4.1. The Analysis of the Aggregation of the Time-Frequency Spectrum

The time-frequency distribution of the STFT, SST, SSST1, and SSST2 of multi-component
LFM signals under the above simulation parameters is shown in Figure 1, when the SNR
is 0 dB. It can be seen that the frequency of LFM signals changes linearly with time from
Figure 1. Then, on the basis of the time-frequency transform, the Hough transform can be
used for linear detection. On this basis, the parameters of the LFM signals can be estimated.
By comparing Figure 1b,c, it can be seen that the time-frequency energy aggregation of the
SSST is better than the SST. By comparing Figure 1b–d, it can be seen that the anti-noise
performance of the SST based on the square of amplitude of the SSST are better than the
SSST based on the amplitude of the STFT.
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Figure 1. Time-frequency spectrum of LFM signals based on (a) STFT, (b) SST, (c) SSST1, (d) SSST2.

The Renyi entropy change under different SNRs of the SST, SSST1, and SSST2 is shown
in Figure 2, when the Renyi entropy is used as an evaluation index of the time-frequency
energy aggregation. It can be seen that the time-frequency energy aggregation of the SSST
based on the square amplitude of the STFT is superior to the SST and the SSST based on the
amplitude of the STFT. With the increase of SNRs, the time-frequency energy concentration
of the SSST is better than that of the SST and STFT.
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4.2. Error Analysis of Estimation Error of Frequency Modulation

The estimation error of the slope of frequency modulation is analyzed below, and the
simulation steps are as follows:

(a) For a certain SNR, the LFM signal model is used to generate the data sample, and the
generated two-dimensional time-frequency spectrum is binarized after the SSST;

(b) The slope of frequency modulation is a rough estimation by the Hough transform.
The initial polar resolution is set to 1◦, and the Hough transform is performed on the
image generated in step 1 to detect the coordinate of the peak. In this case, the value
of θm corresponds to the horizontal coordinate, and θm is the rough estimation of the
polar angle;

(c) The slope of frequency modulation is accurately estimated based on the FRFT. The
initial search interval ranges from (θm − 1◦) degree to (θm + 1◦) degree, i is set to 20,
and the threshold is set to 0.001◦. θ̂m is obtained according to the corresponding steps,
and θ̂m is the accurate estimation of the slope of frequency modulation;

(d) Repeat steps (a), (b), and (c). Perform 100 Monte Carlo experiments for each SNR,
and calculate the relative estimation error of the slope of frequency modulation. The
relative estimation error is defined as follows:

RMSE =

√
1
N

N
∑

i=1
(k̂i − k)2

k
(21)

The relative estimation error of the slope of frequency modulation at different SNRs is
shown in Figure 3. Compared with two estimation methods based on the STFT and SSST1,
the estimation error of the slope of frequency modulation based on the SSST1 is smaller
than that based on the STFT at low SNR. At different SNRs, the estimation error of the slope
of frequency modulation decreases with the increase of SNR. This is because the higher the
SNR, the closer the time-frequency distribution is to a straight line. The simulation result
showed that the parameter estimation method based on the SSST1 had better robustness
and higher precision than that based on the STFT.
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Figure 3. Relative estimation error of the slope of frequency modulation.

The computational analysis of the SSST mainly focuses on the STFT and Hough
transform. Assuming that the matrix size of LFM signals after time-frequency conversion
is N × P, the STFT needs NP log2 P operations, and the Hough transform needs N × P× L
operations. Therefore, the computation required for the SSST is NP(log2 P + L) operations.
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5. Discussion

The advantages of the method presented in this paper are as follows:

(a) In order to improve the time-frequency energy aggregation of the STFT, the SSST
based on the square of the STFT amplitude is proposed, which has better anti-noise
effect than the direct addition of the result of the STFT;

(b) In order to reduce the amount of computation of the Hough transform, combined
with the linear detection ability of the Hough transform for time-frequency spectrum
with low SNR, the LFM signal is coarsely estimated with low angular resolution, and
then the FRFT is used for parameter precision estimation based on the Renyi, entropy;

(c) Using the Renyi entropy as the evaluation criterion of FRFT energy concentration, the
traditional two-dimensional peak search method is transformed into a one-dimensional
minimum search, which reduces the search time and has better anti-noise performance;

(d) The center frequency of LFM signals can be further estimated on the basis of accurate
estimation of the slope of frequency modulation.

According to the analysis of the SSST above, the SSST is used to rearrange the time-
frequency energy based on the STFT. Compared with the STFT, the calculation amount of
the SSST is greatly increased. Therefore, in the future, we can combine the SSST and the
sparse Fourier transform to reduce the calculation amount.
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